簡易檢索 / 詳目顯示

研究生: 楊志豪
Yang, Chih-hao
論文名稱: 雙靶射頻磁控濺鍍系統製備氧化銦錫薄膜摻雜錫,鈦及鉻之性質研究
Investigation on Properties of Tin, Titanium and Chromium-Doped Indium-Tin-Oxide Film by Dual Targets RF Magnetron Sputtering System
指導教授: 李世欽
Lee, Shih-Chin
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 189
中文關鍵詞: 透明導電膜氧化銦錫濺鍍摻雜退火光電性質
外文關鍵詞: Transparent conducting oxide (TCO) films, Indium-tin-oxide (ITO), Opto-electronic properties, Post-annealing, doping, Sputtering
相關次數: 點閱:73下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究的主要目的在討論氧化銦錫及氧化銦錫分別摻雜錫、鈦及鉻。鍍層是利用雙靶磁控濺鍍系統沉積在玻璃基板來討論金屬靶材功率變化及退火對鍍膜性質的影響。實驗的結果顯示添加鈦及鉻後沉積速率會降低,這是因為他們的不同濺鍍速率。氧化銦錫鍍層之載子濃度會隨著摻雜錫、鈦及鉻靶材功率的提高而增加,然而卻造成了載子遷移率的降低。當錫靶的濺鍍功率7.5 W時,可以達到最大的載子遷移率32.1 cm2 /V-s及最低的電阻率6.92 ×10-4 Ω-cm。鈦靶材功率5 W時,可以觀察有最大的載子遷移率31 cm2 /V-s但是卻是最低的載子濃度2.42×1020 cm-3及電阻率 6.64×10-4 Ω.cm。但是在摻雜鉻的氧化銦錫鍍層,也可以觀察到當鉻靶材功率在15 W時,具有最大的載子遷移率27.3 cm2/V-s,然而它確有最低的載子濃度2.47×1020 cm-3 及電阻率 7.32×10-4 Ω-cm。TEM的影像觀察與選區繞射分析,ITIO鍍層的繞射圖形中,可以觀察到鍍層並非全然為非晶質,其中包含了輕微的結晶相與非晶質基地經SEM及AFM表面形態觀察得知,ITO及ITO摻雜金屬後使得表面之白色叢聚物減少,因為表面能的改變及陰電性使得In2O3分解,叢聚物生成減少,而添加此三種金屬後能使表面粗糙度均下降,而在最佳電性時鍍層的表面粗糙度Rrms值均在1nm以下。在這個實驗中,所有的摻雜金屬的氧化銦錫鍍層在可見光波長(300~800 nm)的光穿透率都可以達到約90%。我們選擇沉積最佳電性參數的試片再進行退火處理。在退火之後。所有的鍍層呈現往最低能量的優選方向成長,其主要的結晶面都為(222)。當退火溫度達450 ℃時,氧化銦錫摻雜錫鍍層有最低的電阻率2.67 ×10-4 Ω-cm,載子濃度為3.53 ×1020 cm-3。在相同的溫度下,摻雜鈦及鉻的氧化銦錫鍍層,擁有最高載子濃度分別為3.92×1020 cm-3及3.96×1020 cm-3, 同時也有最低的電阻率分別為4.28×10-4 Ω.cm 及3.03×10-4 Ω.cm。所有鍍層在波長為550 nm的光傳透率都可以達到約90%。光學能隙隨著退火溫度的提高而增加。摻雜錫、鈦及鉻的氧化銦錫鍍層在450 ℃的光學能隙分別為 3.96 eV,3.97 eV及 3.97 eV。

    The main purpose of this study is to investigate the opto-electronic properties of indium-tin-oxide (ITO) and ITO doped with metals such as tin, titanium and chromium, respectively. The films were deposited on glass substrates by dual-target RF magnetron sputtering system under various RF power output and post-annealing at different temperatures were studied. Experimental results show that films deposition rate decrease when Ti and Cr were doped. The reason is because their sputtering yield is different. The carrier concentration of the ITO films increased with increase in target power of tin, titanium and chromium, however, the mobility of the carrier decreases. When the sputtering power of tin target is 7.5W, there is maximum carrier mobility of 32.1 cm2 /V-s, and lowest resistivity of 6.92 ×10-4 Ω-cm. The sputtering power of the titanium target is at 5W, the maximum carrier mobility of 31 cm2 /V-s can be obtained. It has the minimum carrier concentration, 2.42×1020 cm-3, and the lowest resistivity, 6.64×10-4 Ω.cm. But in ITO:Cr films, we can also observe that when the sputtering power of chromium target is at 15 W, the maximum carrier mobility, 27.3 cm2/V-s, however, it has the minimum carrier concentration, 2.47×1020 cm-3 and the lowest resistivity, 7.32×10-4 Ω-cm. As SEM and AFM images of ITO and ITO doped with metals films show that an decrease in clusters with metal doped because the surface energy was reduced and resolved In2O3 particals by dapent electronegative, and was found to have the smoother than pure ITO films at the optium electrical properties, Rrms<1 nm in as deposited film. The transmittance of all these metals doped ITO films at 300~800 nm wavelength region in this experiment can reach up to ~ 90 %. After post-annealing, all films extend from the prefer orientation with minimum energy to grow and the major crystallization plane of the ITO films is the (222) plane. In the diffraction pattern analyzed these films show a not fully amorphous and comprised slight crystalline or amorphous-like matrix. The results indicate out the domestic component of matrix is comprised of In and O atoms. The In2O3 clusters appear in the white spot resulted from Sn evaporation during sputtering process. The In2O3 and ITO particles are separated from amorphous InOx matrix to form crystalline during sputtering process by energy induced. At the annealing temperature is 250℃, it can be observed the matrix is crystallized and grain size are 200~400 nm. While the annealing temperature increases to 450℃, the grain size is enlarged. It is obvious that the microstructure change from amorphous to crystalline strongly depended on annealing temperature at the range of 150~250 ℃ in this research. ITO crystalline surrounded the matrix but the concentration of Sn is not in proportion that resulted from the concentration of Sn, Ti and Cr irregular distribution owing to the particles of In2O3 and ITO solutes in matrix and grain growth in annealing process. Therefore, the concentration of Sn on each grain is not in proposition after grain growing. While the annealing temperature increased, the thermal energy provided the high driving force to enhance grain growth. The grain size is larger while the annealing temperature increases and it is no amorphous region found at 450℃.
    When the annealing temperature is at 450 ℃, the carrier concentration of the ITO:Sn films is 3.53 ×1020 cm-3, while the lowest resistivity is 2.67 ×10-4 Ω-cm. At the same temperature, the maximal carrier concentration of ITO:Ti films and ITO:Cr is 3.92×1020 cm-3 and 3.96×1020 cm-3, respectively, and the lowest resistivity is 4.28×10-4 Ω.cm and 3.03×10-4 Ω.cm , respectively. The optical transmittance of all films at 550nm wavelength reaches up to ~90%. The optical energy band gap increased with the increase of the post-annealing temperature. The maximum optical energy band gap of Sn, Ti and Cr doped at 450℃ are 3.96 eV, 3.97 eV and 3.97 eV, respectively.

    總目錄 中文摘要 I Abstract III 誌 謝 VI 總目錄 VIII 表目錄 XII 圖目錄 XIII 第一章 緒論 1 1-1 前言 1 1-2 研究動機與目的 6 第二章 理論基礎及文獻回顧 10 2-1 薄膜成核成長理論 10 2-2透明導電氧化物膜之性質 18 2.2-1 透明導電氧化物材料 18 2-2-2 氧化銦錫透明導電膜結構 21 2-3-2 氧化銦錫透明導電膜電學性質 25 2-3-3 氧化銦錫透明導電膜光學性質 27 2-4 氧化銦錫透明導電膜透明導電膜之製備 36 2-5 氧化銦錫鍍層後處理 42 2-5 氧化銦錫鍍層後處理 42 第三章 實驗方法與步驟 45 3-1 實驗流程 45 3-2 實驗材料 46 3-3 鍍膜製程 47 3-3-1 實驗系統說明 47 3-3-2 鍍膜參數及步驟 51 3.3-3 鍍膜熱處理步驟 53 3-4 鍍膜性質分析 54 3-4-1 膜厚與成長速率之量測 54 3-4-2 結構分析 55 3-4-3 電性量測 56 3-4-4 表面形態及粗糙度分析 61 3-4-5 光學性質量測 61 3-5 鍍層退火後處理 62 第四章 結果與討論 63 4-1 製程參數對透明導電鍍層性質之研究 63 4-1-1 鍍層成長速率之研究 63 4-1-2 鍍層晶體結構之研究 68 4-1-2 (a) XRD 分析 68 4-1-2 (b) TEM 分析 75 4-1-3 鍍層表面形態之研究 79 4-1-3 (a) SEM表面形態觀察 79 4-1-3 (b) AFM表面粗糙度觀察 85 4-1-4 鍍層電性之研究 95 4-1-5 鍍層光學性質之研究 107 4-2 退火後處理對透明導電鍍層性質影響之研究 112 4-2-1 鍍層晶體結構 112 4-2-1 (a) XRD觀察 112 4-2-1 (b) TEM觀察 121 4-2-2 鍍層表面形態之研究 127 4-2-2 (a) SEM表面形態觀察 127 4-2-2 (b) AFM表面粗糙度觀察 133 4-2-3 鍍層電性之討論 142 4-2-4 光學性質之研究 155 第五章 結論 166 參考文獻 174 附錄(自述) 187 附錄(投稿論文整理) 188 表目錄 表1-1 透明導電膜之應用範圍 9 表 2-1 不同製備方法下的典型ITO光電性質 41 表3-1康寧玻璃的基本物質性質 46 表3-2 添加異質金屬薄膜之沉積參數 51 表4-1 ITO鍍層利用TEM-EDS的成份分析 78 表4-2 ITO固定125W下錫金屬靶材功率變化之鍍層EDS元素分析 83 表4-3 ITO固定125W下鈦金屬靶材功率變化之鍍層EDS元素分析 83 表4-4 ITO固定125W下鉻金屬靶材功率變化之鍍層EDS元素分析 84 表4-5 退火溫度在250℃時ITO鍍層在不同位置的TEM-EDS元素分析 125 圖目錄 圖2-1 薄膜沉積機構示意圖 12 圖2-2 濺鍍靶材表面所產生之交互作用 14 圖2-3 兩種鍍層的結構模型 (a) Movchan和Demchisin所提出。 (b) Thornton所提出之SZM模型。 17 圖2-4 In2O3 (ITO)鍍層中的結晶結構 23 圖2-5 In2O3(ITO)鍍層中的兩種銦原子位置 24 圖2-6 In2O3及ITO之X-ray繞射圖 24 圖2-7 典型的ITO膜穿透和反射光譜 30 圖2-8 電阻率及載子濃度對ITO膜穿透光譜的影響 30 圖2-9 Burstein-Moss shift效應示意圖 31 圖2-10 ITO鍍層的吸收係數的平方與入射光能量的關係 32 圖3-1 (a) 濺鍍系統及 (b) 共濺鍍靶材系統的示意圖 49 圖3-2 (a)錫及鈦 (b)鉻的濺鍍速率 52 圖3-3 α-step量測示意圖 54 圖3-4 四點探針量測原理示意圖 56 圖3-5 霍爾效應量測原理的示意圖 60 圖4-1 ITO透明導電膜沉積速率隨不同射頻功率變化之關係 66 圖4-2 添加三種不同金屬之沉積速率隨金屬靶功率變化之關係 66 圖4-3 添加三種不同金屬之沉積速率隨金屬靶功率變化之關係 67 圖4-4 由HR-SEM所觀察到鍍層之截面,顯示鍍層厚度為350nm 67 圖4-5 ITO透明導電膜濺鍍功率100W、厚度350nm隨不同金屬之添加鍍層在最佳的電性條件下之XRD繞射圖形 72 圖4-6 ITO透明導電膜濺鍍功率125W、厚度350nm隨不同金屬之添加鍍層在最佳的電性條件下之XRD繞射圖形 73 圖4-7 