| 研究生: |
蘇崇毅 Su, Chung- Yi |
|---|---|
| 論文名稱: |
蜂巢狀波洛斯凱特觸媒用於合成氣燃燒反應之研究 Study on the Activities of Honeycomb-supported Perovskite Catalysts for Syngas combustion |
| 指導教授: |
翁鴻山
Weng, Hung-Shan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 123 |
| 中文關鍵詞: | Mars-Van Krevelen model 、甲烷燃燒 、Perovskite觸媒 、蜂巢狀觸媒 |
| 外文關鍵詞: | Methane combustion, Mars-Van Krevelen model, Monolith catalysts, Perovskite-type catalyst |
| 相關次數: | 點閱:79 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究是以研製高效能奈米級波洛斯凱特型(Perovskite-type)觸媒,用於合成氣燃燒為目標。採用檸檬酸溶膠凝膠法製備LaCoO3,用於甲烷燃燒反應;並以多種金屬部份取代La與Co對觸媒進行改質,期能提高其催化活性。在篩選出活性較佳的改質觸媒後,進行觸媒穩定性測試及動力學實驗,並求出甲烷燃燒反應之速率表示式。研究中,也藉由觸媒表面性質之鑑定(BET、XRD、SEM及TEM等),以瞭解觸媒之表面性質與觸媒活性間之關聯性。最後將篩選出活性最佳的波洛斯凱特型觸煤,披覆在蜂巢狀金屬和陶瓷載體上(事先以溶膠凝膠披覆一層γ-Al2O3)上,製成蜂巢狀擔體觸媒。
觸媒篩選的結果,發現活性最佳的觸媒是La0.7Ce0.3Co0.6Mn0.4O3,它可在約275℃讓甲烷起燃,CO的點燃溫度約在100℃,H2的點燃溫度約在125℃,合成氣各成份氣體在此觸媒的反應性為:CO>H2>CH4。製備觸媒時最適煅燒溫度是700℃。穩定性測試顯示,該觸媒在高溫或低溫皆具有良好的穩定性。觸媒的活性不會因為生成物的產生及積碳而造成觸媒活性衰退。由混合氣體之反應測試,發現CH4的轉化率會因CO或H2的存在而略為下降。也發現低濃度的硫化氫會使La0.7Ce0.3Co0.6Mn0.4O3此種觸媒產生毒化,且是不可逆的反應。將波洛斯凱特型觸媒(La0.7Ce 0.3Co0.6Mn0.4O3)擔載在蜂巢狀陶瓷上,披覆重量約為陶瓷擔體的2.6 %,厚度約為10 μm,製得之蜂巢狀陶瓷擔體觸媒在約400℃可將甲烷起燃。
利用微分型反應器,以La0.7Ce 0.3Co0.6Mn0.4O3觸媒進行甲烷氧化反應,評估動力模式之適用性。結果發現當氧氣過量時,Mars-Van Krevelen模式適合描述甲烷之氧化反應,根據該模式可推導出甲烷氧化反應之速率表示式:
r=(KRCCH4KOCO2)/(2KRCCH4+KOCCO2)
KR = 4.46×105 exp (-72.3/RT);Ea = 72.3 KJ/mol
KO = 3.80×105 exp (-79.1/RT);Ea = 79.1 KJ/mol
The main objective of this research is to prepare high efficiency perovskite-type catalysts for syngas combustion. With the aim of improving catalyst activity, we prepared lanthanum cobaltite LaCoO3 powders via the so called “citric-acid sol-gel method “, and investigated the influence of substituting of several kinds of metals in LaCoO3 perovskite on the activity towards the catalytic combustion of methane. After finding the best one for methane combustion, a kinetic study for finding an appropriate rate expression and stability test were carried out. In order to understand the correlation between physical properties and activities, catalysts were characterized by BET, XRD, SEM, and TEM. Finally, the best perovskite catalyst was washcoated on the cordierite and metallic honeycomb monoliths and their performances were compared.
