簡易檢索 / 詳目顯示

研究生: 蘇煒傑
Su, Wei-Chieh
論文名稱: Nb超薄膜中的超導性
Superconductivity in Nb Ultra-Thin Films
指導教授: 張泰榕
Chang, Tay-Rong
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 72
中文關鍵詞: 二維材料超導態電子-聲子耦合
外文關鍵詞: two-dimensional materials, Superconducting states, electron-phonon coupling
相關次數: 點閱:25下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在二維材料中的超導態預計將推動下一代電子技術的發展,使其成為現代凝聚態物理學的關鍵主題。一種方法是將三維超導材料轉變為二維超薄薄膜。在本研究中,我們使用密度泛函理論(DFT)研究了鈮(Nb)超薄薄膜中的超導轉變溫度(Tc)。我們的結果表明,隨著Nb(111)厚度的減小,Tc逐漸降低,這歸因於電子-聲子耦合的減弱。這項工作表明,製造純淨的超薄薄膜能夠顯著影響材料的超導性,為降低維度的材料工程開闢了新的機會。

    Superconducting states in two-dimensional materials are expected to drive the development of next-generation electronics, making them a critical topic in modern condensed matter physics. One approach is to transform a three-dimensional superconducting material into a two-dimensional ultra-thin film. In this study, we investigate the superconducting transition temperature (Tc) in Niobium (Nb) ultra-thin films using Density Functional Theory (DFT). Our results show that the Tc decreases as the thickness of Nb(111) is reduced, due to a weakening of the electron-phonon coupling. This work demonstrates that creating pure ultra-thin films can significantly impact material superconductivity, offering new opportunities for materials engineering in reduced dimensionality.

    中文摘要 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Cooper pair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Born-Oppenheimer approximation . . . . . . . . . . . . . . . . . . . . 6 1.3 Electron-Phonon coupling . . . . . . . . . . . . . . . . . . . . . . . . 9 1.4 Research Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.5 Experimental Literature Review . . . . . . . . . . . . . . . . . . . . . 15 1.6 Paper Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.1 Density Functional Theory . . . . . . . . . . . . . . . . . . . . . . . . 27 2.2 Density Functional Perturbation Theory . . . . . . . . . . . . . . . . 29 2.3 Hellman-Feynman Theory . . . . . . . . . . . . . . . . . . . . . . . . 31 2.4 Connected electron-phonon coupling . . . . . . . . . . . . . . . . . . . 33 2.5 Computational details . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.1 Superconducting Transition Temperature . . . . . . . . . . . . . . . . 37 3.2 λ and ωlog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.3 Eliashberg spectral function . . . . . . . . . . . . . . . . . . . . . . . 43 3.4 Phonon part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.5 Electron part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.6 Nb(100) Electron band . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.7 Nb(111) Electron band . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.8 Nb(110) Electron band . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