厚度350nm的ITO透明導電膜濺鍍功率分別為100W及125W在不同添加金屬之(222)與(440)XRD繞射峰強度比值 74 圖4-8 ITO及ITO:Ti的TEM表面型態觀察與選區繞射圖形 77 圖4-9 添加三種不同金屬在功率為7.5W時(ITO固定100W)、厚度350nm,鍍層之SEM表面形態觀察 81 圖4-10 添加三種不同金屬在不同功率下(ITO固定125W)、厚度350nm,鍍層之SEM表面形態觀察 82 圖4-11 在ITO固定100W時添加金屬錫隨不同金屬功率鍍層表面粗糙度之變化 88 圖4-12 在ITO固定125W時添加金屬錫隨不同金屬功率鍍層表面粗糙度之變化 89 圖4-13 在ITO固定100W時添加金屬鈦隨不同金屬功率鍍層表面粗糙度之變化 90 圖4-14 在ITO固定125W時添加金屬鈦隨不同金屬功率鍍層表面粗糙度之變化 91 圖4-15 在ITO固定100W時添加金屬鉻隨不同金屬功率鍍層表面粗糙度之變化 92 圖4-16 在ITO固定125W時添加金屬鉻隨不同金屬功率鍍層表面粗糙度之變化 93 圖4-17 ITO分別固定(a) 100W及(b)125W時隨不同金屬靶材濺鍍功率對於鍍層表面粗糙度之變化 94 圖4-18 ITO透明導電膜電阻率隨不同射頻功率變化之關係 96 圖4-19 錫金屬靶材濺鍍功率變化對鍍層(a)電阻率、(b)載子濃度及(c)載子遷移率之影響 103 圖4-20 鈦金屬靶材濺鍍功率變化對鍍層(a)電阻率、(b)載子濃度及(c)載子遷移率之影響 104 圖4-21 鉻金屬靶材濺鍍功率變化對鍍層(a)電阻率、(b)載子濃度及(c)載子遷移率之影響 105 圖4-22 金屬靶材濺鍍功率變化對鍍層的平均自由路徑之影響 106 圖4-23 添加錫隨不同射頻功率鍍層之光學穿透圖 110 圖4-24 添加鈦隨不同射頻功率鍍層之光學穿透圖 110 圖4-25 添加鉻隨不同射頻功率鍍層之光學穿透圖 111 圖4-26 靶材功率的變化對於鍍層的載子濃度與遷移率的比值的關係 111 圖4-27 ITO透明導電膜125W、厚度350nm隨不同退火溫度鍍層之XRD繞射圖形 116 圖4-28 添加金屬錫 7.5W、厚度350nm隨不同退火溫度鍍層之XRD繞射圖形 117 圖4-29 添加金屬鈦 5W、厚度350nm隨不同退火溫度鍍層之XRD繞射圖形 118 圖4-30 添加金屬鉻 7.5W、厚度350nm隨不同退火溫度鍍層之XRD繞射圖形 119 圖4-31 退火溫度的變化對鍍層的(222)面之半高寬的影響 120 圖 4-32 在不同退火溫度下ITO鍍層的TEM觀察 (a) as deposited (b) 150℃ (c) 250℃(d) 450℃ 123 圖4-33 ITO:Ti鍍層在250℃時的TEM觀察 124 圖4-34 ITO透明導電膜125W、厚度350nm隨不同退火溫度之SEM表面形態觀察 129 圖4-35 添加金屬錫 7.5W、厚度350nm隨不同退火溫度之SEM表面形態觀察 130 圖4-36 添加金屬鈦 5W、厚度350nm隨不同退火溫度之SEM表面形態觀察 131 圖4-37 添加金屬鉻 15W、厚度350nm隨不同退火溫度之SEM表面形態觀察 132 圖4-38 退火溫度的變化對純ITO之AFM表面粗糙度觀察 135 圖4-39 退火溫度的變化對ITO:Sn之AFM表面粗糙度觀察 136 圖4-40 退火溫度的變化對ITO:Ti之AFM表面粗糙度觀察 137 圖4-41 退火溫度的變化對ITO:Cr之AFM表面粗糙度觀察 138 圖4-42 不同成分透明導電鍍層表面粗糙度隨不同退火溫度變化之關係 141 圖4-43 透明導電膜(a)退火前與經(b)退火後薄膜表面之狀態變化示意圖 141 圖4-44 退火溫度變化對純ITO對鍍層(a)電阻率、(b)載子濃度及(c)載子遷移率之影響 150 圖4-45 退火溫度變化對ITO:7.5W Sn對鍍層(a)電阻率、(b)載子濃度及(c)載子遷移率之影響 151 圖4-46 退火溫度變化對ITO:5W Ti對鍍層(a)電阻率、(b)載子濃度及(c)載子遷移率之影響 152 圖4-47 退火溫度變化對ITO:15W Cr對鍍層(a)電阻率、(b)載子濃度及(c)載子遷移率之影響 153 圖4-48 退火溫度對於純ITO及添加三種不同金屬時的平均自由路徑的關係 154 圖4-49 退火溫度對純ITO透明導電膜125W、厚度350nm時隨不同退火溫度的光學穿透光譜 159 圖4-50 退火溫度對ITO:Sn-7.5W透明導電膜隨不同退火溫度的光學穿透光譜 159 圖4-51 退火溫度對ITO:Ti-5W透明導電膜隨不同退火溫度的光學穿透光譜 160 圖4-52 退火溫度對ITO:Cr-15W透明導電膜隨不同退火溫度的光學穿透光譜 160 圖4-53 ITO透明導電膜125W、厚度350nm隨不同退火溫度其光學能隙之變化 161 圖4-54 添加金屬錫 7.5W、厚度350nm隨不同退火溫度其光學能隙之變化 162 圖4-55 添加金屬鈦 5W、厚度350nm隨不同退火溫度其光學能隙之變化 163 圖4-56 添加金屬鉻 15W、厚度350nm隨不同退火溫度其光學能隙之變化 164 圖4-57 退火溫度的變化對四種鍍層的光學能階的影響 165

    [1] 曲喜新, 楊邦朝, 姜節儉, 張懷武編著,“電子薄膜材料”,北京科學出版社出版, (1996) pp.93。
    [2] 李玉華,“透明導電膜及其應用”,科儀新知,第12卷第一期, (1990) pp.94-102。
    [3] 楊明輝,“金屬氧化物透明導電材料的基本原理”, 工業材料, 第179期, (2001) , pp. 134-144。
    [4] B. Mayer, “Highly conductive and transparent films of tin and fluorine doped indium oxide produced by APCVD”, Thin Solid Films, 221 (1-2) (1992) pp. 166-182.
