簡易檢索 / 詳目顯示

研究生: 董弈
Tung, Yi
論文名稱: 調控多元鉍化硒合金拓樸絕緣體其電子結構、傳輸及磁性研究
Tuning the electronic structure, transport and magnetism in ternary and quaternary Bi2Se3-based topological insulator
指導教授: 黃榮俊
Huang, Jung-Chun
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2017
畢業學年度: 106
語文別: 英文
論文頁數: 115
中文關鍵詞: 分子束磊晶鉍碲硒銻及鉻共摻於鉍化硒
外文關鍵詞: Molecular beam epitaxy, Bi2Te3-xSex, Sb-doped Cr-Bi2Se3
相關次數: 點閱:87下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究是藉由分子束磊晶系統成長拓樸絕緣體薄膜於藍寶石基板,並分析其材料內部結構特性及磁電傳輸性質。我們嘗試系統化製備鉍、碲、硒合金拓樸絕緣體樣品。三元合金的製備中,各元素之間的比例或佔位是影響本品質的重要關鍵。利用X光繞射分析所得的晶格常數由維加德公式計算,我們底定出當鉍碲硒為2:1.96:1.04時,樣品具有較佳的合金結構品質。透過研究鉍、碲、硒三元合金中硒逐漸取代碲的佔位,對於結構及電性所造成的關聯性。藉由拉曼光譜分析,觀察隨著硒/碲的混和比例逐漸增加,鉍碲硒三元合金結構轉變期間,代表垂直 (A_1g^1、A_1g^2) 及水平 (E_g^2) 三種分量的分子震盪變化及摻雜比例之間的關係。隨著原子摻雜佔位的改變,彼此取代之間的交互作用,導致合金樣品中的震盪峰產生分裂的變化,了解其結構和電性與摻雜比例的相關性。
    本論文亦呈現磁性拓樸絕緣體樣品的製備。透過改變鉍化硒的比例及銻的摻雜方式,藉此有效的調控費米能階降至導帶底部表面態附近。而後再經由磁性原子鉻的共摻,成功製備出文獻中未曾報導過的銻及鉻共摻於鉍化硒 (Cr-BSS) 的磁性拓樸絕緣體樣品。在此樣品中,我們測到有別以往文獻主張銻及鉻共摻於鉍化碲 (Cr-BST) 的磁性強弱取決於磁性原子置入多寡的論點。從磁電性觀測到了,當銻摻入磁性鉍化硒 (Cr-BS) 有了顯著的提升。發現樣品的磁性雖然源自於鉻,卻可以透過銻的共摻來間接的調控其磁電性質,並非只是單純取決自鉻的含量。並成功製備出費米能階在室溫情況下存在於表面態區域中,且仍保有拓樸性質的磁性樣品。相信此材料對於未來研究外加偏壓的磁性傳輸元件及應用,可以提供一個作為該相關領域參考使用上的可行性。

    In this article, we present a study on the structure and electronic properties of a topological insulator grown on sapphire (0001) substrate by molecular beam epitaxy. We first produce Bi2Te3-xSex alloy films with careful control of the mixing ratio of Bi2Se3 to Bi2Te3 by tuning the Bi:Te:Se flux ratio. According to Vegard’s law, the lattice constant gradually decreases as the Se atomic fraction increases, and we achieved better quality ternary alloys at x = 1.04. Through Raman spectroscopy measurements, the in-plane and out-of-plane phonon peaks were shifted to higher energy by increasing the value of x. In the case of x = 2.03, notable splitting of the two high-frequency modes was observed at intermediate compositions. The worst compounds correspond to the irregular configuration by atomic force microscope. The electronic structures demonstrated that the series of samples were still located inside the bulk conduction band, contrary to the discussion in the literature. The p-type exists in the Bi2Te2Se single crystal owing to the suppression of Se vacancies and Bi/Te antisite defect. Furthermore, the starting Bi2Te2Se1+x, with slightly extra Se content, will result in a mixture of Bi2(Te2-xSex)Se with excess Te, which will drive the materials more metallic. Thus, in order to achieve the true insulating bulk Bi2Te2Se as presented by other bulk single crystal, fine tuning of the Se amount in the vicinity of chemical composition of Bi2Te2Se is a necessary step. However, to clarify this point, further investigation is needed.
    Furthermore, we systematically investigated both the magnetism and tuning of a Bi2Se3-based topological insulator. Further, the reduction of EF to conduction band minimum into the surface range in a Cr-Bi2Se3 system has never been reported so far at room temperature. Through the transport measured, we observed that the Sb-doped Cr-Bi2Se3 plays a positive role in enhancing the magnetism in the Cr-Bi2Se3 topological insulator. A large enhanced fabrication method of the magnetism and electrical transport by Sb-doping in a Bi2Se3 system is well suited for the magnetic topological insulator field-effect and spintronic device applications.

