| 研究生: |
蔡世鴻 Tsai, Shih-Hung |
|---|---|
| 論文名稱: |
以質子交換濕式蝕刻法製作嵌入式聲波元件之研究 Study of Recessed-SAW Devices Fabrication by Proton-Exchange Wet-Etching Technology |
| 指導教授: |
洪茂峰
Houng, Mau-Phon 王永和 Wang, Yeong-Her |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 英文 |
| 論文頁數: | 136 |
| 中文關鍵詞: | 嵌入式 、聲波 、質子交換 、濕式蝕刻 |
| 外文關鍵詞: | recessed, SAW, proton-exchange, wet-etching |
| 相關次數: | 點閱:140 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
自1980年以來,表面聲波(SAW)元件已經被廣泛的應用與製造,對於聲光元件與聲電元件的發展扮演重要的角色,就目前的趨勢來說,隨著移動式通訊系統越來越普及,整合型的元件及多功能的元件的需求也日益廣泛,在高頻方面的應用,許多新的設計方法或是新的壓電材料相繼被發展出來,以聲波元件與半導體的整合為例:相關器(correlator)與卷積器(convolver)在信號處理方面就很受到歡迎。然而,這類聲電波整合型元件所利用的直接鍵結(direct bonding)技術卻有許多的缺點,包括像良率不高、可靠度問題、鍵結強度弱及複雜的製作過程等,均限制了其發展性。因此,在本論文中,首先提出使用質子交換濕式蝕刻法(proton-exchange wet-etching)來製作嵌入式聲波(Recessed-SAW)元件,並將之與矽基板作直接鍵結,實驗結果證明元件的特性佳、鍵結強度高且製作簡單,具有良好的發展性。
在本研究中,吾人首先採用耦合模型 (coupling-of-mode, COM model)來建立濾波器的設計準則,針對個別的設計參數包括指叉對數、延遲距離、傳輸距離、重疊長度、基板材料等等,並將重量負載 (mass loading) 效應與耦合(coupling) 效應納入計算之中,模擬的結果可以準確的得知濾波器的特性,大幅縮短重新設計結構或更換材料的研發時間與成本。
接著,吾人使用質子交換濕式蝕刻法來製作嵌入式聲波元件,質子交換法常見於波導方面的應用,鮮少使用在濾波器方面,早期針對在鈮酸鋰(LiNbO3)基板上製作嵌入式的結構相當困難,因為乾式蝕刻法的蝕刻速率很低,製作出來的表面粗糙不均勻,而未經質子交換過程的濕式蝕刻法更是無法應用在蝕刻基板上,因此吾人提出結合上述兩種方式並利用鈮酸鋰的材料特性,使用背面曝光法(back-illumination)來製作嵌入式指叉(recessed interdigital transducer)結構,成功地製作出品質好、特性佳、製程簡單的嵌入式聲波元件,從實驗結果可以知道質子交換後的濕式蝕刻速率約100 A/min,而質子交換時間越久,蝕刻表面會呈現越粗糙,進而影響到元件的特性。
完成的嵌入式聲波元件由於指叉狀結構不易受到外在環境影響,因此在與矽基板作直接鍵結的時候,仍然可以保有良好的特性與較高的鍵結強度。在本論文中,硫酸是最合適的親水性配方,兩種材料在鍵結之後經過100℃熱處理可以得到相當大的鍵結強度(> 20 MPa),而嵌入式聲波元件在經過親水性處理與鍵結之後,其特性還是維持的相當不錯,證明可以實際應用在整合型元件上。
另外,對於製作完成的64o Y-X嵌入式鈮酸鋰基板特性,吾人也針對傳輸損失(propagation loss)、波速(phase velocity)、體波(bulk wave)效應、頻率溫度係數(temperature coefficient of freqneucy)及內部反射(internal reflection)效應等進行研究,採用之前所建立的模型可以了解到當指叉電極膜厚越厚傳輸損失越大,必須藉由改變切角度數才能解決;隨著蝕刻深度增加,品質不良的結構會造成波散射使得波速降低;本研究採用磨砂法(sand-blasting)來去除不同成分的體波,從實驗結果可以發現到表面薄覆蓋層體波(surface skimming bulk wave)的存在;此外從理論分析中調整不同的金屬膜厚與蝕刻深度間的關係,可以把內部反射效應降到最低,以本研究之最佳值而言,採用膜厚1000 A的金屬電極,需要約800-900 A的蝕刻深度,而實驗的結果也證明在這一個條件之下的元件特性最好;至於嵌入式結構還有一項優點,那就是改善64o Y-X LiNbO3基板的頻率溫度係數,從-85.5 ppm/℃提升至-61.4 ppm/℃。
Recently, the needs for piezoelectric devices have been greatly increasing with the rapid growth of mobile communication systems. The requirements for the devices have been widely spreading and becoming more critical. In order to satisfy these requirements, not only new designing methods but also new piezoelectric materials have to be brought into practice. For example, SAW-semiconductor coupled devices, such as convolvers and correlators, are promising for signal processing. However, the drawbacks of these bonding technologies would be a lack of mass productivity, reliability, tensile strength weakness, poor yield and complicated fabrication processes involved. In this dissertation, we have proposed the improved method to fabricate the Recessed-SAW device and then applied to integrate semiconductor device into one chip by the direct bonding technique.