    [5] J. Ma, D.H. Zhang, J.Q. Zhao, C.Y. Tan, T.L. Yang and H.L. Ma, “Preparation and characterization of ITO films deposited on polyimide by reactive evaporation at low temperature “, Applied Surface Science, 151 (1999) pp.239-243.
    [6] S. Chauhuri, J. Bhattacharyya, A. K. Pal, “Microstructure of indium tin oxide films produced by the D.C. sputtering technique”, Thin Solid Films, 148 (1987) pp. 279-284
    [7] T. Minami, Y. Takeda, S, Takata, Y. Kakumu, “Preparation of transparent conducting In4Sn3O12 thin films by DC magnetron sputtering”, Thin Solid Films, 308-309 (1997) pp.13-18
    [8] H. Y Yeom, N. Popovich, E. Chason, D. C. Paine, “A study of the effect of process oxygen on stress evolution in d.c. magnetron-deposited tin-doped indium oxide”, Thin Solid Films, 411 (2002) pp. 17-22
    [9] T. C. Gorjanc, D. Leong, C. Py, D. Roth, “Room temperature deposition of ITO using r.f. magnetron sputtering”, Thin Solid Films, 413 (2002) pp. 181-185
    [10] A. Hjortsberg, I. Hamberg, C.G. Granqvist, “Transparent and heat-reflecting indium tin oxide films prepared by reactive electron beam evaporation”, Thin Solid Films, 90 (1982) pp. 323-326.
    [11] R. Banerjee, D. Das, S. Ray, A.K. Batabyal, A.K. Barua, “Characterization of tin doped indium oxide films prepared by electron beam evaporation”, Solar Energy Materials, 13 (1986) pp. 11-23.
    [12] A.S.A.C. Diniz, C.J. Kiely, I. Elfalla, R.D. Pilkington, A.E. Hill, “The effects of post-deposition annealing on the microstructure of electron-beam evaporated indium tin oxide thin films”, Renewable Energy 5 (1994) pp. 209-211.
    [13] J. George, C.S. Menon, “Electrical and optical properties of electron beam evaporated ITO thin films”, Surface and Coatings Technology, 132 (2000) pp. 45-48.
    [14] M. Yamaguchi, A. Ide-Ektessabi, H. Nomura, N. Yasui, “Characteristics of indium tin oxide thin films prepared using electron beam evaporation”, Thin Solid Films 447-448 (2004) pp. 115-118.
    [15] Y. Djaoued, V.H. Phong, S. Badilescu, P.V. Ashrit, F.E. Girouard, V.V. Truong, "Sol-gel-prepared ITO films for electrochromic systems." Thin Solid Films, 293 (1997) pp. 108-112.
    [16] R. B. H. Tahar, T. Ban, Y. Ohya and Y. Takahashi, “Electronic Ttransport in Tin-doped Indium Oxide Thin Films Prepared by Sol-gel Technique”, Journal of Applied Physics, 83 (1998) pp. 2139-2141.
    [17] S.-S. Kim, S.-Y. Choi, C.-G. Park, H.-W. Jin, “Transparent conductive ITO thin films through the sol-gel process using metal salts”, Thin Solid Films, 347 (1999) pp. 155-160.
    [18] M.J. Alam, D.C. Cameron, “Optical and electrical properties of transparent conductive ITO thin films deposited by sol-gel process”, Thin Solid Films, 377-378 (2000) pp. 455-459.
    [19] T. Maruyama, K. Fukui, “Indium tin oxide thin films prepared by chemical vapour deposition”, Thin Solid Films, 203 (1991) pp. 297-302.
    [20] M. Girtan, G. Folcher, “Structural and optical properties of indium oxide thin films prepared by an ultrasonic spray CVD process”, Surface and Coatings Technology, 172 (2003) pp. 242-250.
    [21] H. Izumi, T. Ishihara, H. Yoshioka, M. Motoyama, “Electrical properties of crystalline ITO films prepared at room temperature by pulsed laser deposition on plastic substrates”, Thin Solid Films, 411 (2002) pp.32-35.
    [22] F.O. Adurodija, H. Izumi, T. Ishihara, H. Yoshioka, M. Motoyama, “The electro-optical properties of amorphous indium tin oxide films prepared at room temperature by pulsed laser deposition”, Solar Energy Materials and Solar Cells, 71 (2002) pp. 1-8.
    [23] H. Izumi, T. Ishihara, H. Yoshioka, M. Motoyama, “Electrical properties of crystalline ITO films prepared at room temperature by pulsed laser deposition on plastic substrates”, Thin Solid Films, 411 (2002) pp.32-35.
    [24] A. Suzuki, T. Matsushita, T. Aoki, A. Mori, M. Okuda, “Highly conducting transparent indium tin oxide films prepared by pulsed laser deposition”, Thin Solid Films, 411 (2002) pp.23-27
    [25] M. Mikawa, T. Moriga, Y. Sakakibara, Y. Misaki, K.-i. Murai, I. Nakabayashi, K. Tominaga, Characterization of ZnO-In2O3 transparent conducting films by pulsed laser deposition, Materials Research Bulletin, 40 (6) (2005) pp. 1052-1058.
    [26] J. Tashiro, A. Sasaki, S. Akiba, S. Satoh, T. Watanabe, H. Funakubo, M. Yoshimoto, “Room-temperature epitaxial growth of indium tin oxide thin films on Si substrates with an epitaxial CeO2 ultrathin buffer”, Thin Solid Films, 415 (2002) pp. 272-275.
    [27] 溫志中,“ITO透明導電膜之濺鍍技術展望”,工業材料, 166期 (2000) pp. 140-148。
    [28] Brain Campman, “Plasma”, Glow Discharge Process, (John Wiley & Sons, NewYork, U. S. A, 1980) , Chap.3.
    [29] C.G. Granqvist, A. Hultaker, Transparent and conducting ITO films: new developments and applications, Thin Solid Films, 411 (2002) pp.1-5.
    [30] 陳柏菁,’’應用於平面顯示器之ITO透明電極’’, 光訊, 第85期 (2000) pp. 27-30。
    [31] A. Kloppel, W. Kriegseis,’’Dependence of the electrical and optical behaviour of ITO-silver-ITO mltilayers on the silver properties’’, Thin Solid Films, 365(2000) pp. 139-146.