Experimental results reveal that the best perovskite for methane combustion is La0.7Ce0.3Co0.6Mn0.4O3 catalysts, and the light-off temperature for CH4, CO, and H2 are 275℃, 100℃, and 125℃, respectively. Therefore, the activities of this catalyst for the components of syngas is in the order of CO>H2>CH4. The optimal calcination temperature for this catalyst is 700℃. And the stability test shows that this catalyst has a good durability no matter at high or low temperatures. The catalyst would not be deactivated by the production of the products and coke deposition in the reaction. Addition of H2 and CO to the feed slightly inhibited the activity of catalyst for methane combustion. In addition, this catalysts are poison-sensitive to low concentration of H2S in the feed. When the cordierite and metallic monolith were coated with perovskite catalyst (La0.7Ce0.3Co0.6Mn0.4O3), the loading percentages of active species, based on monolithic support, was about 2.6 %, and the thickness was about 10 μm. The light-off temperature of methane combustion over both honeycomb monoliths coated with perovskite catalysts is 400℃.
The oxidation kinetics of methane over La0.7Ce0.3Co0.6Mn0.4O3 catalyst was carried out in a differential reactor. The results show that the Mars–Van Krevelen model could satisfactorily fit the experimental kinetic data when excess oxygen was utilized. The rate expression of methane combustion derived from this model is as follows:
r=(KRCCH4KOCO2)/(2KRCCH4+KOCCO2)
KR = 4.46×105 exp (-72.3/RT);Ea = 72.3 KJ/mol
KO = 3.80×105 exp (-79.1/RT);Ea = 79.1 KJ/mol
1. 經濟部能源局94年度能源政策白皮書
2. Groppi, G., Tronconi, E., and Forzatti, P., Applied Catalysis A: General, 138(2), 177 (1996).
3. Forzatti, P., Groppi, G., Catalysis today, 54, 165 (1999).
4. Andrae, J.C.G., D. Johansson, M. Bursell, R. Fakhrai, J. Jayasuriya, A. Manrique Carrera, Applied Catalysis A: General, 293, 129 (2005).
5. Liang, J. J., and Weng, H.S., J. Catal. , 140, 302 (1993).
6. Chang, C. C., Wemg, H.S., Ind. Eng. Chem. Res., 24, 267 (1993).
7. Ching-Huei Wang, Chun-liang Chen, Hung-Shan Weng, Chemosphere, 57, 1131 (2004).
8. Chang, C. C., Wemg, H.S., Ind. Eng. Chem. Res., 31,1651 (1992).
9. Chang, C. C., Wemg, H.S.,Ind. Eng. Chem. Res., 32, 2930 (1993).
10. Shiaw-Tzong Shen and Hung-Shan Weng, Ind. Eng. Chem. Res., 37, 2654 (1998).
11. Shiaw-Tzong Shen and Hung-Shan Weng, J. Chin. Inst. Chem. Eng., 29, 211 (1998).
12. S. Cimino, A. Di Benedetto, R. Pirone, G. Russo, Catalysis Today, 83, 33 (2003).
13. Eguchi, K. and Arai, H., “Recent Advanced in High Temperature Catalytic Combustion”, Catalysis Today, 29(1-4), 379 (1996).
14. Charles N. Satterfield, “Heterogeneous Catalysis in Industrial Practice,” McGraw-Hill, 2nd
15. T. V. Choudhary, S. Banerjee, V. R. Choudhary, Applied Catalysis A: General, 234, 1 (2002).
16. C.Mateos-Pedrero, S.R.G. Garrazán, P.Ruiz, Catalysis today, 112, 107 (2006).
17. Lílian Maria Tosta Simpício, Soraia Texeira Brandão, Emerson Andeade Sales, Luca Lietti, Francois Bozon-Verduraz, Applied catalysis B: environmental, 63, 9 (2006).
