簡易檢索 / 詳目顯示

研究生: 謝育樹
Hsieh, Yu-Shu
論文名稱: 機翼上積冰之預測及其空氣動力性能之衰減
Predictions of Ice Accretion on airfoils and Airfoil Aerodynamic Performance Degradation Due to Icing
指導教授: 謝勝己
Hsieh, Sheng-Jii
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 109
中文關鍵詞: 衰減空氣動力性能流片法積冰
外文關鍵詞: degradation, aerodynamic performance, panel method, icing
相關次數: 點閱:78下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文利用數值方法模擬二維NACA-0012機翼積冰後之外形並求出其機翼剖面升力係數,來探討積冰後之外形對空氣動力性能之影響。積冰模擬之數值分析分為四個部分:第一為流場的計算,求解出紊流之Reynolds Averaged Navier-Stokes方程組,得到NACA-0012於低速飛行時之流場現象。第二為水滴軌跡的計算,將水滴軌跡運動方程式帶入流場解即可獲得水滴之運動軌跡,並判斷水滴是否會撞擊到翼表面,進而計算出撞擊在翼面上局部之水滴量,亦即聚集效率。第三為利用質量、能量守恆來計算水滴結冰過程局部之積冰量,並模擬出積冰外形。第四為利用流片法計算出機翼積冰後之翼剖面壓力係數,並積分求得升力係數。
    本文研究目的在探討在兩種不同的大氣條件下造成不同的積冰型態。形成霜狀冰與清透冰之參數包含大氣溫度、自由流速度、雲層之水含量、水滴大小等,其中影響最大的是大氣溫度。當大氣溫度越接近水的凝固點時,越容易形成清透冰似角狀之特徵外形。此類積冰結構大大的改變原有機翼前緣之幾何形狀,造成升力係數下降。若大氣溫度越低於水的凝固點時,則形成較具規則形狀之霜狀冰外形,但升力係數的減少不如清透冰來的大。

    In this study, a numerical method is developed to simulate the two–dimonsional shape of airfoil after icing, and to compute the airfoil aerodynamic lift coefficient degrading due to icing. The numerical analysis of ice accretion simulation is divided into four parts:(1) The calculation of low-speed flowfield by using turbulent Reynolds Averaged Navier-Stokes equations solver to obtain the phenomenon of flowfield over NACA-0012 section. (2) The results of the water droplet trajectories by the equation of motion in the flowfield as obtained in part 1 determine the droplets impingement on the airfoil, and then to evaluate the amount of water that accretes on the airfoil, i.e., the collection efficiency. (3) Employing the mass and energy conservation laws to calculate the local quantity of ice accretion during the process of freezing, and to simulate the shape of the ice. (4) Using the panel method to evaluate the airfoil pressure coefficient and the lift coefficient after icing.
    The objective of this study is to investigate the different types of ice accretion under two different atmospheric conditions, which cause the rime ice and the glaze ice on the airfoil. There are several parameters in the ice accretion, such as the air temperature, freestream velocity, liquid water content and the droplet size, etc. However, the main parameter is the air temperature. The glaze ice is characterized by the horned shape when the air temperature is around the freezing point. Formation of the glaze ice changes the shape of leading edge of airfoil greatly, and degrades the lift coefficient and changes the airfoil aerodynamic performance. As for the rime ice case, it forms some regular shape at lower air temperature under freezing point, and degradation of lift coefficient is not worse than the glaze ice is

    中文摘要…………………………………………………I 英文摘要…………………………………………………II 誌謝………………………………………………………IV 目錄………………………………………………………V 表目……………………………………………………VIII 圖目錄…………………………………………………IX 符號說明………………………………………………XII 第一章 導論……………………………………………1 1.1緒論…………………………………………………1 1.2結冰現象…………………………………………1 1.2.1水滴之運動……………………………………2 1.2.2雲層大氣結冰…………………………………3 1.2.3飛機結構結冰…………………………………5 1.3飛機防冰與除冰系統……………………………10 1.4文獻回顧……………………………………………12 1.4.1積冰分析與模擬…………………………………12 1.4.2翼面之水滴分佈……………………………………15 1.4.3積冰對飛行之影響…………………………………17 1.5研究動機與目的………………………………………19 第二章 物理問題及理論分析…………………………22 2.1基本假設與統御方程式……………………………22 2.1.1流場分析…………………………………………23 2.1.2水滴運動軌跡…………………………………26 2.1.3水滴固化熱傳模式………………………………30 2.1.4翼面壓力分佈-流片法…………………………33 2.2積冰分析………………………………………35 第三章 數值模擬…………………………………37 3.1數值計算……………………………………………37 3.1.1流場之計算………………………………………38 3.1.2水滴運動軌跡之計算………………………………39 3.1.3水滴固化熱傳模式之計算…………………………41 3.1.4積冰後新翼剖面外形之氣動力計算………………46 3.2計算流程………………………………………………47 第四章 結果與討論……………………………………48 4.1翼面上聚集水滴效率計算結果探討………………48 4.2霜狀冰模式下之積冰預測…………………………50 4.2.1攻角為0度時之積冰預測……………………50 4.2.2攻角為4度時之積冰預測……………………51 4.3清透冰模式下之積冰預測…………………………52 4.3.1攻角為0度時之積冰預測………………………53 4.3.2攻角為4度時之積冰預測………………………53 4.4翼剖面壓力係數結果探討………………………54 第五章 結論…………………………………………56 5.1結論………………………………………………56 5.2建議………………………………………………58 參考文獻……………………………………………60 表……………………………………………………62 圖……………………………………………………65 自述…………………………………………………108