    [32] S.-J. Yeon, W.-C. Yong, H.-C. Lee,’’Effects of thermal treatment on the electrical and optical properties of sver-based indium tin oxide/metal/indium tin oxide structures’’,Thin Solid Films, 440 (2003) pp.278-284.
    [33] K. H. Choi, J. Y. Kim, Y. S. Lee, H. J. Kim,’’ITO/Ag/ITO multilayer film for the application of a vary low rsistance transparent electrode’’, Thin Solid Film, 341(1999) pp.152-155.
    [34] E. Bertran, C. Corbella, M. Vives, A. Pinyol,’’RF sputtering deposition of Ag/ITO coatings at room temperature’’, Solid State Ionics, 165 (2003) pp. 139-148.
    [35] I. Porqueras, G. Viera, J. Marti, E. Bertran,’’Deep profiles of lthium in electrolytic strucyures of ITO/WO3 for electrochromic applications’’, Thin Solid Films, 343-344 (1999) pp. 179-182.
    [36] H. Kim and A. Pique,’’Transparent conducting Sb-doped SnO2 thin films grown by pulsed-laser deposition’’, Applied Physics Letters, 84 (2004)
    [37] M. Yang, X.-L. Yang, H.-X. Chen, J. Shen, Y.-M. Jiang, ’’A new transparent conductive thin film In2O3:Mo’’, Thin Solid Film, 394 (2001) pp. 219-223.
    [38] N. Naghavi, C. Marcel, L. Dupont, C. Guery, C. Maugy, J.M. Tarascon, Influence of tin doping on the structural and physical properties of indium-zinc oxides thin films deposited by pulsed laser deposition, Thin Solid Films, 419 (1-2) (2002) pp. 160-165.
    [39] T. C. Gorjanc, D. Leong, C. Py and D. Roth, “Room temperature deposition of ITO using r.f. magnetron sputtering”, Thin Solid Films, 413 (2002) pp 181-185.
    [40] M.F.A.M. van Hest, M.S. Dabney, J.D. Perkins and D.S. Ginley, “High-mobility molybdenum doped indium oxide”, Thin Solid Films 496 (2006) pp. 70-74.
    [41] M. F. A. M. Hest, M. S. Dabney,J. D. Perkins, D. S. Ginley,M. P. Taylor, ” Titanium-doped indium oxide: A high-mobility transparent conductor” , Applied Physics Letter, 87 (2005) 032111.
    [42] S. M. Rossnagel, J. J. Cuomo, and W. D. Westwood Handbook of Plasma Processing Technology”, Park Ridge, New Jersey: Noyes Publications (1982).
    [43] D. S. Rickerby and A. Matthews, Advanced Surface Coatings: a Habdbook of Surface Engineering, Blackie & Son Ltd., 1991, pp.196.
    [44] J. L. Vossen and W. Kern, Thin Film Processes II, Academic Press, Inc., Bonton (1991) pp. 21.
    [45] L. J. Vossen, and W. Kerm, “Thin Film Process, Academic Process (1999) pp. 134.
    [46] J. Venables, “Nucleation and growth of thin films”, Rep. Prog. Phys., 47 (1984) pp. 399.
    [47] B.A. Movchan, A.V. Demchishin, “Study of the structure and properties of thick vacuum condensates of nickel, titanium, tungsten, aluminum oxide and zirconium dioxide”, Phys. Met. Metallogr, 28 (1969) pp. 83-90.
    [48] J. A. Thornton, “Influence of substrate temperature and deposition rate on structure of thick sputtered Cu coatings “ , Journal of Vacuum Science and Technology, (1986) pp. 830-835.
    [49] 楊明輝, “透明導電膜材料的研發近況”, 工業材料, 193 (2003), pp. 136-143.
    [50] S.-C. Chang and M.-H. Shiao, “Smooth indium zinc oxide film prepared by sputtering a In2O3:ZnO=95:5 target”, Microelectronics Journal, 38, (2007), pp. 1202-1206.
    [51] 古俊能, “ITO在有機發光二極體之應用”, 工業材料雜誌 188期(2002) pp. 133-136。
    [52] R.K. Gupta, K. Ghosh, S.R. Mishra and P.K. Kahol, “Opto-electrical properties of Ti-doped In2O3 thin films grown by pulsed laser deposition”, Applied Surface Science , 253 (2007) pp. 9422-9425.
    [53] C. Warmsingh, Y. Yoshida, D. W. Readey, C. W. Teplin, J. D. Perkins, P. A. Parilla, L. M. Gedvilas, B. M. Keyes, and D. S. Ginley, “High-mobility transparent conducting Mo-doped In2O3 thin films by pulsed laser deposition”, Journal of Applied Physics, 95 (2004) pp. 3831–3833.
    [54] S. M. Rozati and T. Ganj, “Preparation of In2O3:F thin films grown by spray pyrolysis technique”, Renewable Energy, 29 (2004) pp. 1665-1669.
    [55] Zhaoyuan Ning, Shanhua Cheng, Feng Huang, Yanbin Bian and Xiaohun Luo, “Study on fluorine-doped indium oxide films deposited by reactive evaporating in CF4/O2 gases”, Materials Science and Engineering B, 90( 2002 )pp. 196-200.
    [56] M. Quaas, C. Eggs, H. Wulff, “Structural studies of ITO thin films with the Rietveld method”, Thin Solid Films, 332 (1998) pp277-281.
    [57] I. Elfallal, R. D. Rilkington, A. E. Hill. “Formation of a statistical thermodynamic model for the electron concentration in heavily doped metal oxide semiconductors applied to the tin-doped indium oxide system”, Thin solid films, 223 (1993) pp. 303-310.
    [58] Joseph Ederth, “Electrical Transport in Nanoparticle Thin Films of Gold and Indium Tin Oxide”, doctoral degree dissertation, Uppsala University (2003) pp. 4-6.
    [59] P. Nath, R.F. Bunshah, “Preparation of In2O3 and tin-doped In2O3 films by a novel activated reactive evaporation technique”, Thin Solid Films, 69 (1980) pp. 63-68.
    [60] M. Hecq, A. Dubois, and J. V. Cakenberghe, “Etude par diffraction de rayons X de films a base d`oxydes d`etain et d`indium”, Thin Solid Films, 18 (1973) pp. 117-125.
