| 研究生: |
鄧吉雄 Teng, Chi-Hsiung |
|---|---|
| 論文名稱: |
微電灑晶片之研究與發展 Research and Development of Micro-Electrospray Chip |
| 指導教授: |
呂宗行
Leu, Tzong-Shyng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 微機電系統工程研究所 Institute of Micro-Electro-Mechancial-System Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | 電噴灑 、微電灑晶片 、泰勒錐 |
| 外文關鍵詞: | electrospray, micro electrospray chip.Taylor cone, OTS |
| 相關次數: | 點閱:76 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究是用微機電製程技術來製作微電灑晶片( micro-electrospray chip),改進微電灑晶片噴嘴切口角度進行電噴灑(electrospray)研究。傳統質譜儀使用的電灑噴嘴以不鏽鋼針管作為電噴灑噴射源,本研究利用微流晶片設計,因為微流晶片具有與電泳晶片整合的優點,目前發展中的許多蛋白質生醫晶片,在對於未知蛋白質檢測上大部分採用上述電泳晶片及微電灑晶片整合而成。因此,本研究針對微電灑晶片作實驗探討。
本研究利用顯微視流系統及操作電壓與電流來區分形成電噴灑的各個模態,並進一步找出電噴灑的最佳操作範圍。不同的切口角度,在錐噴流模態(cone-jet mode)的操作條件不同,角度較小要達到錐噴流模態的電壓較小,反之亦然。將各個切角的影響加以分析比較與歸納,並嘗試使用化學藥品(OTS)將晶片作表面改質,使晶片表面之接觸角提高以減少噴嘴口外濕潤面積,導致噴灑液滴減小。本研究最後用實驗方法驗證無因次化的 尺度法則,實驗結果近似此法則。
This study is using the micro fabrication technology to fabricate the micro-electrospray chip. In changing the nozzle angle of the micro-electrospray chip can become a research of electrospray. The traditional spectrum was using stainless tube to be the injector. This study uses the micro fabrication technology to fabricate the chip for experiment. The micro fabrication technology can integrate the experiment system on a chip. In the developing of biochip, they used to integrate electrophoresis and electrospray to detect the unknown protein. The thesis is trying to study the electrospray.
This study in using microscope-flow-visual-system to find out the optimum operation model in different combination of voltage and current. Different nozzle angle has different cone-jet mode. Smaller nozzle angle needs only smaller voltage. And bigger nozzle angle needs bigger voltage. This study use chemical treating to make surface changing in order to decrease the wetting area and also decrease the spray size. In the end of this thesis, the principle of the dimensionless factors published from the literature review have been proved by the results of this experiment.
參考文獻
[1] Siefert, W. ”Corona spray pyrolysis : A new coating technique with an extremely enhanced deposition efficiency.”, Thin Solid Films, 120, 267–274, 1984
[2] Van Zomeren, A. A., Kelder, E. M., Marijnissen, J. C. M., & Schoonman, J. “The production of thin films of LiMn2O4 by electro spraying.”, Journal of Aerosol Science, 25, 1229–1235, 1994
[3] Chen, C. H., Edmond, M. H. J., Kelder, E. M., Meester, B., & Schoonman, J. “Electrostatic sol-spray deposition of nanostructured ceramic thin films.”, Journal of Aerosol Science, 30, 959–967, 1999
[4] Vercoulen, P. H. W., Camelot, D. M. A., Marijnissen, J. C. M., Pratsinis, S. E., & Scarlett, B. “SnO2 production by an electrostatic spray pyrolysis process. Proceedings of the International workshop synthetic measure ultra fine particles”, TU Delft, Netherlands, 71–81, 1993
[5] GanUan-Calvo, A. M., Lasheras, J. C., Davila, J., & Barrero, A. ”The electrostatic spray emitted from an electri8ed conical meniscus.” Journal of Aerosol Science, 1994, 25, 1121–1142.