18. O. Demoulin, I. Seunier, M. Navez, P. Ruiz, Applied catalysis A: General, 300, 41 (2006).
19. Baohua Yue, Renxian Zhou, Yuejuan Wang, Xiaoming Zheng, Applied surface science, 250,5820 (2006).
20. O. Demoulin, M. Navez, P. Ruiz, Applied catalysis A:General, 295, 59 (2005).
21. Kohji Narui, Hirohide Yata, Keiichi Furuta, Akio Nishida, Yasuhiko, Tokuo Matsuzaki, Applied Catalysis A: General, 179, 165 (1999).
22. Christian A. Müller, Marek Maciejewski, René A. Koeppel, Alfons Baiker, Catalysis Today, 47, 245 (1999).
23. Sichem Guerrero, Paulo Araya, Eduardo E. Wolf, Applied Catalysis A: General,.298, 243 (2006).
24. G.K. Boreskov, in: J.R. Anderson, M. Boudart (Eds.), Catalysis (Science and Technology), vol. 3, Springer-Verlag, Berlin, Heidelburg, New York, 113 (1982).
25. G.I. Golodets, Heterogeneous Catalytic Reactions Involving Molecular Oxygen, Studies in Surface Science and Catalysis, vol. 15, Elsevier, Amsterdam, 437 (1983).
26. S. Pavlova, N. Sazonova, V. Sadykov, S. Pokrovskaya, V. Kuzmin, G. Alikina, A. Lukashevich, E.Gubanova, Catalysis today, 105, 367 (2005).
27. Ma Lijing, Yang Dong, Li Yingxia, Bai Shouli, Chen Aifan, Luo Ruizian, Progress in natural science, 15(11), 1053 (2005).
28. D. Terribile, A. Trovarelli, C. de Leitenburg, A. Primavera, G. Dolcetti, Catal. Today, 47, 133 (1999).
29. J. Kirchnerova, M. Alifanti, B. Delmon, Appl. Catal. A: Gen., 231, 65 (2002).
30. Jiaxin Wang, Lingjun Chou, Bing Zhang, Huanling Song, Jian Yang, Jun Zhao, Shuben Li, Catalysis Communications, 7, 59 (2006).
31. Teraoka Y, Wei M D, Kagawa S. J Master Chem, 8, 2323 (1998).
32. Ziyi Zhong, Kaidong chen, Yong Ki, Qijie Yan, Applied Catalysis A: General, 156, 29 (1997).
33. Davide Ferri, Lucio Forni, Applied Catalysis B: Environmental, 16, 119 (1998).
34. Guido Saracco, Francesco Geobaldo, Giancarlo Baldi, Applied catalysis B: Environmental, 20, 277 (1999).
35. R. Leanza, I. Rossetti, L. Fabbrini, C.Oliva, L. Forni, Applied catalysis B: Environmental, 28, 55 (2000).
36. Kwang Sup Song, Danilo Klvana, Jitka Kirchnerova, Applied catalysis A: General, 213, 113 (2001).
37. Yolanda Ng Lee, Rochel M. Lago, José Luis G. Fierro, Vicente Corté, Fernanado Sapiña, Eduardo Martínez, Applied Catalysis A: General, 207, 17 (2001).
38. V.C.Belessi, A.K. Ladavos, P.J. Pomonis, Applied catalysis B: Envitonmental, 31, 183 (2001).
39. M. Alifanti, R. Auer, J. Kirchnerova, F. Thyrion, P. Grange, B. Delmon, Applied catalysis B: Environmental, 41, 71 (2003).
40. JIA Lishan, Qin Yonging, Ma Zhi, Ding Tong, He Fei, Liang Zhencheng, Chinese journal of catalysis, 25(1), 19 (2004).
41. M. Alifanti, J. Kirchnerova, B. Delmon, D, Klvava, Applied Catalsis A: General, 262, 167 (2004).
42. J. Kirchnerova, D. Klvana, Catalysis letters, 67, 175 (2000).
43. Qing Xu, Duan-ping, Huang, Wen Chen, Hao Wang, Bi-tao Wang, Run-zhang Yuan, Applied surface science, 228, 110 (2004).
