簡易檢索 / 詳目顯示

研究生: 鄧吉雄
Teng, Chi-Hsiung
論文名稱: 微電灑晶片之研究與發展
Research and Development of Micro-Electrospray Chip
指導教授: 呂宗行
Leu, Tzong-Shyng
學位類別: 碩士
Master
系所名稱: 工學院 - 微機電系統工程研究所
Institute of Micro-Electro-Mechancial-System Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 79
中文關鍵詞: 電噴灑微電灑晶片泰勒錐
外文關鍵詞: electrospray, micro electrospray chip.Taylor cone, OTS
相關次數: 點閱:76下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究是用微機電製程技術來製作微電灑晶片( micro-electrospray chip),改進微電灑晶片噴嘴切口角度進行電噴灑(electrospray)研究。傳統質譜儀使用的電灑噴嘴以不鏽鋼針管作為電噴灑噴射源,本研究利用微流晶片設計,因為微流晶片具有與電泳晶片整合的優點,目前發展中的許多蛋白質生醫晶片,在對於未知蛋白質檢測上大部分採用上述電泳晶片及微電灑晶片整合而成。因此,本研究針對微電灑晶片作實驗探討。
      本研究利用顯微視流系統及操作電壓與電流來區分形成電噴灑的各個模態,並進一步找出電噴灑的最佳操作範圍。不同的切口角度,在錐噴流模態(cone-jet mode)的操作條件不同,角度較小要達到錐噴流模態的電壓較小,反之亦然。將各個切角的影響加以分析比較與歸納,並嘗試使用化學藥品(OTS)將晶片作表面改質,使晶片表面之接觸角提高以減少噴嘴口外濕潤面積,導致噴灑液滴減小。本研究最後用實驗方法驗證無因次化的 尺度法則,實驗結果近似此法則。

      This study is using the micro fabrication technology to fabricate the micro-electrospray chip. In changing the nozzle angle of the micro-electrospray chip can become a research of electrospray. The traditional spectrum was using stainless tube to be the injector. This study uses the micro fabrication technology to fabricate the chip for experiment. The micro fabrication technology can integrate the experiment system on a chip. In the developing of biochip, they used to integrate electrophoresis and electrospray to detect the unknown protein. The thesis is trying to study the electrospray.

      This study in using microscope-flow-visual-system to find out the optimum operation model in different combination of voltage and current. Different nozzle angle has different cone-jet mode. Smaller nozzle angle needs only smaller voltage. And bigger nozzle angle needs bigger voltage. This study use chemical treating to make surface changing in order to decrease the wetting area and also decrease the spray size. In the end of this thesis, the principle of the dimensionless factors published from the literature review have been proved by the results of this experiment.

    目錄 中文摘要 Ⅰ 英文摘要 Ⅱ 誌謝 III 目錄 IV 表目錄 VI 圖目錄 VII 符號說明 XII 第一章 緒論 1 1.1 背景 1 1.2 動機與目的 2 1.3 文獻回顧 4 第二章 晶片設計原理與實驗設備 7 2.1電噴灑現象的機制 7 2.2晶片設計 7 2.3實驗設備 8 第三章 製程 10 3.1導線晶片之製作 10 3.1.1光罩底片之繪製與製作 10 3.1.2晶片清潔 11 3.1.3金屬薄膜沉積 12 3.1.4微影技術(photolithography) 13 3.2微管道晶片之製作 15 3.3熱熔融接合(thermal fusion bonding) 16 3.4切割特殊角度 17 3.5封裝 17 3.6表面改質 17 第四章 實驗結果與討論 19 4.1電噴灑現象的模態分類 19 4.1.1滴落模態(dripping mode) 20 4.1.2脈衝模態(pulsating mode) 20 4.1.3錐噴流模態(cone-jet mode) 21 4.1.4多噴流模態(multi-jet mode) 21 4.2穩定電噴灑的操作條件 22 4.2.1體積流率Q與所施加的電壓Ф的關係 22 4.2.2切角α與所施加的電壓Ф的關係 23 4.2.3電流I與所施加的電壓Ф的關係 24 4.3表面改質 25 4.4無因次化的尺度分析 27 4.4.1電流的無因次化尺度分析 27 4.4.2液滴理論直徑的無因次化尺度分析 28 第五章 結論 30 參考文獻 32

    參考文獻
    [1] Siefert, W. ”Corona spray pyrolysis : A new coating technique with an extremely enhanced deposition efficiency.”, Thin Solid Films, 120, 267–274, 1984
    [2] Van Zomeren, A. A., Kelder, E. M., Marijnissen, J. C. M., & Schoonman, J. “The production of thin films of LiMn2O4 by electro spraying.”, Journal of Aerosol Science, 25, 1229–1235, 1994
    [3] Chen, C. H., Edmond, M. H. J., Kelder, E. M., Meester, B., & Schoonman, J. “Electrostatic sol-spray deposition of nanostructured ceramic thin films.”, Journal of Aerosol Science, 30, 959–967, 1999
    [4] Vercoulen, P. H. W., Camelot, D. M. A., Marijnissen, J. C. M., Pratsinis, S. E., & Scarlett, B. “SnO2 production by an electrostatic spray pyrolysis process. Proceedings of the International workshop synthetic measure ultra fine particles”, TU Delft, Netherlands, 71–81, 1993
    [5] GanUan-Calvo, A. M., Lasheras, J. C., Davila, J., & Barrero, A. ”The electrostatic spray emitted from an electri8ed conical meniscus.” Journal of Aerosol Science, 1994, 25, 1121–1142.
    [6] Tang, K., & Gomez, A. “On the structure of an electrostatic spray of monodisperse droplets.”, Physics of Fluids, 6, 2317–2332, 1994
    [7] Grace, J. M., & Dunn, P. F.” Droplet motion in an electrohydrodynamic cone spray.”, Experiments in Fluids, 20, 153–164, 1996
    [8] Hartmann, R. P. A., Brunner, F. J., Camelot, D. M. A., Marijnissen, J. C. M., & Scarlett, B.” Electrohydrodynamic atomization in the cone–jet mode and physical modeling of the liquid cone and jet." Journal of Aerosol Science, 30, 823–849, 1999
    [9] Cloupeau, M., & Prunet-Foch, B. “ Electrohydrodnamic spraying functioning modes: A critical review. “, Journal of Aerosol Science, 25, 1021–1036, 1994
    [10] Amish Desai, Yu-Chong Tai, Michael T. Davis, Terry D. Lee, ”A MEMS electrospray nozzle for mass spectroscopy.”, Transducer’ 97
    [11] Xuan-Qi Wang, Amish Desai, Yu-Chong Tai, Lawrence Licklider, Terry D. Lee, ”Polymer-based electrospray chips for mass spectrometry.”, MEMS’ 99
    [12] Séverine Le Gac, Steve Arscott, Cécile Cren-Olivé and Christian Rolando, ”Two-dimensional microfabricated sources for nanoelectrospray”, J. Mass Spectrom., 38, 1259–1264, 2003
    [13] J.Wen,Y.Lin,F.Xiang,D.W.Matson,H.R.Udseth,R.D.Smith,”Microfabricated isoelectric focusing device for direct electrospray ionization-mass spectrometry”, J .Electrophoresis, 21, 191-197, 2000
    [14] Zeleny, “Industry Application of Electrospray Technology”, J. Phys. Rev., 10, 1, 1917
    [15] Dole, M.; Mack, L. L.; Hines, R. L. “Molecular Beams of Macroions”, J. Chem. Phys., 49, 2240, 1968
    [16] Yamashita, M., Fenn, J. B., “Electrospray Ion Source: Another Variation on The Free-Jet Theme”, J. Phys. Chem., 88, 4451, 1984
    [17] AlekSendriv, M. L.; Gall, L. N., Shkurov, V. A., Pavlenko, V. A., Krasnov, N. V., Nikolaev, V. I. , “Mechanism of ion formation during the electrohydrodynamic sputtering of a liquid into a vacuum” , J. Anal. USSR., 39, 1268, 1984
    [18] Bruins, A. P., Covey, T. R., Henion, J. D. “Ion-Spray Interface for Combined Liquid Chromatography/Atmospheric Pressure Ionization Mass Spectrometry”, Anal. Chem., 59, 2642, 1987
    [19] Matthias S. Wilm, Matthias Mann, ”Electrospray and Taylor-Cone theory, Dole’s beam of macromolecules at last ?”, International Journal of Mass Spectrometry and Ion Processes, 136, 167-180, 1994
    [20] Xue, Q., Foret, F., Dunayevskiy, Y. M., Zavracky, P. M., McGruer, N.E., Karger, B. L., “Multichannel Microchip Electrospray Mass Spectrometry”, Anal. Chem., 69, 426-430, 1997
    [21] Ramsey, R. S., Ramsey, J, M. “Generating Electrospray form Microchip Devices Using Electroosmotic Pumping”, Anal. Chem., 69, 1174, 1997
    [22] Patrick Griss, Jessica Melin, Johan Sjodahl, Johan Roeraade, ”Development of micromachined hollow tips for protein analysis based on nanoelectrospray ionization mass spectrometry”, J. Micromech. Microeng., 12, 682-687, 2002
    [23] Cheng-Hui Yuan and Jentaie Shiea, ” Sequential Electrospray Analysis Using Sharp-Tip Channels Fabricated on a Plastic Chip”, Anal. Chem., 73, 1080-1083, 2001
    [24] J. Fernández de la Mora and I. G. Loscertales, J. Fluid Mech., 260, 155, 1994
    [25] A. M. Gañán-Calvo, J. Dávila, and A. Barrero, “Current and droplet size in the electrospraying of liquids Scaling laws”, J. Aerosol Science, 28, 249, 1997,
    [26] Rayleigh Lord, ”On the equilibrium of liquid conducting masses charged with electricity”, Phil. Mag., 14, 184, 1882
    [27] Stephen R. Wasserman, Yu-Tai Tao, and George M. Whitesides, ” Structure and Reactivity of Alkylsiloxane Monolayers Formed by Reaction of Alkyltrichlorosilanes on Silicon Substrates“, Langmuir, 5, 1074-1087, 1989
    [28] Da-Ren Chen, David Y. H. Pui and Stanley L. Kaufman, ”Electrospraying of conducting liquids for monodisperse aerosol generation in the 4nm to 1.8μm diameter range.”, J. Aerosol Science, 26, 963-977, 1995
    [29] I. W. Lenggoro et al., ”Preparation of ZnS nanoparticles by electrospray pyrolysis”, J. Aerosol Science, 31,121-136, 2000
    [30] J. M. Lopez-Herrera, A. Barrero, A. Lopez, I. G. Loscertales, and M. Marquez, ”Coaxial jets generated from electrified Taylor cones. Scaling laws”, J. Aerosol Science, 34, 535-552, 2003
    [31] G. I. Taylor, ” Electrically driven jets.” Proc. Roy. Soc. London , A313, 453-475, 1969
    [32] G. I. Taylor, ”Disintegration of water drops in an electric field.” Proc. Roy. Soc. London, A280, 383-397, 1964

    下載圖示 校內:2005-08-06公開
    校外:2005-08-06公開
    QR CODE