    [61] J. L.Vossen, “RF sputtered transparent conductors he systems In2O3-SnO2”, RCA Review, 32(1971) pp.289-296.
    [62] S.-W. Chen, C.-H. Koo, “ITO-Ag alloy-ITO film with stable and high conductivity depending on the control of atomically flat interface”, Materials Letters 61 (2007) pp.4097-4099.
    [63] D. H. Zhang and H.L. Ma,” Scattering mechanisms of charge carroers in transparent counding oxide film”, Applied Physics A: Materials Science & Processing, 62 (1996) pp. 487-492.
    [64] C. Wang, Y. Liu, Y. Xia, T. Ma, P.W. Wang, Characteristics of ITO films fabricated on glass substrates by high intensity pulsed ion beam method, Journal of Non-Crystalline Solids ,353 (2007) pp.2244-2249.
    [65] A. Masuda, K. Imamori, H. Matsumura, “Influence of atomic hydrogen on transparent conducting oxides during hydrogenated amorphous and microcrystalline Si preparation by catalytic chemical vapor deposition”, Thin Solid Films, 411 (1) (2002) pp. 166-170.
    [66] U. Bockelmann, P. Hiergeist, G. Abstreiter, G. Weimann, W. Schlapp, “Relevant scattering processes, band gap renormalization and moss-burstein shift in modulation doped narrow GaAs/AlGaAs multiple quantum wells”, Surface Science, 229 (1990) pp. 398-401.
    [67] A. Sarkar, S. Ghosh, S. Chaudhuri, A.K. Pal, “Studies on electron transport properties and the Burstein-Moss shift in indium-doped ZnO films”, Thin Solid Films, 204 (1991) pp. 255-264.
    [68] P.K. Chakraborty, G.C. Datta, K.P. Ghatak, “The simple analysis of the Burstein-Moss shift in degenerate n-type semiconductors”, Physica B: Condensed Matter, 339 (4) (2003) pp. 198-203.
    [69] I. Hamberg, C.G. Granqvist, K.F. Berggren, B.E. Sernelius, L. Engstrom, “Bandgap widening in heavily doped oxide semiconductors used as transparent heat-reflectors, Solar Energy Materials, 12 (1985) pp. 479-490.
    [70] L. Gupta, A. Mansingh, P.K. Srivastava, “Band gap narrowing and the band structure of tin-doped indium oxide films”, Thin Solid Films, 176 (1989) pp. 33-44.
    [71] H.R. Fallah, M. Ghasemi, A. Hassanzadeh, H. Steki, “The effect of annealing on structural, electrical and optical properties of nanostructured ITO films prepared by e-beam evaporation”, Materials Research Bulletin, 42 (2007) pp. 487-496.
    [72] G.J. Exarhos, X.-D. Zhou, “Discovery-based design of transparent conducting oxide films”, Thin Solid Films, 515 (2007) pp. 7025-7052.
    [73] J.M. Bennett, “Optical scattering and absorption losses at interfaces and in thin films”, Thin Solid Films, 123 (1985) pp. 27-44.
    [74] H. K. Pulker, “Characterization of optical thin films”, Applied Optics, 18 (1979) pp. 1969-1977.
    [75] Niino, Fumihito, Hirasawa, Hiroshi, Kondo, and Ken-ichi, “Deposition of low-resistivity ITO on plastic substrates by DC arc-discharge ion plating”, Thin Solid Films, 411 (2002) pp.28-31.
    [76] J. C. C. Fan, F. J. Bachner and G. H. Foley, "Effect of Oxygen Partial Pressure During Deposition on Properties of r.f. Sputtered Sn-Doped In2O3 Films", Applied Physics Letters, 31 (1977) pp. 773 - 775
    [77] K. Sreenivas, T. Sundarsena Rao, A. Mansnigh and S. Chandra, "Preparation and Characterization of r.f. Sputtered Indium Tin Oxide Films", Journal of Applied Physics, 57 (1985) pp. 384-392.
    [78] J. Szczyrbowski, A. Dietrich and H. Hoffmann, "Optical and Electrical Properties of r.f. Sputtered Indium-Tin Oxide Films", Phys Stat Sol (a), 78 (1983) pp. 243-252
    [79] M. Buchanan, J. B. Webb and D. F. Williams, "The Influence of Target Oxidation and Growth Related Effects on the Electrical Properties of Reactively Sputtered Films of Tin-Doped Indium Oxide", Thin Solid Films, 80 (1981) pp. 373-382
    [80] M. Higuchi, S. Uekusa, R. Nakano and K. Yokogawa, "Post-Deposition Annealing Influence on Sputtered Indium Tin Oxide Film Characteristics", Japanese Journal of Applied Physics, 33 (1994) pp. 302-306
    [81] 吳政杰, “以濺射共沉積法成長ITO-ZnO複合透明導電薄膜之性質研究”, 國立成功大學材料科學及工程研究所碩士論文, (2004)107。
    [82] M. Sawada, M. Higuchi, S. Kondo, and H. Saka, “Characteristics of indium-tin-oxidesilver/indium-tin-oxide sandwich films and their application to simple-matrix liquid-crystal displays”, Journal of Applied Physics, 40 (2001) pp. 3332-3336.
    [83] H. Haitjema and J. J. Ph. Elich, "Physical Properties of Pyrolitically Sprayed Tin-Doped Indium Oxide Coatings", Thin Solid Films, 205 (1991) pp. 93-100
    [84] Niino, Fumihito, Hirasawa, Hiroshi, Kondo, and Ken-ichi, “Deposition of low-resistivity ITO on plastic substrates by DC arc-discharge ion plating”, Thin Solid Films, 411 (2002) pp.28-31.
    [85] Hideo Omoto, Atsushi Takamatsu, Takashi Kobayashi, “Effects of substrate temperature on tin-doped indium oxide films deposited by dc arc discharge ion plating”, Vacuum 80 (2006) pp. 783-787.
    [86] Yoshio Suzuki, Fumihito Niino and Kazuhisa Katoh, “Low-resistivity ITO films by dc arc discharge ion plating for high duty LCDs”, Journal of Non-Crystalline Solids, 218, (1997), pp. 30-34.