    Abstract (Chinese) I Abstract II Acknowledgements IV Table of contents V List of Figures IX Chapter 1 Introduction 1 1-1 Introduction 1 1-2 Overview of Topological Insulators (TIs) 3 1-3 Topological Insulator Family 9 1-4 Paper reviews of charge doping TIs 12 1-4-1 Charge doping of Topological Insulator 12 1-4-2 History of Magnetic TIs 21 1-4-3 Magnetic doping of Topological Insulator 21 1-4-4 Charge and Magnetic codoping of topological insulators 28 1-5 Motivation 38 1-6 References 40 Chapter 2 Background 48 2-1 General transport measurement and mechanism of topological insulators 48 2-2 Theory of Weak Localization (WL) and Weak Anti-Localization (WAL) 48 2-2-1 The weak localization effect 49 2-2-2 Weak anti-localization effect 50 2-3 WL and WAL in topological insulator 51 2-4 Hikami-Larkin-Nagaoka (HLN) 53 2-5 References 55 Chapter 3 Experimental equipment and Measurement methods 56 3-1 Experimental equipment 56 3-1-1 Molecular Beam Epitaxy (MBE) 56 3-1-2 Configuration of the MBE system 57 3-1-3 Load-lock chamber 58 3-1-4 Growth chamber 58 3-1-5 Turbo and Cryo pump 59 3-1-6 Effusion cells 60 3-1-7 Reflection High-Energy Electron Diffraction (RHEED) 61 3-1-8 Quartz crystal microbalance 61 3-1-9 Beam Flux Monitor (BFM) 62 3-1-10 Hall effect theory 62 3-2 Measurements : Crystal structural determination 63 3-2-1 RHEED patterns 63 3-2-2 Atomic Force Microscope (AFM) 65 3-2-3 X-ray Diffraction (XRD) 65 3-2-4 Angle-Resolved Photoemission Spectroscopy (ARPES) 66 3-3 Measurements : Electrical and Magnetic characterization 67 3-3-1 Preparation of Hall Measurement 67 3-3-2 Physical Property Measurement System (PPMS) 69 3-4 Flow chart of experiments 70 3-5 References 71 Chapter 4 Synthesis of Topological Insulator Alloys 72 4-1 Fabrication and Examination of Bi2Te3-xSex Topological Insulator Alloys 72 4-2 Growth and Characterization of Molecular Beam Epitaxy-grown Bi2Te3-xSex Topological Insulator Alloys 73 4-2-1 Introduction 73 4-2-2 Experimental section 74 4-2-3 Results and discussion 76 4-2-4 Conclusion 84 4-2-5 Supplementary Material 85 4-3 References 86 Chapter 5 Codoping-tuned transport and magnetism in Bi2Se3 90 5-1 Transport and magnetic properties of (Cr,Sb)-doped Bi2Se3 topological insulator 90 5-2 Tuning the transport and magnetism in Cr-Bi2Se3 topological insulator by Sb doping 91 5-2-1 Introduction 91 5-2-2 Experimental methods 93 5-2-3 Results and discussions 94 5-2-4 Conclusion 103 5-2-5 Supplementary Material 104 5-3 References 107 Chapter 6 Conclusions 111 6-1 Conclusions 111 6-2 References 115

    1-6 References
    [1] L. He, X. Kou, and K. L. Wang, "Review of 3D topological insulator thin-film growth by molecular beam epitaxy and potential applications.", Phys. Status Solidi RRL 7 (1-2), 50-63 (2013).
    [2] D. Kong, and Y. Cui, "Opportunities in chemistry and materials science for topological insulators and their nanostructures.", Nat. Chem. 3, 845-849 (2011).
    [3] M. Z. Hasan, and C. L. Kane, "Colloquium: Topological insulators.", Rev. Mod. Phys. 82, 3045 (2010).
    [4] J. E. Moore, "The birth of topological insulators.", Nature 464 (7286), 194-198 (2010).
    [5] X.-L. Qi, and S.-C. Zhang, "Topological insulators and superconductors", Rev. Mod. Phys. 83, 1057-1110 (2011).
    [6] X.-L. Qi, and S.-C. Zhang, "The quantum spin Hall effect and topological insulators.", Phys. Today 63, 33-8 (2010).
    [7] J. Zhang, Spring Theses, "Transports studies of the electrical, magnetic and thermoelectric properties of topological insulator thin films.", Recognizing Outstanding Ph.D. Research, Doctoral thesis accepted by tsinghua university, DOI 10. 1007/978-3-662-49927-6 (2016).
    [8] B. Andrei Bernevig, "Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells.", Science 314, 1757 (2006).
    [9] M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L. W. Molenkamp, X.-L. Qi, and S.-C. Zhang, "Quantum Spin Hall Insulator State in HgTe Quantum Wells.", Science 318, 766 (2007).
    [10] L. Fu, and C. L. Kane, "Topological insulators with inversion symmetry.", Phy. Rev. B 76, 045302 (2007).
    [11] D. Hsieh, D. Qian, L. Wray, Y. Xia, Y. S. Hor, R. J. Cava, and M. Z. Hasan, "A topological Dirac insulator in a quantum spin Hall phase.", Nature 452, 907 (2008).
    [12] H. Zhang, C.-X. Liu, X.-L. Qi, X. Dai1, Z. Fang, and S.-C. Zhang, "Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface.", Nature Phys. 5, 438 (2009).
    [13] Y. Xia, D. Qian, D. Hsieh, L.Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava and M. Z. Hasan, "Observation of a large-gap topological-insulator class with a single Dirac cone on the surface.", Nature Phys. 5, 398 (2009).
    [14] Y. L. Chen, J. G. Analytis, J.-H. Chu, Z. K. Liu, S.-K. Mo, X. L. Qi, H. J. Zhang,
    D. H. Lu, X. Dai, Z. Fang, S. C. Zhang, I. R. Fisher, Z. Hussain, and Z.-X. Shen, "Experimental Realization of a Three-Dimensional Topological Insulator, Bi2Te3.", Science 325, 5937, 178-181 (2009).
    [15] T. Ando, Y. Matsumoto, and Y. Uemura, "Theory of Hall Effect in a Two-Dimensional Electron System.", J. Phys. Soc. Jpn. 39, 279-288 (1975).
    [16] K. V. Klitzing, G. Dorda, and M. Pepper, "New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance.", Phys. Rev. Lett. 45, 494 (1980).
    [17] D. Hsieh, Y. Xia, D. Qian, L. Wray, F. Meier, J. H. Dil, J. Osterwalder, L. Patthey, A. V. Fedorov, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, "Observation of Time-Reversal-Protected Single-Dirac-Cone Topological-Insulator States in Bi2Te3 and Sb2Te3.", Phys. Rev. Lett. 103, 146401 (2009).
    [18] C. L. Kane, and E. J. Mele, "Z2 Topological Order and the Quantum Spin Hall Effect.", Phys. Rev. Lett. 95, 146802 (2005).