At first, we created the design criterion of the SAW devices by using the coupling-of-modes model. The simulated results indicate that the device performances are appeared by changing several variable parameters such as overlaps, transfer distance, number of interdigital transducer (IDT) pairs and piezoelectric materials exactly. It is very helpful for us to shorten the cost and time-consuming in some specific researches.
Subsequently, an improved method for fabricating recessed-structure SAW filters is reported. Etch rates of normally slow-to-etch LiNbO3 are enhanced by proton exchange (PE) pretreatment. It was observed for PE times for a long time, substrate surface damage occurred during the subsequent etching step. Structures fabricated by the proposed method have been shown to have controllable groove depth, smooth etched surfaces and sharp edges. The fabricated SAW device was demonstrated to have a good performance.
After that, an optimal method for fabricating the Recessed-SAW device bonded with silicon substrate has been presented. Experimental results indicate that the hydrophilic surface can be obtained using the H2SO4-based solutions, and the heating processes about 100℃ are also effective to obtain the tight bonding force. The Si/Recessed-SAW device was demonstrated to perform as well as the original Recessed-SAW device and to be useful in fabricating integrated devices.
Based on the above studies, we have also investigated the propagation characteristics of the 64o Y-X recessed substrate. The calculated propagation loss increases with increasing electrode thickness. The internal reflection can be reduced to almost zero by controlling the metal film-thickness and groove depths. In our experiments, the 1000 A Al film-thickness needs 800-900 A groove depth. In addition, the surface skimming bulk wave can be found by sand-blasting treatment. The measured temperature coefficient of frequency of Recessed-SAW is -61.4 ppm/℃ which is better than the Non-Recessed-SAW with -85.5 ppm/℃.
Combining all the experimental results in this dissertation, this device with its good performance and suitability to needs of increased miniaturization in mixed-material ICs and hybrid devices makes significantly probable its expanded use.
References
[1] L. Rayleigh, "On waves propagating along the plane surface of an elastic solid", Proc. Lodon Math. Soc., vol.7, pp. 4-11, 1885.
[2] R. M. White and F. W. Voltmer, "Direct piezoelectric coupling to surface elastic waves", Appl. Phys. Lett., vol. 17, pp. 314-316, 1965.
[3] R. C. Williamson, "Case studies of successful surface-acoustic-wave devices", IEEE Ultrasonic Symp., pp. 460-468, 1977.
[4] C. S. Hartmann, "System impact of modern Rayleigh wave technology", in E. A. Ash and E. G. S. Faige, Rayleigh-Wave Theory and Applications, pp. 238-253, 1985.
[5] M. Lewis, "Surface skimming bulk waves, SSBW", IEEE Ultrasonic Symp., pp. 744-752, 1977.