    [87] N. Balasubramanian and A. Subrahmanyam, "Effect of Substrate Temperature on the Electrical and Optical Properties of Reactively Evaporated Indium Tin Oxide Films", Materials Science and Engineering, B1 (1988) pp. 279-281
    [88] J. Bregman, Y. Shapira and H. Aharoni, "Effects of Oxygen Partial Pressure During Deposition on the Properties of Ion-Beam-Sputtered Indium-Tin Oxide Thin Films", Journal of Applied Physics, 67 (1990) pp. 750- 753
    [89] H.R. Fallah, M. Ghasemi, A. Hassanzadeh, H. Steki, “The effect of annealing on structural, electrical and optical properties of nanostructured ITO films prepared by e-beam evaporation”, Materials Research Bulletin, 42 (2007) pp.487-496.
    [90] 彭偉倫, “氧化銦錫透明電極應用於氮化鎵發光二極體”, 國立交通大學電子物理研究所碩士論文 (2004)pp. 74。
    [91] D.V. Morgan, Y.H. Aliyu, R.W. Bunce, A. Salehi, “Annealing effects on opto-electronic properties of sputtered and thermally evaporated indium-tin-oxide films”, Thin Solid Films, 312 (1998) pp.268-272.
    [92] C.-T. Lee, Q.-X. Yu, B.-T. Tang, H.-Y. Lee, “Effects of plasma treatment on the electrical and optical properties of indium tin oxide films fabricated by r.f. reactive sputtering”, Thin Solid Films, 386 (2001) pp.105-110.
    [93] Y. Hu, X. Diao, C. Wang, W. Hao, T. Wang, “Effects of heat treatment on properties of ITO films prepared by rf magnetron sputtering”, Vacuum, 75 (2004) pp.183-188.
    [94] Hideo Omoto, Atsushi Takamatsu, Takashi Kobayashi, “Effects of substrate temperature on tin-doped indium oxide films deposited by dc arc discharge ion plating”, Vacuum, 80 (2006) pp. 783-787.
    [95] Y. Meng, X.-l. Yang, H.-x. Chen, J. Shen, Y.-m. Jiang, Z.-j. Zhang, Z.-y. Hua, “A new transparent conductive thin film In2O3:Mo”, Thin Solid Films 394 (2001) pp. 218-222.
    [96] A.K. Kulkarni, K.H. Schulz, T.S. Lim, M. Khan, “Electrical, optical and structural characteristics of indium-tin-oxide thin films deposited on glass and polymer substrates”, Thin Solid Films 308-309 (1997) pp.1-7.
    [97] L.-j. Meng, M.P. dos Santos, “Properties of indium tin oxide (ITO) films prepared by r.f. reactive magnetron sputtering at different pressures”, Thin Solid Films, 303 (1997) pp. 151-155.
    [98] .T.C. Gorjanc, D. Leong, C. Py, D. Roth, “Room temperature deposition of ITO using r.f. magnetron sputtering”, Thin Solid Films, 413 (2002) pp. 181-185.
    [99] C. Nunes de Carvalho, A. Luis, O. Conde, E. Fortunato, G. Lavareda, A. Amaral, “Effect of rf power on the properties of ITO thin films deposited by plasma enhanced reactive thermal evaporation on unheated polymer substrates”, Journal of Non-Crystalline Solids, 299-302 (Part 2) (2002) pp. 1208-1212.
    [100] H. Kim, J. S. Horwitz, G. Kushto, A. Pique´ , Z. H. Kafafi, C. M. Gilmore, and D. B. Chrisey, “Effect of film thickness on the properties of indium tin oxide thin films”, Journal of Applied Physics, 88 (2000), pp 6021-6025.
    [101] C. Guillén and J. Herrero, “Structure, optical, and electrical properties of indium tin oxide thin films prepared by sputtering at room temperature and annealed in air or nitrogen”, Journal of Applied Physics, 101 (2007), pp 013514 1-7.
    [102] S. Muranaka, T. Bando and T. Takada, “Influence of substrate temperature and film thickness on the structure of reactively evaporated In2O3 films”, Thin Solid Films, 151 (1987), pp. 355-364.
    [103] H. Morikawa, M. Fujita, “Crystallization and electrical property change on the annealing of amorphous indium-oxide and indium-tin-oxide thin films”, Thin Solid Films, 359 (2000) pp. 61-67.
    [104] F. Wu and B. S. Chiou, “Properties of radio-frequency magnetron sputtered ITO films without in-situ substrate heating and post-deposition annealing “, Thin Solid Films, 247 (1994), pp. 201-207.
    [105] Chih-hao Yang, Shih-Chin Lee, Suz-Cheng Chen, Tien-chai Lin, "The effect of annealing treatment on microstructure and properties of indium tin oxides films ", Materials Science and Engineering B 129, (2006), pp. 154-160.
    [106] A. Amaral, P. Brogueira, C. Nunes de Carvalho, G. Lavareda, “Early stage growth structure of indium tin oxide thin films deposited by reactive thermal evaporation”, Surface and Coatings Technology 125 (2000) pp. 151-156.
    [107] J.-H. Lan, J. Kanicki, ITO surface ball formation induced by atomic hydrogen in PECVD and HW-CVD tools, Thin Solid Films, 304 (1997) pp. 123-129.
    [108] J.H. Kim, K.A. Jeon, G.H. Kim, S.Y. Lee, “Electrical, structural, and optical properties of ITO thin films prepared at room temperature by pulsed laser deposition”, Applied Surface Science, 252 (13) (2006) pp. 4834-4837.
    [109] E. Terzini, P. Thilakan, C. Minarini, “Properties of ITO thin films deposited by RF magnetron sputtering at elevated substrate temperature”, Materials Science and Engineering B, 77 (2000) pp. 110-114.
    [110] S. Bhagwat, R.P. Howson, “Use of the magnetron-sputtering technique for the control of theproperties of indium tin oxide thin films”, Surface and Coatings Technology, 111 (1999) pp.163-171.
    [111] R. B. H. Tahar, T. Ban, Y. Ohya, and Y. Takahashi, “Tin doped indium oxide thin films: Electrical properties”, Journal of Applied Physics, 83 (1998) pp.2631- 2645.
    [112] F. O. Adurodija, H. Izumi, T. Ishihara, H. Yoshioka, and M. Motoyama, “Effect of Sn doping on the electronic transport mechanism of indium-tin-oxide films grown by pulsed laser deposition coupled with substrate irradiation”, Journal of Applied Physics, 88 (2000) pp.4175-4180.