    [19] B. A. Bernevig, and S.-C. Zhang, "Quantum Spin Hall Effect.", Phys. Rev. Lett. 96, 106802 (2006).
    [20] J. E. Moore, and L. Balents, "Topological invariants of time-reversal-invariant band structures.", Phys. Rev. B 75, 121306 (2007).
    [21] L. Fu, C. L. Kane, and E. J. Mele, "Topological Insulators in Three Dimensions.", Phys. Rev. Lett. 98, 106803 (2007).
    [22] D. Hsieh, Y. Xia, D. Qian, L. Wray, J. H. Dil, F. Meier, J. Osterwalder, L. Patthey, J. G. Checkelsky, N. P. Ong, A. V. Fedorov, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, " A tunable topological insulator in the spin helical Dirac transport regime.", Nature 460, 1101 (2009).
    [23] C. Jozwiak, Y. L. Chen, A. V. Fedorov, J. G. Analytis, C. R. Rotundu, A. K. Schmid, J. D. Denlinger, Y.-D. Chuang, D.-H. Lee, I. R. Fisher, R. J. Birgeneau, Z.-X. Shen, Z. Hussain, and A. Lanzara, "Widespread spin polarization effects in photoemission from topological insulators.", Phys. Rev. B 84, 165113 (2011).
    [24] Y. Ando, "Topological Insulator Materials.", Journal of the Physical Society of Japan 82, 102001 (2013).
    [25] R. Yu, W. Zhang, H.-J. Zhang, S.-C. Zhang, X. Dai, and Z. Fang, "Quantized Anomalous Hall Effect in Magnetic Topological Insulators.", Science 329, 5987, 61-64, 02 (2010).
    [26] X.-L. Qi, "Generic Wavefunction Description of Fractional Quantum Anomalous Hall States and Fractional Topological Insulators.", Phys. Rev. Lett. 107, 126803 (2011).
    [27] C.-Z. Chang, J. Zhang, X. Feng, J. Shen, Z. Zhang, M. Guo, K. Li, Y. Ou, P. Wei, L.-L. Wang, Z.-Q. Ji, Y. Feng, S. Ji, X. Chen, J. Jia, X. Dai, Z. Fang, S.-C. Zhang, K. He, Y. Wang, L. Lu, X.-C. Ma and Q.-K. Xue, "Experimental Observation of the Quantum Anomalous Hall Effect in a Magnetic Topological Insulator.", Science 340, ,6129, 167-170 (2013).
    [28] Cui-Zu Chang, and Mingda Li, "Quantum anomalous Hall effect in time-reversal-symmetry breaking topological insulators.", J. Phys. Condens. Matter 28, 123002 (2016).
    [29] B. A. Berneviq, T. L. Hughes, and S. C. Zhang, "Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells.", Science 314, 5806, 1757-1761 (2006).
    [30] L. Fu, C. L. Kane, and E. J. Mele, "Topological Insulators in Three Dimensions.", Phys. Rev. Lett. 98, 106803 (2007).
    [31] D. Hsieh, D. Quian, L. Wray, Y. Xia, Y. S. Hor, R. J. Cava, and M. Z. Hasan, "A topological Dirac insulator in a quantum spin Hall phase.", Nature 452, 970 (2008).
    [32] H. J. Zhang, C. X. Liu, X. L. Qi, X. Dai, Z. Fang, and S. C. Zhang, "Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface.", Nat. Phys. 5, 438 (2009).
    [33] Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, "Observation of a large-gap topological-insulator class with a single Dirac cone on the surface.", Nat. Phys. 5, 398 (2009).
    [34] Y. D. Chen, J. G. Analytis, J. H. Chu, Z. K. Liu, S. K. Mo, X. L. Qi, H. J. Zhang, D. H. Lu, X. Dai, and Z. Fang, "Experimental Realization of a Three-Dimensional Topological Insulator, Bi2Te3.", Science 325, 178 (2009).
    [35] D. Hsieh, Y. Xia, D. Qian, L. Wray, F. Meier, J. H. Dil, J. Osterwalder, L. Patthey, A. V. Fedorov, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, "Observation of Time-Reversal-Protected Single-Dirac-Cone Topological-Insulator States in Bi2Te3 and Sb2Te3.", Phys. Rev. Lett. 103, 146401 (2009).
    [36] Y. Okada, C. Dhital, W. Zhou, E. D. Huemiller, H. Lin, S. Basak, A. Bansil, Y.-B. Huang, H. Ding, Z. Wang, S. D. Wilson, and V. Madhavan, "Direct Observation of Broken Time-Reversal Symmetry on the Surface of a Magnetically Doped Topological Insulator.", Phys. Rev. Lett. 106, 206805 (2011).
    [37] I. Knez, R.-R. Du, and G. Sullivan, "Evidence for Helical Edge Modes in Inverted InAs/GaSb Quantum Wells.", Phys. Rev. Lett. 107, 136603 (2011).
    [38] A. A. Taskin, Z. Ren, S. Sasaki, K. Segawa, and Y. Ando, "Observation of Dirac Holes and Electrons in a Topological Insulator.", Phys.Rev. Lett. 107, 016801 (2011).
    [39] H. Ji , J. M. Allred1 , M. K. Fuccillo, M. E. Charles, M. Neupane, L. A. Wray, M.Z. Hasan, and R. J. Cava, "Bi2Te1.6S1.4: A topological insulator in the tetradymite family.", Phys Rev B. 85, 201103 (2012).
    [40] Z. Ren, A. A. Taskin, S. Sasaki, K. Segawa, and Yoichi Ando, "Large bulk resistivity and surface quantum oscillations in the topological insulator Bi2Te2Se.", Phy. Rev. B 82, 241306 (2010).
