| 研究生: |
陳宏銓 Chen, Hung-Chuan |
|---|---|
| 論文名稱: |
超臨界二氧化碳環境下對添加矽酸化合物套管水泥性質之研究 A Study of the Properties of API G Well Cement with Silicate-Based Admixtures Exposed to Supercritical CO2 Environment |
| 指導教授: |
王建力
Wang, Chein-Lee |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | API G水泥 、矽酸化合物摻料 、碳酸化 、超臨界二氧化碳 |
| 外文關鍵詞: | API G well cement, silicate admixtures, carbonation, supercritical CO2 |
| 相關次數: | 點閱:74 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目前在二氧化碳地質封存技術的各項環節中,套管水泥因為碳酸化反應而產生的性質弱化亦為其中一主要問題。與封存的二氧化碳產生碳酸化反應的水泥,會因組成物質及結構的改變而產生力學及物理性質的弱化,進而影響封存井的使用年限。前人研究雖指出在水泥中加入二氧化矽可降低長期反應速率,但仍無法有效地解決整體反應速率較高及反應深度偏深的問題。
本研究以結合二氧化矽掺料之優點及修正其缺點為目的,選用五種不同矽酸化合物作為掺料並模擬水泥與井底封存環境(70˚C、20MPa、超臨界二氧化碳溶於地層水),觀察其經過不同時間(0、7、14、28天)的反應後性質的改變。研究結果發現添加掺料之水泥之反應層皆較純API G水泥薄,而本研究所使用之固體類掺料更具有提升水泥力學性質之效果。綜合所有試驗結果,以添加矽酸鈣及矽酸鉀者之整體結果較佳。
Degradation of well cement caused by carbonation reaction is one of the main problems in carbon dioxide (CO2) geological sequestration. Carbonated cement has weaker mechanical strength than pure cement and reduces durability of sequestrating well. Researches indicate that addition of silica dioxide (SiO2) in well cement can reduce its long-term carbonation rate, but its overall carbonation rate is relatively higher than pure well cement. Therefore, the main purposes of this paper are applying the advantages of SiO2 and modifying its disadvantages as well cement admixtures. According to researches before, there are applications of five different kinds of silicates used (calcium silicate, aluminum trisilicate, potassium silicate, sodium silicate and ethyl silicate) as well cement admixtures in this paper. This paper intends to evaluate alterations of modified API G well cement with different silicate admixtures in the simulating environment under supercritical CO2 in down-hole sequestration condition (70˚C, 20MPa, supercritical CO2 with brine) and the alterations of properties were studied in four periods (0, 7, 14, 28 days) of carbonation duration. This study indicates that the API G cement with silicate admixtures has lower carbonation depth than pure API G cement and additions of calcium silicate, aluminum trisilicate and potassium silicate can enhance mechanical properties of API G cement. The results in this paper indicate that API G cement with calcium silicate and potassium silicate are better choices for well cement in application of CO2 geological sequestration.
[1] 方湜惠,「超臨界CO2萃取移除廢水中重金屬之高級淨水技術」,逢甲大學環境工程與科學研究所碩士論文,2002。
[2] 王銀梅,「西北乾旱區土建築遺址加固概述」,工程地質學報,11(2),第189~192頁,2003。
[3] 江健豪,「超臨界二氧化碳環境下對套管水泥力學與物化性質之影響」,國立成功大學資源工程研究所碩士論文,2012。
[4] 李小春、小出仁、大隅多加志,「二氧化碳地中隔離技術及其岩石力學問題」,岩石力學與工程學報,22(6),第989~994頁,2003。
[5] 李冠穎,「二氧化碳環境下對油井水泥物理性質及化學性質之影響」,國立成功大學資源工程研究所碩士論文,2011。
[6] 林鎮國,「二氧化碳的儲存」,科學發展,第413期,第28~33頁,2007。
[7] 范振暉、宣大衡,「以地下封存方式進行二氧化碳減量之可行性探討」,第二屆資源工程研討會論文集,2005。
[8] 巢志成,「我國綠色環保材料的開發與應用」,國立成功大學永續環境科技研究中心,2009。
[9] 連培榮,「超臨界流體技術與產業應用」,財團法人金屬工業研究發展中心,2009。
[10] 陳永勛,「硫酸鈉溶液環境下卜作嵐水泥基本力學性質之研究」,國立成功大學資源工程研究所碩士論文,2013。
[11] 崔浩然,「活性染料冷染實用技術(三)」,印染雜誌,39(3),第45-49頁,2013。
[12] 曾繼忠、范振暉、宣大衡、吳榮章,「涸竭型舊氣田二氧化碳封存量評估」,中國鑛冶工程學會會刊,54(1),第54~64頁,2010。
[13] 經濟部標準檢驗局,中華民國國家標準(CNS)混凝土圓柱試體抗壓檢驗法,經濟部標準檢驗局,總號1232,類號A3045,2002。
[14] American Petroleum Institute(API), Recommend Practice for Testing Well Cements. API Recommend Practice 10B. Washington DC, 1985.