44. Rui Ran, Xiaodong Wu, Chengzhe Quan, Duan Weng, Solid State Ionics, 176, 965 (2005).
45. M. Alifanti, N. Blangeois, M. Florea, B. Delmon, Applied catalysts A: General, 280, 255 (2005).
46. Twigg, M.V.; Wilkins, A.J.J. In Structured Catalyst and Reactors; Cybulski, A.; Moulijn, J.A., Eds.; Marcel Dekker: New York, 91 (1998).
47. Beretta, A.; Tronconi, E.; Groppi, G.; Forzatti, P. In Structured Catalyst and Reactors; Cybulski, A.; Moulijn, J.A., Eds.; Marcel Dekker: New York, 121 (1998).
48. Kapteijn, F.; Heiszwolf, J.J.; Nijhuis, T.A.; Moulijn, J.A. CATTECH, 3, 24 (1999).
49. John W. Genus, Joep C. van Giezen, “Monoliths in catalytic oxidation”, Catalysis today, 47, 169 (1999).
50. T. Alexander Nijhuis, Annemarie E. W. Beers, Theo Vergunst, Ingrid Hoek, Freek Kapteijn, and Jacob A. Moulijn, Catalysis reviews, 43(4), 345 (2001).
51. Vasso Blachou, Diogenia Goula, Constantine Philippopoulos, Ind. Eng. Chem. Res., 31, 364 (1992).
52. Magali Ferrandon, Magnus Berg, Emilia Björnbom, Catalysis today, 53, 647 (1999).
53. Michela Valentini, Gianpiero Groppi, Cinzia Cristiani, Marinella Levi, Enrico Tronconi, Pio Forzatti, Catalysis Today, 69, 307 (2001).
54. Wu Xiaodong, Chen Huapeng, Xu Luhua, Weng Duan, Journal of the Chinese rare earth society, 20, 68 (2002).
55. Su Zhao, Jizhong Zhang, Duan Weng, Xiaodong Wu, Surface and coating technology, 167, 97 (2003).
56. Yang Liying, Li Chengyue, Liu Hui, Chinese Journal of Catalysis, 25(4), 283 (2004).
57. Xiaodong Wu, Duan Weng, Su Zhao, Wei Chen, Surface & coatings technology, 190, 434 (2005).
58. E. Wloch, A. Lukaszczyk, Z. Zurek, B. Sulikowski, Catalysis Today, 114, 231 (2006).
59. Xiaodong Wu, Duan Weng, Zhen Chen, Luhua Xu, Surface and coating technology, 140, 231 (2001).
60. Huang Ying, Shen, Meiqing, Wang Jun, Jia Liwei, Rare Metals, 24(4), 306 (2005).
61. Qi Wei, Zeng-Xiang Chen, Zuo-Ren Nie, Ya-Li Hao, Jimg-Xia Zou, Zhi-Hong Wang, Journal of Alloys and Compounds, 396, 283 (2005).
62. Zuo Xiao-qing, Zhou Yun, Mei Jun, Zhang Xi-qiu, Sun Jia-lin, Materials for mechanical engineering, 30(10), 34 (2006).