    [41] Z. Ren, A. A. Taskin, S. Sasaki, K. Segawa, and Y. Ando, "Optimizing Bi2−xSbxTe3−ySey solid solutions to approach the intrinsic topological insulator regime.", Phy. Rev. B 84, 165311 (2011).
    [42] B. Ryu, B.-S. Kim, J. E. Lee, S.-J. Joo, B.-K. Min, H. Lee, and S. Park, "Prediction of the Band Structures of Bi2Te3-related Binary and Sb/Se-doped Ternary Thermoelectric Materials.", Journal of the Korean Physical Society 68, 1, 115-120 (2016).
    [43] A. Damascelli, "Probing the Electronic Structure of Complex Systems by ARPES.", Physica Scripta T109, 61, 74 (2004).
    [44] Y.-Y. Li , G. Wang , X.-G. Zhu , M.-H. Liu , C. Ye , X. Chen , Y.-Y. Wang , K. He , L.-L. Wang , X.-C. Ma , H.-J. Zhang , X. Dai , Z. Fang , X.-C. Xie , Y. Liu, X.-L. Qi , J.-F. Jia , S.-C. Zhang, and Q.-K. Xue, "Intrinsic Topological Insulator Bi2Te3 Thin Films on Si and Their Thickness Limit.", Adv. Materials 22, 4002-4007 (2010).
    [45] S. Jia, H. Ji, E. Climent-Pascual, M. K. Fuccillo, M. E. Charles, J. Xiong, N. P. Ong, and R. J. Cava1, "Low-carrier-concentration crystals of the topological insulator Bi2Te2Se.", Phys. Rev. B 84, 235206 (2011).
    [46] Y. Jiang, Y. Wang, J. Sagendorf, D. West, X. Kou, X. Wei, Liang He, K. L. Wang, S. Zhang, and Z. Zhang, " Direct Atom-by-Atom Chemical Identification of Nanostructures and Defects of Topological Insulators.", Nano Lett. 13, 2851-2856 (2013).
    [47] Z. Ren, A. A. Taskin, S. Sasaki, K. Segawa, and Y. Ando, " Large bulk resistivity and surface quantum oscillations in the topological insulator Bi2Te2Se.", Phys. Rev. B 82, 241306 (2010).
    [48] D. O. Scanlon, P. D. C. King, R. P. Singh, A. de la Torre, S. M. Walker , G. Balakrishnan, F. Baumberger, and C. R. A. Catlow, "Controlling Bulk Conductivity in Topological Insulators: Key Role of Anti-Site Defects.", Advanced Materials 24, 2154-2158 (2012).
    [49] C. Zhang, X. Yuan, K. Wang, Z.-G. Chen, B. Cao, W. Wang, Y. Liu, J. Zou, and F. Xiu, "Observations of a Metal–Insulator Transition and Strong Surface States in Bi2–xSbxSe3 Thin Films.", Adv. Materials 26, 7110-7115 (2014).
    [50] M. Brahlek, N. bansal, N. Koirala, S.-Y. Xu, M. Neupane, C. Liu, M. Z. Hasan, and S. Oh, "Topological-Metal to Band-Insulator Transition in (Bi1−xInx)2Se3 Thin Films.", Phys. Rev. Lett. 109, 186403 (2012).
    [51] M. Brahlek, H. Shapourian, N. Koirala, M. J. Brahlek, J. Moon, and S. Oh, "Finite-Size and Composition-Driven Topological Phase Transition in (Bi1–xInx)2Se3 Thin Films.", Nano Letters 16, 5528-5532 (2016).
    [52] J. Liu, and D. Vanderbilt, "Topological phase transitions in (Bi1−xInx)2Se3 and (Bi1−xSbx)2Se3.", Phys. Rev. B 88, 224202 (2013).
    [53] Y. Zhang, C.-Z. Chang, K. He, L.-L. Wang, X. Chen, J.-F. Jia, X.-C. Ma, and Q. K. Xue, Appl. "Doping effects of Sb and Pb in epitaxial topological insulator Bi2Se3 thin films: An in situ angle-resolved photoemission spectroscopy study.", Applied Phys. Lett. 97, 194102 (2010).
    [54] Y. L. Chen, J.-H. Chu, J. G. Analytis, Z. K. Liu, K. Igarashi, H.-H. Kuo, X. L. Qi, S. K. Mo, R. G. Moore, D. H. Lu, M. Hashimoto, T. Sasagawa, S. C. Zhang, I. R. Fisher, Z. Hussain, and Z. X. Shen, "Massive Dirac Fermion on the Surface of a Magnetically Doped Topological Insulator.", Science 329, 5992, 659-662 (2010).
    [55] E. T. Kulatov, V. N. Men'shov, V. V. Tugushev, and Yu. A. Uspenskii, "Electron and magnetic properties of three-dimensional magnetic topological insulators Bi2Se3:Cr and Bi2Se3:Fe.", EPL. 115, 67004 (2016).
    [56] X. F. Kou, W. J. Jiang, M. R. Lang, F. X. Xiu, L. He, Y. Wang, Y. Wang, X. X. Yu, A. V. Fedorov, P. Zhang, and K. L. Wang, "Magnetically doped semiconducting topological insulators.", Journal of Applied Physics 112, 063912 (2012).
    [57] M. Liu, J. Zhang, C.-Z. Chang, Z. Zhang, X. Feng, K. Li, K. He, L.-l. Wang, X. Chen, X. Dai, Z. Fang, Q.-K. Xue, X. Ma, and Y. Wang, "Crossover between Weak Antilocalization and Weak Localization in a Magnetically Doped Topological Insulator
    .", Phys. Rev. Lett. 108, 036805 (2012).
    [58] S. Hikami, A. I. Larkin, and Y. Nagaoka, Prog. Theor. Phys. 63, 707-710 (1980).