[15] Barlet-Gouédard, V., Rimmelé, G., Goffé, B., Porcherie, O., “Mitigation Stratagies for the Risk of CO2 Migration Through Wellbores”, International Association of Drilling Contractors(IADC)/ Society of Petroleum Engineers(SPE) Drilling Conference, IADC/ SPE 98924, 2006.
[16] Barlet-Gouédard, V., Rimmelé, G., Goffé, B., Porcherie, O., “Well Technologies for CO2 Geological Storage: CO2-Resistent Cement”, Oil & Gas Science and Technology, Vol. 62, No.3, pp. 325-334, 2007.
[17] Bruckdorfer, R. A., “Carbon Dioxide Corrosion in Oilwell Cement”, SPE15176, 1986.
[18] Bilim, C., “Properties of cement mortars containing clinoptilolite as a supplementary cementitious material”, Construction and Building Materials, 25, pp. 3175-3180, 2011.
[19] Bilim, C., Atiş, C. D., “Alkali activation of mortars containing different replacement levels of ground granulated blast furnace slag”, Construction and Building Materials, 28, pp. 708-712, 2012.
[20] Duguid, A., Radonjic, M., Scherer. G. W., “Degradation of well cements exposed to carbonated Brine”, Fourth Annual Conference on Carbon Capture and Sequestration Doe/Netl, 2005.
[21] Franzoni, E., Pigino, B., Pistolesi, C., “Ethyl silicate for surface protection of concrete: Performance in Comparison with other inorganic surface treatments”, Cement & Concrete Composites, 44, pp. 69-76, 2013.
[22] Giraldo, C., Tobón, J. I., Baena, R., “Ultramarine blue pigment: A non-conventional pozzolan”, Construction and Building Materials, 36,
pp. 305-310, 2012.
[23] Jones, R., “Non-destructive Testing of Concrete”, Cambridge University Press, London, 1962.
[24] Johannesson, B., Utgennant, P., “Microstructural changes caused by carbonation of cement mortar”, Cement and Concrete Research, 31,
pp. 925-931, 2001.
[25] Kropp, J., “Relations between transport characteristics and durability”, Performance Criteria for Concrete Durability, pp. 97-137, 1995.
[26] Kutchko, B. G., Strasizar, B. R., Dzombak, D. A., Lowry G. V.,
Thaulow, N., ”Degradation of Well Cement by CO2 under Geologic
Sequestration Conditions”, Environmental Science and Technology, 41(13), pp. 4787-4792, 2007.
[27] Kutchko, B. G., Strasizar, B. R., Dzombak, D. A., Lowry G. V.,
Thaulow, N., “Rate of CO2 Attack on Hydrated Class H Well Cement under Geologic Sequestration Conditions”, Environmental Science and Technology, 42(16), pp. 6237-6242, 2008.
[28] Mclintok, I. S., “The Evolch Equation in Chemisotption Kinetics”, Nature, 216, pp. 1204-1205, 1967.
[29] Menéndez, G., Bonavetti, V., Irrasar, E. F., “Strength development of ternary blended cement with limestone filler and blast-furnace slag”, Cement & Concrete Composites, 25, pp. 61-67, 2003.
[30] Metz, B., Davidson, O., De Coninck, H., Loos, M., Meyer, L., “IPCC Special Report on Carbon Dioxide Capture and Storage”, Cambridge University Press, Cambridge, United Kingdom and New York, USA : Intergovernmental Panel on Climate Change(IPCC), 2005.
[31] Nair, B. G., Zhao, Q., Cooper, R. F., “Geopolymer Matrices with improved hydrothermal corrosion resistance for high-temperature applications”, J Mater Sci, 42, pp. 3083-3091, 2007.
[32] Rimmelé, G., Barlet-Gouédard, V., Porcherie, O., Goffé, B., Brunet, F., “Heterogeneous porosity distribution in Portland cement exposed to CO2-rich fluids”, Cement and Concrete Research, 38, pp. 1038-1048, 2008.
[33] Sulapha, P., Wong, S. F., Wee, T. H., Swaddiwudhipong, S., “Carbonation of Concrete containing Mineral Admixtures”, Journal of Materials in Civil Engineering, 15, pp. 134-143, 2003.
[34] Souza, L. G., Silva, F. J., Thaumaturgo, C., “Effect of Alkali-Activation in The Microstructure, Setting-Time and Compressive Strength of Portland Cement Pastes and Mortars”, Revista Brasileira de Aplicações de Vácuo, 24(2), pp.71-73, 2005.
[35] Solomon, S., Qin, D., Manning, M., Marquis, M., Averyt, K.,
Tignor, M., M., B., Miller, H., L.(Jr.), Chen, Z., “Climate Change 2007: The Physical Science Basis”. Cambridge University Press, Cambridge, United Kingdom and New York, USA : Intergovernmental Panel on Climate Change(IPCC), 2007.
[36] Santra, A., Reddy, B. R., Liang, F., Fitzgerald, R., “Reaction of CO2 with portland cement at downhole conditions and the role of pozzolanic supplements”, SPE 121103, 2009.
[37] Tarco, J. C., Asghari, K., “Experimental Study of Stability and Integrity of Cement in Wellbores Used for CO2 Storage”, Journal of Canadian Petroleum Technology, 49(10), pp. 37-44, 2010.