63. Ronald M. Heck, Suresh Gulati, Robert J. Farrauto, Chemical Engineering journal, 82 , 149 (2001).
64. Th. Vergunst, F. Kapteijn, J.A. Moulijn, Carbon, 40, 1891 (2002).
65. Theo Vergunst, Marco J. G. Linders, Freek Kapteijn, and Jacob A. Moulijn, Catalysis reviews, 43(3), 291 (2001).
66. Theo Vergunst, Freek Kapteijn, Jacob A. Moulijn, Applied Catalysis A: General, 213, 179 (2001).
67. 徐菁卿, 蜂巢狀奈米金屬氧化物觸媒催化以氫為還原劑之一氧化氮還原反應, 國立成功大學化學工程學系碩士論文 (2005)
68. Jon G. McCarty, M. Gusman, D. M. Lowe, D. L. Hildenbrand, K. N. Lau, Catalysis today, 47, 5 (1999).
69. P. Ciambelli, V. Palma, S. F. Tikhov, V. A. Sadykov, L. A. Isupova, L. Lisi, Catalysis today, 47, 199 (1999).
70. Laura Fabbrini, Ilenia Rossetti, Lucio Forni, Applied Catalysis B: Environmental, 44, 107 (2003).
71. L. Fabbrini, I. Rossetti, L. Forni, Applied catalysis B: environmental, 56, 221, (2005).
72. L. Fabbrini, I. Rossetti, L. Forni, Applied catalysis B: Environmental, 63, 131 (2006).
73. S. Cimino, G. Landi, L. Lisim G. Russo, Catalysis Today, 117, 454 (2006).
74. Barbara Kucharczyk, Wlodzimierz Tylus, Leszek Kepinski, Applied Catalysis B: Environmental, 49, 27 (2004).
75. Chen Nengzhan, Ji Shengfu, Yin Fengxiang, Zhao Liping, Wang Wei, Li Chengyue, Liu Hui, Chinese journal of catalysis, 26(11), 1017 (2005).
76. Fengxiang Yin, Shengfu Ji, Nengzhan Chen, Meili Zhang, Liping Zhao, Chengyue Li, Hui Liu, Catalysis Today, 105, 372 (2005).
77. Wang Wei, Ji Sheng-fu, Yin Feng-xiaang, Lu Ze-xiang, Li Cheng-yue, Liu Hui, Journal of molecular catalysis (china), 20(6), 525 (2006).
78. Fengxiang Yin, Shengfu Ji, Biaohua Chen, Liping Zhao, Hui Liu, Chengyue Li, Applied catalysis B: Environmental, 66,265, (2006).
79. Fengxiang Yin, Shengfu Ji, Biaohua Chen, Zhongliang Zhou, Hui Liu, Chengyue Li, Applied catalysis A: General, 310, 164 (2006).
80. Monica Popa, Johannes Frantti, Masato Kakihana, Solid state Ionics, 154-155, 135 (2002).
81. Wein-Duo Yang, Yen-Hwei Chang, Shu-Hui Huang, Journal of the European Ceramic Society, 25, 3611 (2005).
82. T. A. Nijhuis, M. T. Kreutzer, A. C. Romijn, F. Kapteijn, J. A. Moulijn, Chemical Engineering Science, 56, 823 (2006).
83. Monica Popa, Masato, Kakihana, Solid state ionics, 151, 251 (2002).
84. Zwinkels M. F. M., Jaras S. G., Menon P. G., “Catalytic materials for high-temperature combustion”, Catal. Rev.-Sci. Eng., 35(3), 319 (1993).
85. Jitka Kirchnerova, Danilo Klvana, Solid State Ionics, 123, 307 (1999).
86. C. Tofan, D. Klvana, J. Kirchnerova, Applied Catalysis A: General, 223, 275 (2003).
87. H. S. Fogler, Elements of Chemical Reaction Engineering, Prentice-Hall, 1986
88. T. Seiyama, Catal. Rev. Sci. Eng., 34, 281 (1992).
89. T. Seiyama, N. Yamazoe, E. Eguchi, Ind. Eng. Chem. Prod. Res. Dev., 24, 19 (1985).
90. L.G. Tejuca, J.L.G. Fierro, J.M.D. Tascon, Adv. Catal., 36, 237 (1989).
91. A.K. Ladavos, P.J. Pomonis, J.C.S. Faraday Trans., 88, 2557 (1992 ).
92. M. Stojanovic, C.A. Mins, H. Moudallal, Y. L. Yang, and A.J. Jacobson, Journal of Catalysts, 166, 324 (1997).