    [59] H. Li, Y. R. Song, M.-Y. Yao, F. Zhu, C. Liu, C. L. Gao, J.-F. Jia, D. Qian, X. Yao, Y. J. Shi, and D. Wu, "Carrier density dependence of the magnetic properties in iron-doped Bi2Se3 topological insulator.", Journal of Applied Physics 113, 043926 (2013).
    [60] C.-Z. Chang, P. Tang, Y.-L. Wang, X. Feng, K. Li, Z. Zhang, Y. Wang, L.-L. Wang, X. Chen, C. Liu, W. Duan, K. He, X.-C. Ma, and Q.-K. Xue, "Chemical-Potential-Dependent Gap Opening at the Dirac Surface States of Bi2Se3 Induced by Aggregated Substitutional Cr Atoms.", Phys. Rev. Lett. 112, 056801 (2014).
    [61] M. Ye, W. Li, S. Zhu, Y. Takeda, Y. Saitoh, J. Wang, H. Pan, M. Nurmamat, K. Sumida, F. Ji, Z. Liu, H. Yang , Z. Liu, D. Shen, A. Kimura, S. Qiao, X. Xie, "Carrier-mediated ferromagnetism in the magnetic topological insulator Cr-doped (Sb, Bi)2Te3.", Nat. commun. 6, 8913 (2015).

    2-5 References
    [1] H.-Z. Lu, and S.-Q. Shen, "Weak localization and weak anti-localization in topological insulators.", Proc. SPIE 9167, Spintronics VII, 91672E (2014).
    [2] J. Angevaare, "The weak anti localization effect due to topological surface states of a Bi1.46Sb0.54Te1.7Se1.3 nanoflake.", Bachelor project Physics at the University of Amsterdam (2014).
    [3] X.-L. Qi, and S.-C. Zhang, "The quantum spin Hall effect and topological insulators.", Phys. Today 63, 33-8 (2010).
    [4] H.-Z. Lu, and S.-Q. Shen, "Finite-Temperature Conductivity and Magnetoconductivity of Topological Insulators.", Phys. Rev. Lett. 112, 146601 (2014).
    [5] P. A. Lee, and T. V. Ramakrishnan, "Disordered electronic systems.", Rev. Mod. Phys. 57, 287 (1985).
    [6] S. Hikami, A. I. Larkin, and Y. Nagaoka, "Spin-Orbit Interaction and Magnetoresistance in the Two Dimensional Random System.", Prog. Theor. Phys. 63, 707-710 (1980).
    [7] S. Q. Shen, W.-Y. Shan, and H.-Z. Lu, "Topological insulator and the Dirac equation.", SPIN 01, 33 (2011).
    [8] S.-Q. Shen, "Topological Insulators.", Springer ISBN: 978-3-642-32857-2 (2012).
    [9] H.-Z. Lu, J. Shi, and S.-Q. Shen, "Competition between Weak Localization and Antilocalization in Topological Surface States.", Phys. Rev. Lett. 107, 076801 (2011).
    [10] H.-Z. Lu, J. Shi, and S.-Q. Shen, "Weak localization of bulk channels in topological insulator thin films.", Phys. Rev. B 84, 125138 (2011).

    3-5 References
    [1] S. Y. Wu, M. Hong, A. R. Kortan, J. Kwo, J. P. Mannaerts, W. C. Lee, and Y. L. Huang, "High-quality thin single-crystal γ-Al2O3γ-Al2O3 films grown on Si (111).", App. Phy. Lett. 87, 091908 (2005).
    [2] Paul B. Welander and James N. Eckstein, "Strained single-crystal Al2O3 grown layer by layer on Nb (110) thin films.", Appl. Phys. Lett. 90, 243510 (2007).
    [3] I. Hernández-Calderón and H. Höchst, "New method for the analysis of reflection high-energy electron diffraction: α−Sn(001) and InSb(001) surfaces.", Phy. Rev. B 27, 4961 (1983).
    [4] D. W. Pashley, J. H. Neave and B. A. Joyce, "A model for the appearance of chevrons on RHEED patterns from InAs quantum dots.", Surface Science 476, 1-2 (2001).
    [5] E. H. Hall, "On a New Action of the Magnet on Electric Currents.", Am. J. Math 2, 287 (1879).
    [6] E. H. Hall, "On the “Rotational Coefficient” in nickel and cobalt.", Phil. Mag. Ser. 5, 12, 157 (1881).
    [7] Quantum Design Inc., "Product Introduction Model PPMS-16: 16 Tesla PPMS.", Brochures, Product introduction Model PPMS-16.

    4-3 References
    [1] L. Fu and C. L. Kane, "Topological insulators with inversion symmetry.", Phys. Rev. B 76, 045302 (2007).
    [2] J. E. Moore and L. Balents, "Topological invariants of time-reversal-invariant band structures.", Phys. Rev. B 75, 121306(R) (2007).
    [3] M. Z. Hasan and C. L. Kane, "Colloquium: Topological insulators.", Rev. Mod. Phys. 82, 3045-3067 (2010).
    [4] X. L. Qi and S. C. Zhang, "Topological insulators and superconductors.", Rev. Mod. Phys. 83, 1057-1110 (2011).
    [5] J. G. Checkelsky, Y. S. Hor, R. J. Cava, and N. P. Ong, "Bulk Band Gap and Surface State Conduction Observed in Voltage-Tuned Crystals of the Topological Insulator Bi2Se3.", Phys. Rev. Lett. 106, 196801 (2009).
    [6] N. P. Butch, K. Kirshenbaum, P. Syers, A. B. Sushkov, G. S. Jenkins, H. D. Drew, and J. Paglione, "Strong surface scattering in ultrahigh-mobility Bi2Se3 topological insulator crystals.", Phys. Rev. B 81, 241301(R) (2010).
    [7] A. A. Taskin and Y. Ando, "Quantum oscillations in a topological insulator Bi1−xSbx.", Phys. Rev. B 80, 085303 (2009).