    [1] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Theory of Superconductivity, Physical Review 108, 1175–1204 (1957).
    [2] researchgate.net, John Bardeen, Robert Schrieffer and Leon Cooper .https://www.researchgate.net/figure...
    [3] J. G. Bednorz and K. A. M¨uller, Perovskite-type oxides – The new approach to high-Tc superconductivity, Science 237(4819), 1133–1139 (1987).
    [4] R. H. Blumberg and D. P. Seraphim, Effect of Elastic Strain on the Superconducting Critical Temperature of Evaporated Tin Films, J. Appl. Phys. 33, 163–168 (1962),doi:10.1063/1.1728478.
    [5] Stephen J. Blundell, Superconductivity: A Very Short Introduction, Oxford University Press, 1st edition, 2009,p.20.
    [6] M. M. Garland, Enhancement of Superconductivity in Thin Indium Films, Appl. Phys. Lett. 18, 60–62 (1971).
    [7] A. K. Geim and K. S. Novoselov, The rise of graphene, Nature Materials 6(3),183–191 (2007).
    [8] P. Giannozzi, S. de Gironcoli, P. Pavone, and S. Baroni, Ab initio calculation of phonon dispersions in semiconductors, Phys. Rev. B 43, 7231 (1991).
    [9] A. Haq and O. Meyer, Electrical and superconducting properties of rhenium thin films, Thin Solid Films 94, 119–132 (1982), doi:10.1016/0040-6090(82)90504-1.
    [10] J. J. Hauser and H. C. Theuerer, The Superconducting Transition, Reviews of Modern Physics 36, 856 (1964).
    [11] P. Hohenberg and W. Kohn, Inhomogeneous Electron Gas, Phys. Rev. 136, B864–B871 (1964).
    [12] Y. Liu, H. Zhang, X. Han, T. Wang, L. Wang, Z. Niu, J. Pan, Z. Lin, W. Peng,and Z. Li, Evolution of the upper critical field and superconducting vortex phase with thickness in PLD-grown Ta films, Supercond. Sci. Technol. 35, 055010 (2022).
    [13] P. Loeptien, L. Zhou, A. A. Khajetoorians, J. Wiebe, and R. Wiesendanger, Superconductivity of lanthanum revisited: enhanced critical temperature in the clean limit, J. Phys.: Condens. Matter 26, 425703 (2014).
    [14] sciencefacts.net, Meissner Effect .https://www.sciencefacts.net/meissner-effect.html.
    [15] M. S. M. Minhaj, S. Meepagala, J. T. Chen, and L. E. Wenger, Thickness dependence on the superconducting properties of thin Nb films, Phys. Rev. B 49, 15235–15242 (1994).[16] J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, and J. Akimitsu, Superconductivity at 39 K in magnesium diboride, Nature 410(6824), 63–64 (2001).
    [17] C. A. Neugebauer and R. A. Ekvall, Vapor-Deposited Superconductive Films of Nb, Ta, and V, J. Appl. Phys. 35, 547–553 (1964).
    [18] J. Noffsinger and M. L. Cohen, First-principles calculation of the electronphonon coupling in ultrathin Pb superconductors: Suppression of the tran-sition temperature by surface phonons, Phys. Rev. B 81, 214519 (2010), doi:10.1103/PhysRevB.81.214519.
    [19] Saylordotorg, Superconductors: Figure 12.28 .https://saylordotorg.github.io/text_general-chemistry-principles-patterns-and-applications-v1.0/s16-07-superconductors.html
    [20] J. C. Slater, A Simplification of the Hartree-Fock Method, Phys. Rev. 81(3), 385–390 (1951).
    [21] A. A. Teplov, M. N. Mikheeva, and V. M. Golyanov, Critical magnetic fields of superconducting films of technetium, Zh. Eksp. Teor. Fiz. 68, 1108–1116 (1975).
    [22] A. A. Teplov, M. N. Mikheeva, V. M. Golyanov, and A. N. Gusev, Superconducting transition temperature, critical magnetic fields, and the structure of vanadium films, Zh. Eksp. Teor. Fiz. 71, 1122–1128 (1976).
    [23] A. M. Toxen, Size Effects in Thin Superconducting Indium Films, Phys. Rev. 123, 442–449 (1961), doi:10.1103/PhysRev.123.442.
    [24] Lecture 17: Type II Superconductors, Fluxoid Quantization and Type II Superconductors. https://web.mit.edu/6.763/www/FT03/Lectures/Lecture17.pdf
    [25] H. E. Vogel and M. M. Garland, Superconductivity in Thin Indium Films, J. Appl. Phys. 38, 5116–5118 (1967), doi:10.1063/1.1709286.
    [26] S. A. Wolf, J. J. Kennedy, and M. Nisenoff, Effect of Elastic Strain on the Superconducting Properties of Nb Thin Films, J. Appl. Phys. 33(1), 163–164 (1962).
    [27] S. A. Wolf, J. J. Kennedy, and M. Nisenoff, Properties of superconducting rf sputtered ultrathin films of Nb, J. Vac. Sci. Technol. 13(1), 145–147 (1976).
    [28] C.-C. Yeh, T.-H. Do, P.-C. Liao, C.-H. Hsu, Y.-H. Tu, H. Lin, T.-R. Chang, S.-C. Wang, Y.-Y. Gao, et al., Doubling the superconducting transition temperature of ultraclean wafer-scale aluminum nanofilms, Phys. Rev. Materials 7, 114801 (2023), doi:10.1103/PhysRevMaterials.7.114801.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE