簡易檢索 / 詳目顯示

研究生: 陳宜弘
Chen, Yi-Hung
論文名稱: 陣列式浮動風機繫纜共用錨碇之動態反應研究
Dynamic Response of Array Floating Wind Turbine with Sharing Anchor
指導教授: 楊瑞源
Yang, Ray-Yeng
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 67
中文關鍵詞: 再生能源浮動式風機共用錨碇空間優化尾流效應
外文關鍵詞: renewable energy, floating wind turbine, multiline anchor, space optimiztion, wake effect
相關次數: 點閱:133下載:19
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 離岸風能是目前極具潛勢的再生能源,近年來除了示範風機外,也已經有商轉的浮動式離岸風場,而在偌大的風場中如何能更有效的利用海上風能,因此本研究針對Casey Fontana所提出的共用錨碇點進行延伸,此概念主要是在風場中的錨碇塊連接不只一條繫纜,針對連接多條繫纜後的錨碇進行穩定性分析,主要著重在共用錨碇的繫纜繩張力以及平台的運動。台灣新竹外海是目前極具風能潛勢的場址,屬於淺水海域約為50米至100米水深,其中又以70米深的區域最不受漁船以及生態保護區之影響,因此本文將水深設定於70米進行設計。
      而本研究透過數值模擬(OrcaFlex)以及縮尺模型試驗,利用3台搭載NREL 5MW 風機的DeepCwind OC4 semi-submersible 平台進行數值模擬而縮尺實驗則是利用3台福祿數縮尺1:144的semi 平台搭配等效圓盤進行風推力測試,考慮可能受到尾流效應的影響,因此在實際海域的最小風機間距設定於750米,並依據懸垂理論重新設計繫纜繩長,先利用OrcaWave取得水動力參數,接著匯入OrcaFlex中利用風、波、流相互耦合,在規則波以及不規則波下計算繫纜繩張力以及平台的3個自由度(縱移、起伏、俯仰),配合在成大水工所的縮尺模型試驗,從而評估前後平台的運動差異以及共用錨碇點的繫纜繩張力變化。而共用錨碇的概念除了在錨碇數量的減少外,本研究亦針對離岸風場中的空間配置進行討論,可以了解整體空間成本的變化以此降低成本,在相同的繫纜配置下,三台浮動式風機組成的風場在利用共用錨定後可以減少大約24%的空間。根據數值以及實驗的比對,最後針對繫纜進行優化,透過改變繫纜繩徑95毫米、135毫米、175毫米以增加穩定度以及提高破斷力門檻,根據最後的結果提出一個適用於台灣淺水的共用錨碇配置。

    Offshore wind energy currently holds great potential for the industry of renewable energy. In recent years, in addition to demonstration wind turbines, there are also commercial floating offshore wind farms. It’s vital how to utilize offshore wind energy more effectively in a huge wind farm. Hence, the notion of multiline anchor has been proposed in the thesis. The multiline anchor in the wind farm connected with more than one mooring line and this study analyzes the stabilization of the multiline anchor and concentrate on the consultant line tension and the motion of platform. Hsinchu, Taiwan is currently a site with most potential for wind energy and belongs to a shallow water area with a water depth of about 50 meters to 100 meters. This study sets the water depth at 70 meters due to the fishery and ecological reserve.
      In this study, the results are mutually verified by numerical simulation and scaled model experiment, the former one simulates and analyzes three identical DeepCwind OC4 semi-submersible platforms equipped with NREL 5MW wind turbines in OrcaFlex and the latter one is carried out using three 1:144 scaled semi-submersible platforms with equivalent disks which simulate different wind thrusts. In order to consider the possible influence of the wake effect, the minimum turbines spacing is set at 750 meters in full scaled model and the length of mooring lines are redesigned according to catenary theory. This study utilizes OrcaWave to calculate hydrodynamic parameters and inputs into OrcaFlex to simulate the line tension and three degrees of freedom (surge, heave, and pitch) of platforms under regular and irregular wave tests and collaborate with scaled model tests carried out in Tainan Hydraulics Laboratory (THL). In addition to the reduction in the number of anchors, the concept of multiline anchor is also discussed in this research on the spatial configuration of offshore wind farms. It shows that the wind farm composed of three floating wind turbines can reduce the space by roughly 24% compared to single-line anchor. According to comparison of numerical and experimental results, this study finally optimizes the mooring lines by changing the diameter to increase the stability and the threshold of Minimum Breaking Load (MBL) and proposes a multiline anchor configuration for shallow water in Taiwan based on the final results.