    [8] Z. Ren, A. A. Taskin, S. Sasaki, K. Segawa, and Y. Ando, "Large bulk resistivity and surface quantum oscillations in the topological insulator Bi2Te2Se.", Phys. Rev. B 82, 241306(R) (2010).
    [9] P. Gehring, B. F. Gao, M. Burghard, and K. Kern, "Growth of High-Mobility Bi2Te2Se Nanoplatelets on hBN Sheets by van der Waals Epitaxy.", Nano Lett. 12, 5137-5142 (2012).
    [10] Z. Li, T. Chen, H. Pan, F. Song, B. Wang, J. Han, Y. Qin, X. Wang, R. Zhang, J. Wang, D. Xing, and G. Wang, "Two-dimensional universal conductance fluctuations and the electron-phonon interaction of surface states in Bi2Te2Se microflakes.", Sci. Rep. 2, 595 (2012).
    [11] C. Shekhar, C. E. ViolBarbosa, B. Yan, S. Ouardi, W. Schnelle, G. H. Fecher, and C. Felser, "Evidence of surface transport and weak antilocalization in a single crystal of the Bi2Te2Se topological insulator.", Phys. Rev. B 90, 165140 (2014).
    [12] Z. H. Wang, R. L. J. Qiu, C. H. Lee, Z. D. Zhang, and X. P. A. Gao, "Ambipolar Surface Conduction in Ternary Topological Insulator Bi2(Te1–xSex)3 Nanoribbons.", ACS Nano 7 (3), 2126–2131 (2013).
    [13] Z. Li, I. Garate, J. Pan, X. Wan, T. Chen, W. Ning, X. Zhang, F. Song, Y. Meng, X. Hong, X. Wang, L. Pi, X. Wang, B. Wang, S. Li, M. A. Reed, L. Glazman, and G. Wang, "Experimental evidence and control of the bulk-mediated intersurface coupling in topological insulator Bi2Te2Se nanoribbons.", Phys. Rev. B 91, 041401(R) (2015).
    [14] J. Zhang , C. Z. Chang, P. Tang, Z. Zhang, X. Feng, K. Li, L. L. Wang, X. Chen, C. Liu, W. Duan, K. He, Q. K. Xue, X. Ma, and Y. Wang, "Topology-Driven Magnetic Quantum Phase Transition in Topological Insulators.", Science 339, 1582-1586 (2013).
    [15] X. L. Qi, T. L. Hughes, and S. C. Zhang, "Topological field theory of time-reversal invariant insulators.", Phys. Rev. B 78, 195424 (2008).
    [16] A. Soni, Y. Zhao, L. Yu, M. K. A. Khor, M. S. Dresselhaus, and Q. Xiong, "Enhanced Thermoelectric Properties of Solution Grown Bi2Te3–xSex Nanoplatelet Composites.", Nano Lett. 12, 1203−1209 (2012).
    [17] Y. S. Fu, T. Hanaguri, S. Yamamoto, K. Igarashi, H. Takagi, and T. Sasagawa, "Memory Effect in a Topological Surface State of Bi2Te2Se.", ACS Nano 7 (5), 4105–4110 (2013).
    [18] M. Neupane, S. Basak, N. Alidoust, S.-Y. Xu, C. Liu, I. Belopolski, G. Bian, J. Xiong, H. Ji, S. Jia, S.-K. Mo, M. Bissen, M. Severson, H. Lin, N. P. Ong, T. Durakiewicz, R. J. Cava, A. Bansil, and M. Z. Hasan, "Oscillatory surface dichroism of the insulating topological insulator Bi2Te2Se.", Phys. Rev. B 88, 165129 (2013).
    [19] A. M. Essin, J. E. Moore, and D. Vanderbilt, "Magnetoelectric Polarizability and Axion Electrodynamics in Crystalline Insulators.", Phys. Rev. Lett. 102, 146805 (2009).
    [20] See supplemental material at [URL will be inserted by AIP] for XRD rocking curve (Fig. 4-5) and resistivity measurement (Fig. 4-6) "Growth and characterization of molecular beam epitaxy-grown Bi2Te3−xSex topological insulator alloys.", Journal of Applied Physics 119, 055303 (2016).
    [21] O. B. Sokolov, S. Ya. Skipidarov, N. I. Duvankov, and G. G. Shabunina, "Chemical reactions on the Bi2Te3–Bi2Se3 section in the process of crystal growth Original research article.", J. Crystal Growth 262, 442-448 (2004).
    [22] S. Jia, H. Ji, E. Climent-Pascual, M. K. Fuccillo, M. E. Charles, J. Xiang, N. P. Ong, and R. J. Cava, "Low-carrier-concentration crystals of the topological insulator Bi2Te2Se.", Phys. Rev. B 84, 235206 (2011).
    [23] W. Richter, H. Köhler, and C. R. Becker, "A Raman and far-infrared investigation of phonons in the rhombohedral V2–VI3 compounds Bi2Te3, Bi2Se3, Sb2Te3 and Bi2(Te1−xSex)3 (0 < x < 1), (Bi1−ySby)2Te3 (0 < y< 1).", Phys. Stat. Sol. (b) 84, 619-628 (1977).
    [24] G. Zhang, H. Qin, J. Teng, J. Guo, Q. Guo, X. Dai, Z. Fang, and K. Wu, "Quintuple-layer epitaxy of thin films of topological insulator Bi2Se3.", Appl. Phys. Lett. 95, 053114 (2009).
    [25] J. Zhang, Z. Peng, A. Soni, Y. Zhao, Y. Xiong, B. Peng, J. Wang, M. S. Dresselhaus, and Q. Xiong, "Raman Spectroscopy of Few-Quintuple Layer Topological Insulator Bi2Se3 Nanoplatelets.", Nano Lett. 11, 2407-2414 (2011).