    [113] G. Frank and Kostlin, “Electrical properties and defect model of tin-dopped indium oxides layers”, Applied Physics A, 27 (1982) pp. 197-206
    [114] Y. Shigesato, David C. Paine, “Study of the effect of ion implantation on the electrical and microstructural properties of tin-doped indium oxide thin films”, Appl. Phys. Lett. 62 (1993) pp. 1268-1270
    [115] E. Conwell and V. F. Weisskopf, “Theory of Impurity Scattering in Semiconductors”, Phys. Rev. 77 (1950) pp.388-390
    [116] R. B. Dingle, “Theory of the Infrared Absorption by Carriers in Semiconductors”, Phys. Rev. 99 (1955), pp.1901-1902
    [117] S.H. Brewer, S. Franzen, “Calculation of the electronic and optical properties of indium tin oxide by density functional theory”, Chemical Physics, 300 (2004) pp.285-293.
    [118] H.-N. Cui, V. Teixeira, A. Monteiro, “Microstructure study of indium tin oxide thin films by optical methods”, Vacuum, 67 (2002) pp. 589-594.
    [119] N. Mori, S. Ooki, N. Masubuchi, A. Tanaka, M. Kogoma, T. Ito, “Effects of postannealing in ozone environment on opto-electrical properties of Sn-doped In2O3 thin films”, Thin Solid Films 411 (2002) pp. 6-11.
    [120] L.R. Cruz, C. Legnani, I.G. Matoso, C.L. Ferreira, H.R. Moutinho, “Influence of pressure and annealing on the microstructural and electro-optical properties of RF magnetron sputtered ITO thin films”, Materials Research Bulletin, 39 (7-8) (2004) pp. 993-1003.
    [121] T.-C. Lin, S.-C. Chang, C.-F. Chiu, Annealing effect of ITO and ITO/Cu transparent conductive films in low pressure hydrogen atmosphere, Materials Science and Engineering: B, 129 (2006) pp.39-42.
    [122] D.-F. Lii, J.-L. Huang, I.-J. Jen, S.-S. Lin, P. Sajgalik, “Effects of annealing on the properties of indium-tin oxide films prepared by ion beam sputtering”, Surface and Coatings Technology, 192 (2005) pp.106-111.
    [123] F. Zhu, C.H.A. Huan, K. Zhang, A.T.S. Wee, “Investigation of annealing effects on indium tin oxide thin films by electron energy loss spectroscopy”, Thin Solid Films, 359 (2000) pp. 244-250.
    [124] 劉文海,’’LCD關鍵材料-銦的應用與市場前景’’,工業材料, 173 (2001) pp. 72-76。
    [125] 鄭淵升及黃振昌, ’’使用非晶質ITO中介層以改善在塑膠基板上濺鍍ITO薄膜之品質’’, 機械工業, 221 (2001) pp. 112-117。
    [126] 蔡裕榮及周禮君, ’’以溶膠凝膠法製備透明導電氧化物薄膜的探討’’,化學, 60:3 (2002) pp. 307-318。
    [127] Y. S. Jung, D. W. Lee, D. Y. Jeon,’’Influence of D.C. Magnetron Sputtering Parameters on Surface Morphology of Indium Tin Oxide Thin Films’’, Applied Surface Science, 221(2004) pp. 136-142.
    [128] L.-j. Meng, A. Macarico and R. Martins, ’’Study of annealed indium tin oxide films prepared by R.F. magnetron sputtering’’, Vacuum, 46 (1995) pp. 673-680.
    [129] J. R. Bellingham, W. A. Phillips, C. J. Adkins, “Intrinsic performance limits in transparent conducting oxides” Journal of Materials Science Letters, 11 (1992) pp. 263-265.
    [130] D C Paine, T Whitson, D Janiac, R Beresford, C. O. Yang, ” A study of low temperature crystallization of amorphous thin film indium–tin–oxide”, Journal of Applied Physics, 85 (1999) pp. 8445-8450.
    [131] S. Iwatsubo, “Temperature effect on structure and surface morphology of indium tin oxide films deposited by reactive ion-beam sputtering”, Vacuum, 80 (2006) pp.708-711.
    [132] D.V. Morgan, Y.H. Aliyu, R.W. Bunce, A. Salehi, “Annealing effects on opto-electronic properties of sputtered and thermally evaporated indium-tin-oxide films”, Thin Solid Films, 312 (1998) pp. 268-272.
    [133] W. G. Haines and R. H. Bube, “Effects of heat treatment on the optical and electrical properties of indium-tin oxide films ”, Journal of Applied Physics, 49 (1978) pp. 304-307..
    [134] D.-F. Lii, J.-L. Huang, I.-J. Jen, S.-S. Lin, P. Sajgalik, “Effects of annealing on the properties of indium-tin oxide films prepared by ion beam sputtering”, Surface and Coatings Technology, 192 (2005) pp. 106-111.
    [135] D. H. Zhang and H.L. Ma,” Scattering mechanisms of charge carroers in transparent counding oxide film”, Applied Physics. A 62 (1996) pp. 487-492.
    [136] Y.-G. Han, D.-H. Kim, J.-S. Cho, S.-K. Koh, Y.-S. Song, “Tin-doped indium oxide (ITO) film deposition by ion beam sputtering”, solar energy materials & solar cells 65 (2001) pp. 211-218.
    [137] John C. C. Fan and John B. Goodenough, “X-ray photoemission spectroscopy studies of Sn-doped indium-oxide films”, Journal of Applied Physics, 48 (1977), pp 3524-3531.
    [138] D. V. Morgan, A. Salehi, Y. H. Aliyu and R. W. Bunce, ’’Electro-Optical Characteristics of ITO Films: effect of thermal annealing’’, Renewable Energy 7 (1996) pp.205-208.
    [139] A. Jain, P. Sagar, R.M. Mehra, “Band gap widening and narrowing in moderately and heavily doped n-ZnO films”, Solid-State Electronics 50 (7-8) (2006) pp. 1420-1424
    [140] L.-j. Meng, A. Macarico, R. Martins, “Study of annealed indium tin oxide films prepared by rf reactive magnetron sputtering”, Vacuum 46 (1995) pp. 673-680.

    下載圖示 校內:立即公開
    校外:2008-01-17公開
    QR CODE