[6] Tang, K., & Gomez, A. “On the structure of an electrostatic spray of monodisperse droplets.”, Physics of Fluids, 6, 2317–2332, 1994
[7] Grace, J. M., & Dunn, P. F.” Droplet motion in an electrohydrodynamic cone spray.”, Experiments in Fluids, 20, 153–164, 1996
[8] Hartmann, R. P. A., Brunner, F. J., Camelot, D. M. A., Marijnissen, J. C. M., & Scarlett, B.” Electrohydrodynamic atomization in the cone–jet mode and physical modeling of the liquid cone and jet." Journal of Aerosol Science, 30, 823–849, 1999
[9] Cloupeau, M., & Prunet-Foch, B. “ Electrohydrodnamic spraying functioning modes: A critical review. “, Journal of Aerosol Science, 25, 1021–1036, 1994
[10] Amish Desai, Yu-Chong Tai, Michael T. Davis, Terry D. Lee, ”A MEMS electrospray nozzle for mass spectroscopy.”, Transducer’ 97
[11] Xuan-Qi Wang, Amish Desai, Yu-Chong Tai, Lawrence Licklider, Terry D. Lee, ”Polymer-based electrospray chips for mass spectrometry.”, MEMS’ 99
[12] Séverine Le Gac, Steve Arscott, Cécile Cren-Olivé and Christian Rolando, ”Two-dimensional microfabricated sources for nanoelectrospray”, J. Mass Spectrom., 38, 1259–1264, 2003
[13] J.Wen,Y.Lin,F.Xiang,D.W.Matson,H.R.Udseth,R.D.Smith,”Microfabricated isoelectric focusing device for direct electrospray ionization-mass spectrometry”, J .Electrophoresis, 21, 191-197, 2000
[14] Zeleny, “Industry Application of Electrospray Technology”, J. Phys. Rev., 10, 1, 1917
[15] Dole, M.; Mack, L. L.; Hines, R. L. “Molecular Beams of Macroions”, J. Chem. Phys., 49, 2240, 1968
[16] Yamashita, M., Fenn, J. B., “Electrospray Ion Source: Another Variation on The Free-Jet Theme”, J. Phys. Chem., 88, 4451, 1984
[17] AlekSendriv, M. L.; Gall, L. N., Shkurov, V. A., Pavlenko, V. A., Krasnov, N. V., Nikolaev, V. I. , “Mechanism of ion formation during the electrohydrodynamic sputtering of a liquid into a vacuum” , J. Anal. USSR., 39, 1268, 1984
[18] Bruins, A. P., Covey, T. R., Henion, J. D. “Ion-Spray Interface for Combined Liquid Chromatography/Atmospheric Pressure Ionization Mass Spectrometry”, Anal. Chem., 59, 2642, 1987
[19] Matthias S. Wilm, Matthias Mann, ”Electrospray and Taylor-Cone theory, Dole’s beam of macromolecules at last ?”, International Journal of Mass Spectrometry and Ion Processes, 136, 167-180, 1994
[20] Xue, Q., Foret, F., Dunayevskiy, Y. M., Zavracky, P. M., McGruer, N.E., Karger, B. L., “Multichannel Microchip Electrospray Mass Spectrometry”, Anal. Chem., 69, 426-430, 1997
[21] Ramsey, R. S., Ramsey, J, M. “Generating Electrospray form Microchip Devices Using Electroosmotic Pumping”, Anal. Chem., 69, 1174, 1997
[22] Patrick Griss, Jessica Melin, Johan Sjodahl, Johan Roeraade, ”Development of micromachined hollow tips for protein analysis based on nanoelectrospray ionization mass spectrometry”, J. Micromech. Microeng., 12, 682-687, 2002
[23] Cheng-Hui Yuan and Jentaie Shiea, ” Sequential Electrospray Analysis Using Sharp-Tip Channels Fabricated on a Plastic Chip”, Anal. Chem., 73, 1080-1083, 2001
[24] J. Fernández de la Mora and I. G. Loscertales, J. Fluid Mech., 260, 155, 1994
[25] A. M. Gañán-Calvo, J. Dávila, and A. Barrero, “Current and droplet size in the electrospraying of liquids Scaling laws”, J. Aerosol Science, 28, 249, 1997,
[26] Rayleigh Lord, ”On the equilibrium of liquid conducting masses charged with electricity”, Phil. Mag., 14, 184, 1882
[27] Stephen R. Wasserman, Yu-Tai Tao, and George M. Whitesides, ” Structure and Reactivity of Alkylsiloxane Monolayers Formed by Reaction of Alkyltrichlorosilanes on Silicon Substrates“, Langmuir, 5, 1074-1087, 1989
[28] Da-Ren Chen, David Y. H. Pui and Stanley L. Kaufman, ”Electrospraying of conducting liquids for monodisperse aerosol generation in the 4nm to 1.8μm diameter range.”, J. Aerosol Science, 26, 963-977, 1995
[29] I. W. Lenggoro et al., ”Preparation of ZnS nanoparticles by electrospray pyrolysis”, J. Aerosol Science, 31,121-136, 2000
[30] J. M. Lopez-Herrera, A. Barrero, A. Lopez, I. G. Loscertales, and M. Marquez, ”Coaxial jets generated from electrified Taylor cones. Scaling laws”, J. Aerosol Science, 34, 535-552, 2003
[31] G. I. Taylor, ” Electrically driven jets.” Proc. Roy. Soc. London , A313, 453-475, 1969
[32] G. I. Taylor, ”Disintegration of water drops in an electric field.” Proc. Roy. Soc. London, A280, 383-397, 1964