    [26] C. Wang, X. Zhu, L. Nilsson, J. Wen, G. Wang, X. Shan, Q. Zhang, S. Zhang, J. Jia, and Q. K. Xue, "In situ Raman spectroscopy of topological insulator Bi2Te3 films with varying thickness.", Nano Research 6, 688-692 (2013).
    [27] X. Liu, D. J. Smith, J. Fan, Y. -H. Zhang, H. Cao, Y. P. Chen, J. Leiner, B. J. Kirby, M. Dobrowolska, and J. K. Furdyna, "High-quality Bi2Te3 thin films grown on mica substrates for potential optoelectronic applications.", Appl. Phys. Lett. 99, 171903 (2011).
    [28] D. O. Scanlon , P. D. C. King, R. P. Singh, A. de la Torre, S. McKeown Walker, G. Balakrishnan, F. Baumberger, and C. R. A. Catlow, "Controlling Bulk Conductivity in Topological Insulators: Key Role of Anti-Site Defects.", Adv. Mater. 24, 2154 (2012).
    [29] L.-L. Wang and D. D. Johnson, "Ternary tetradymite compounds as topological insulators.", Phys. Rev. B 83, 241309 (2011).
    [30] C. Chen, Z. Xie, Y. Feng, H. Yi, A. Liang, S. He, D. Mou, J. He, Y. Peng, X. Liu, Y. Liu, L. Zhao, G. Liu, X. Dong, J. Zhang, L. Yu, X. Wang, Q. Peng, Z. Wang, S. Zhang, F. Yang, C. Chen, Z. Xu and X. J. Zhou, "Tunable Dirac Fermion Dynamics in Topological Insulators.", Sci. Rep. 3, 2411 (2013).
    [31] S. Jia, H. Ji, E. Climent-Pascual, M. K. Fuccillo, M. E. Charles, J. Xiong, N. P. Ong, and R. J. Cava, "Low-carrier-concentration crystals of the topological insulator Bi2Te2Se.", Phys. Rev. B 84, 235206 (2011).

    5-3 References
    [1] L. He, X. Kou, K. L. Wang, "Review of 3D topological insulator thin-film growth by molecular beam epitaxy and potential applications.", Phys. Status Solidi RRL 7, 1-2, 50-63 (2013).
    [2] D. Kong, Y. Cui, "Opportunities in chemistry and materials science for topological insulators and their nanostructures. Nat. Chem. 3, 845-849 (2011).
    [3] M. Z. Hasan, C. L. Kane, "Colloquium: Topological insulators.", Rev. Mod. Phys. 82, 3045 (2010).
    [4] J. E. Moore, "The birth of topological insulators. Nature 464, 194-198 (2010).
    [5] X. L. Qi, S. C. Rev. Zhang, "Topological insulators and superconductors.", Mod. Phys. 83, 1057-1110 (2011).
    [6] H. Zhang, C. X. Liu, X. L. Qi, X. Dai, Z. Fang, S. C. Zhang, "Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface.", Nat. Phys. 5, 438-442 (2009).
    [7] C. Z. Chang, J. Zhang, X. Feng, J. Shen, Z. Zhang, M. Guo, K. Li, Y. Ou, P. Wei, L. L. Wang, Z. Q. Ji, Y. Feng, S. Ji; X. Chen, J. Jia, X. Dai, Z. Fang, S. C. Zhang, K. He, Y. Wang, L. Lu, X. C. Ma, Q. K. Xue, "Experimental Observation of the Quantum Anomalous Hall Effect in a Magnetic Topological Insulator.", Science 340, 167 (2013).
    [8] J. G. Checkelsky, R. Yoshimi, A. Tsukazaki, K. S. Takahashi, Y. Kozuka, J. Falson, M. Kawasaki, Y. Tokura, "Trajectory of the anomalous Hall effect towards the quantized state in a ferromagnetic topological insulator.", Nat. Phys. 10, 731–736 (2014).
    [9] C. Z. Chang, W. Zhao, D. Y. Kim, H. Zhang, B. A. Assaf, D. Heiman, S. C. Zhang, C. Liu, M. H. W. Chan, J. S. Moodera, "High-precision realization of robust quantum anomalous Hall state in a hard ferromagnetic topological insulator.", Nat. Maters. 14, 473-477 (2015).
    [10] Y. L. Chen, J. H. Chu, J. G. Analytis, Z. K. Liu, K. Igarashi, H. H. Kuo, X. L. Qi, S. K. Mo, R. G. Moore, D. H. Lu, M. Hashimoto, T. Sasagawa, S. C. Zhang, I. R. Fisher, Z. Hussain, Z. X. Shen, "Massive Dirac Fermion on the Surface of a Magnetically Doped Topological Insulator.", Science 329, 659 (2010).
    [11] H. Li, Y. R. Song, M. Y. Yao, F. Zhu, C. Liu, C. L. Gao, J. F. Jia, D. Qian, X. Yao, Y. J. Shi, D. Wu, "Carrier density dependence of the magnetic properties in iron-doped Bi2Se3 topological insulator.", Journal of applied physics 113, 043926 (2013).
    [12] J. M. Zhang, W. Zhu, Y. Zhang, D. Xiao, Y. Yao, "Tailoring Magnetic Doping in the Topological Insulator Bi2Se3.", Phys. Rev. Lett. 109, 266405 (2012).
    [13] C. Z. Chang, P. Tang, Y. L. Wang, X. Feng, K. Li, Z. Zhang, Y. Wang, L. L. Wang, X. Chen, C. Liu, W. Duan, K. He, X. C. Ma, Q. K. Xue, "Chemical-Potential-Dependent Gap Opening at the Dirac Surface States of Bi2Se3 Induced by Aggregated Substitutional Cr Atoms.", Phys. Rev. Lett. 112, 056801 (2014).
    [14] W. Xu, T.-S. Lim, H.-K. Seo, S.-Y. Min, H. Cho, M.-H. Park, Y.-H. Kim, T.-W. Lee, "N-Doped Graphene Field-Effect Transistors with Enhanced Electron Mobility and Air-Stability.", Small 10 (10), 1999-2005 (2014).