    Abstract i 摘要 ii Acknowledgement iii Table of Contents iv List of Tables vi List of Figures viii Chapter 1 Introduction 1 1-1 Motivation 1 1-2 Literature Review 2 1-2-1 Current situation and introduction of floating wind turbines 2 1-2-2 Concept of Multiline Anchor and Cost Estimating 5 1-2-3 Types of Mooring line and Anchor 7 1-2-4 Wake effect 10 1-3 Objectives and Scope 11 Chapter 2 Methodology 13 2-1 Theory of OrcaFlex & OrcaWave 13 2-1-1 Theory of OrcaWave 13 2-1-2 Equation of motion 14 2-1-3 Hydrodynamics 15 2-1-4 Aero-dynamics 17 2-1-5 Mooring System 19 2-2 Numerical Model of OC4 semi-submersible 21 2-2-1 Introduction of OC4 (Semi-submersible) platform 21 2-2-2 Design of Mooring System 23 2-2-3 Numerical set-up 27 2-3 Scaled-down Model Test 29 2-3-1 Model of OC4 DeepCwind floater 29 2-3-2 Experimental equipment 32 2-3-3 Experimental set-up and procedure 37 Chapter 3 Comparison of scaled-test experiment and numerical simulation 41 3-1 Free Decay Test 41 3-2 Motion of platform under regular wave 44 3-2-1 Regular wave without wind 44 3-2-2 Regular wave with wind and comparison of the cases with and without wind 46 3-2-3 Comparison of regular wave test in experiments and numerical simulation 49 3-3 Motion of Platforms under Irregular Waves (with wind and current) 50 3-4 Tension analysis of multiline anchor system 54 Chapter 4 Results and Optimization of Numerical Simulation 56 4-1 Motion of platform under short-period regular wave 56 4-2 Space Optimization by Multiline Anchors 56 4-3 Platforms under Irregular Waves after Optimization 57 4-3-1 Motion of platform under Irregular Waves 58 4-3-2 Tension of multiline anchor under Irregular Waves 61 Chapter 5 Conclusions and Future Works 64 5-1 Conclusions of the multiline anchor in shallow water 64 5-2 Future works 65 Reference 66

    (ABS), A. B. o. S. (2013). Offshore Anchor Data for Preliminary Design of Anchors of Floating Offshore Wind Turbines
    Bossuyt, O. H. G. (2018). Modelling and validation of wind turbine wake superposition. (Master). Delft University of Technology,
    Centre, M. I. R. D. (2017). Key technology development plan for FOWT.
    Coulling, A. J., Goupee, A. J., Robertson, A. N., Jonkman, J. M., & Dagher, H. J. (2013). Validation of a FAST semi-submersible floating wind turbine numerical model with DeepCwind test data. Renewable Sustainable Energy.
    Diaz, B. D., Rasulo, M., Aubeny, C. P., Fontana, C. M., Arwade, S. R., & J.DeGroot, D. (2016). Multiline Anchors for Floating Offshore Wind Towers IEEE, 9.
    OFFSHORE STANDARD DNV GL AS Position mooring, (2015).
    Coupled analysis of floating wind turbines, (2019).
    Fontana, C. (2019). Multiline Anchor Concept for Floating Offshore Wind Turbines. (DOCTOR OF PHILOSOPHY). University of Massachusetts Amherst,
    Fontana, C. M., Arwade, S. R., DeGroot, D. J., Myers, A. T., Landon, M., Aubeny, C., & Hajjar, J. F. (2016). Efficient multiline anchor systems for floating offshore wind turbines. Paper presented at the Proceedings of the 35th International Conference on Ocean, Offshore and Arctic Engineering, Busan, Korea.
    Fontana, C. M., Hallowell, S. T., Arwade, S. R., & DeGroot, D. J. (2018). Multiline anchor force dynamics in floating offshore windturbines. WIND ENREGY.
    Ikhennicheu, M., Lynch, M., Doole, S., Borisade, F., Matha, D., Dominguez, J. L., . . . Trubat, P. (2020). Review of the state of the art of mooring and anchoring designs, technical challenges and identification of relevant DLCs
    Retrieved from
    Jensen, J. J. (2001). Load and Global Response of Ships. Amsterdam: Elsevier.
    Kao, T. (2013). Study on interaction of the horizontal-axis wind turbines wake and wind farm layout. (master). Xinjiang,
    Lu, H.-H., Yang, M.-H., & Chiu, K.-R. (2012). Practical application analysis of suspended line on anchor system. Paper presented at the The 34th Ocean Engineering conference, Tainan.
    Ma, K.-T., Luo, Y., Kwan, T., & Wu, Y. (2019). Mooring System Engineering for Offshore Structures: Brian Romer.
    Ma, K.-t., Wu, Y., Stolen, S. F., Bello, L., Horst, M. v. d., & Luo, Y. (2021). Mooring designs for floating offshore wind turbines leveraging experience from the oil & gas industry. Paper presented at the the 40th International Conference on Ocean, Offshore and Arctic Engineering OMAE.
    Orcina. (2021a). OrcaFlex help.
    Orcina. (2021b). OrcaWave help.
    Prakash, G., Anuta, H., Gielen, D., & Gorini, R. (2019). FUTURE OF WIND--Deployment, investment, technology, grid integration and socio-economic aspects. Retrieved from
    Robertson, A., Jonkman, J., Masciola, M., Song, H., Goupee, A., Coulling, A., & Luan, C. (2014). Definition of the Semisubmersible Floating System for Phase II of OC4. Retrieved from
    Stehly, T., Beiter, P., Heimiller, D., & Scott, G. (2017). Cost of Wind Energy Review. Retrieved from
    Tacx, J. (2019). Floating Wind Structures and Mooring Types. energyfacts.eu.
    WindEurope. (2018). Floating offshore wind energy-a policy blueprint for europe.

    下載圖示 校內:2023-07-31公開
    校外:2023-07-31公開
    QR CODE