    1. Lankford, Terry T., ”Aircraft Icing,” McGraw-Hill Inc., 2000.
    2. Krause, S. S., “Aircraft Safety,” McGraw-Hill Inc., 1996.
    3. Wright, William B., “User Manual for the NASA Glenn Ice Accretion Code LEWICE,” Dynacs Engineering Company, Inc., Brook Park, Ohio, 1999.
    4. Olsen, W., Shaw, R. J., and Newton, J., “Ice Shapes and the Resulting Drag Increase for a NACA0012 Airfoil,” NASA TM-83556, Jan. 1984.
    5. Potapczuk, M. G., ”Navier-Stoke Analysis of Airfoils with Leading-edge Ice Accretions,” Akron, May 1989.
    6. MacArthur, Charies D., Keller, John L.,“Mathematical modeling of ice accretion on airfoils,” AIAA PAPER 82-0284, Washington, D. C., 1982.
    7. MacArthur, Charies D.,“Numerical simulation of airfoil ice accretion,” AIAA PAPER 83-0112, Washington, D. C., 1983.
    8. Messinger, Bernard L.,”Equilibrium Temperature of an Unheated Icing Surface as a Function of Air Speed,” Journal of the Aeronautical Sciences, Vol. 20, No.1, 1953, pp.29-42.
    9. Mingione, Giuseppe and Brandi, Vincenzo “Ice Accretion Prediction on Multielement Airfoils,” Journal of Aircraft, Vol. 35, No.2, March-April, 1998.
    10. Shin, Jaiwon, , Chen, Hsun H. and Cebeci, Tuncer,“Prediction of Ice Shapes and Their Effect on Airfoil Drag,” Journal of Aircraft, Vol. 31, No. 2, March-April 1994., pp.263-270.
    11. Cebeci, T., Chen, H. H.,”Fortified LEWICE with Viscous Effects,” Journal of Aircraft, Vol.28, No. 9, 1991, pp.564-571.
    12. Tran and Paraschivoiu, I.,“Ice Accretion on Aircraft Wings with Thermodynamic Effects,” Journal of Aircraft, Vol. 32, No. 2, pp.444-446, 1994.
    13. Shin, Jaiwon and Bond, Thomas H.“Repeatability of Ice Shapes in the NASA Lewis Icing Research Tunnel,” Journal of Aircraft, Vol. 31, No. 5, 1994.
    14. Addy, G. and Miller, D.,“A Study of Large Droplet Ice Accretions in the NASA-Lewis IRT at Near-Freezing Conditions; Part 2”, FAA International Conference on Icing, May 1996.
    15. Wright, W. B. and Potapczuk, M.G.,"Computational Simulation of Large Droplet Icing," NASA Contractor Report, May, 1996.
    16. 戴昌賢, HASP高性能氣動力模擬軟體程式, 2000.
    17. Kim, John, “Particle Trajectory Computation on a 3-Dimensional Engine Inlet,” NASA CR–175023, DOT–FAA–CT–86–1, January 1986.
    18. Kays, W. M. and Crawford, M. E.,”Contive Heat Transfer,” Second Edition, McGraw-Hill, NY, 1980, pp.420.
    19. Kuethe, Arnold M. and Chuen-Yen Chow,”Foundations of Aerodynamics,” 5th edition, 1998, pp.132-165.
    20. Bragg, Michael B.,“Rime Ice Accretion and Its Effect on Airfoil Performance,” Ohio State University, Columbus, Ohio, March 1982.
    21. Flemming, Robert J. and Lednice, David A.,“Correlation of Icing Relationships with Airfoil and Rotorcraft Icing Data,” Joural of Aircraft, Vol.23, No.10, 1986.
    22. Jeng, Yih Nen,”The Moving Least Squares and Least p-Power Methods for Random Data,” The 7th National Computational Fluid Dynamics Conference, Kenting, August 2000.
    23. Cebeci, T. and Bradshaw, P.,”Physical and Computational Aspects of Convective Heat Transfer”, New York, 1988. pp.94-95, 184-201.
    24. Shaw, R. J. and Potapczuk, M. G.,“Predictions of Airfoil Aerodynamic Performance Degradation Due to Ice,” Numerical and Physical Aspects of Aerodynamic Flows, IV., edited by T. Cebeci, Springer-Verlag, Long Beach, CA, 1990.
    25. Langmuir, Irving and Blodgett, Katherine B.,”A Mathematical Investigation of Water Droplet Trajectories,” Army Air Forces Technical Report No. 5418, Feb.1946.
    26. Putnam, A., “Integrable Form of Droplet Drag Coefficient,” ARS J., Vol.33, 1961, pp.1467~1072.

    下載圖示 校內:2005-09-05公開
    校外:2005-09-05公開
    QR CODE