    [15] W. Xu, L. Wang, Y. Liu, S. Thomas, H.-K. Seo, K.-I. Kim, K. S. Kim, T.-W. Lee, "Controllable n-Type Doping on CVD-Grown Single- and Double-Layer Graphene Mixture.", Advanced Materials 27 (9), 1619-1623 (2015).
    [16] D. Kong, Y. Chen, J. J. Cha, Q. Zhang, J. G. Analytis, K. Lai, Z. Liu, S. S. Hong, K. J. Koski, S. K. Mo, Z. Hussain, I. R. Fisher, Z.-X. Shen, Y. Cui, "Ambipolar field effect in the ternary topological insulator (BixSb1–x)2Te3 by composition tuning.", Nat. Nanotechnol. 6, 705-709 (2011).
    [17] J. Zhang, C. Z. Chang, Z. Zhang, J. Wen, X. Feng, K. Li, M. Liu, K. He, L. Wang, X. Chen, Q. K. Xue, X. Ma, Y. Wang, "Band structure engineering in (Bi1−xSbx)2Te3 ternary topological insulators.", Nat. Commun. 2, 574 (2011).
    [18] M. Brahlek, N. Bansal, N. Koirala, S. Y. Xu, M. Neupane, C. Liu, M. Z. Hasan, S. Oh, "Topological-Metal to Band-Insulator Transition in (Bi1−xInx)2Se3 Thin Films.", Phys. Rev. Lett. 109, 186403 (2012).
    [19] Y. H. Liu, C. W. Chong, W. C. Chen, J. C. A. Huang, C. M. Cheng, K. D. Tsuei, Z. Li, H. Qiu, V. V. Marchenkov, "Robust topological insulator surface state in MBE grown (Bi_{1-x}Sb_x)_2Se_3.", arXiv 1611. 08395 (2016).
    [20] C. Zhang, X. Yuan, K. Wang, Z. G. Chen, B. Cao, W. Wang, Y. Liu, J. Zou, F. Xiu, "Observations of a Metal–Insulator Transition and Strong Surface States in Bi2–xSbxSe3 Thin Films.", Adv. Mater. 26, 7110-7115 (2014).
    [21] M. Salehi, H. Shapourian, H. Koirala, M. J. Brahlek, J. Moon, S. Oh, "Finite-Size and Composition-Driven Topological Phase Transition in (Bi1–xInx)2Se3 Thin Films.", Nano Lett. 16, 5528-5532 (2016).
    [22] M. Liu, J. Zhang, C. Z. Chang, Z. Zhang, X. Feng, K. Li, K. He, L. l. Wang, X. Chen, X. Dai, Z. Fang, Q. K. Xue, X. Ma, Y. Wang, "Crossover between Weak Antilocalization and Weak Localization in a Magnetically Doped Topological Insulator.", Phys. Rev. Lett. 108, 036805 (2012).
    [23] H. Z. Lu, J. Shi, S. Q. Shen, "Competition between Weak Localization and Antilocalization in Topological Surface States. Phys. Rev. Lett. 2011, 107, 076801.
    [24] Lu H. Z.; Shen S. Q. Finite-Temperature Conductivity and Magnetoconductivity of Topological Insulators.", Phys. Rev. Lett. 112, 146601 (2014).
    [25] G. Zheng, N. Wang, J. Yang, W. Wang, H. Du, W. Ning, Z. Yang, H. Z. Lu, Y. Zhang, M. Tian, "Weak localization effect in topological insulator micro flakes grown on insulating ferrimagnet BaFe12O19.", Sci. Rep. 6, 21334 (2016).
    [26] J. Zhang, C. Z. Chang, P. Tang, Z. Zhang, X. Feng, K. Li, L. L. Wang, X. Chen, C. Liu, W. Duan, K. He, Q. K. Xue, X. Ma, Y. Wang, "Topology-Driven Magnetic Quantum Phase Transition in Topological Insulators.", Science 339, 1582 (2013).
    [27] J. G. Checkelsky, J. Ye; Y. Onose, Y. Iwasa, Y. Tokura, "Dirac-fermion-mediated ferromagnetism in a topological insulator.", Nat. Phys. 8, 729-733 (2012).

    6-2 References
    [1] W. N. Chen, "The growth, structure and electronic property of BiTeSe alloys.", Master’s thesis of Physics in the National Cheng Kung University (2013).
    [2] P. H. Chen, "Epitaxial Growth and Structural Characterization of Single Crystalline Bi2Te3/Bi2Se3 Topological Insulator Multilayer.", Master’s thesis of Physics in the National Cheng Kung University (2013).
    [3] Z. X. Deng, "Epitaxial growth and structural characterization of BiTeSe alloys.", Master’s thesis of Physics in the National Cheng Kung University (2015).
    [4] C. W. Liao, "Magnetic and Electrical Properties of Cr and Sb Doped Bi2Se3 Topological Insulator.", Master’s thesis of Physics in the National Cheng Kung University (2016).
    [5] C. M. Fan-Chiang, "Gate-Tunable Transport Properties of Ultra-Thin Topological Insulator Thin Film and Electrical Detection of Spin Signal.", Master’s thesis of Physics in the National Cheng Kung University (2016).
    [6] Y.-J. Chien, "Transition Metal-Doped Sb2Te3 and Bi2Te3 Diluted Magnetic Semiconductors.", Doctor’s thesis of Philosophy in the University of Michigan (2007).
    [7] J. Angevaare, "The weak anti localization effect due to topological surface states of a Bi1.46Sb0.54Te1.7Se1.3 nanoflake.", Bachelor project Physics at the University of Amsterdam (2014).

    下載圖示 校內:2022-07-10公開
    校外:2022-07-10公開
    QR CODE