[6] C. N. Helmick, D. L. White, and K. M. Lakin, "Deep bulk acoustic wave devices utilizing interdigitial transducers", IEEE Ultrasonic Symp., pp. 280-285, 1981.
[7] K. Hashimoto and M. Yamaguchi, "Delta function modal analysis of SSBW spurious response in SAW devices", IEEE Ultrasonic Symp., pp. 639-644, 1993.
[8] C. K. Campbell, Surface Acoustic Wave Devices for Mobile and Wireless Communications, Academic Press, USA, 1998.
[9] K. Yahanouchi and M. Takeuchi, "Applications for piezoelectric leaky surface waves", IEEE Ultrasonic Symp., pp. 11-18, 1990.
[10] J. R. Mileham, S. J. Perton, C. R. Abernathy, J. D. Mackenzie, R. J. Shul, and S. P. Kilcoyne, "Wet chemical etching of AlN", Appl. Phys. Lett., vol. 67, pp. 1119-1121, 1995.
[11] P. Kung, A. Saxler, X. Zhang, D. Walker, T. C. Wang, and I. Ferguson et al, "High quality AlN and GaN epilayers grown on ( 00 -1) sapphire, (100), and (111) silicon substrates", Appl. Phys. Lett., vol. 66, pp. 2958-2960, 1995.
[12] J. D. Mackenzie, C. R. Abernathy, S. J. Pearton. V. Krishnamoorthy, S. Bharatan, and K. S. Jones et al, "Growth of AlN by metalorganic molecular beam epitaxy", Appl. Phys. Lett., vol. 67, pp. 253-255, 1995.
[13] K. S. Stevens, M. Kinniburgh, A. F. Schwartzman, A. Ohtahi, and R. Beresford, "Demonstration of a silicon field-effect transistor using AlN as the gate dielectric", Appl. Phys. Lett., vol. 66, pp. 3179-3181, 1995.
[14] S. Yoshida. S. Misawa, and S. Gonda, "Properties of AlxGa1-xN films prepared by reactive molecular beam epitaxy", J. Appl. Phys., vol. 53, pp. 6844-6848, 1982.
[15] W. J. Meng, J. A. Sell, G. L. Eesley, and T. A. Perry, "Measurement of intrinsic stresses during growth of aluminum nitride thin films by reactive sputter deposition", J. Appl. Phys., vol. 74, pp. 2411-2414, 1993.
[16] M Miyauchi, Y. Ishikawa, and N. Shibata, "Growth of aluminum nitride films on silicon by electron-cyclotron-resonance-assisted molecular beam epitaxy", Jpn. J. Appl. Phys., vol. 31, pp. 1714-1717, 1993.
[17] R. F. Milsom, N. H. C. Reilly, and M. Redwood, The Interdigital transducer in surface wave filters, Wiley, pp. 55-108, 1977.
[18] R. F. Milsom, N. H. C. Reilly, and M. Redwood, "Analysis of generation and detection of surface and bulk acoustic waves by interdigital transducers", IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 24, pp. 147-166, 1977.
[19] J. J. Campbell and W. R. Jones, "A method for optimal crystal cuts and propagation directions for excitation of piezoelectric surface waves", IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 15, pp. 209-217, 1968.
[20] K. A. Ingebrigtsen, "Surface waves in piezoelectrics", J. Appl. Phys., vol. 40, pp. 2681-2686, 1969.
[21] G. Kovacs, M. Anhorn, H. E. Engan, G. Visintini, and C. C. W. Rupple, "Improved material constants for LiNbO3 and LiTaO3", IEEE Ultrasonic Symp., pp. 435-438, 1990.
[22] J. G. Gualtieri, J. A. Kosinski, and A. Ballato, "Piezoelectric materials for acoustic wave applications", IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 41, pp. 53-59, 1994.
[23] F. S. Hickernell, "The experimental SAW propagation characteristics of LiNbO3 and LiTaO3 with free and metallized surfaces", IEEE Ultrasonic Symp., pp. 105-108, 2001.
[24] K. Y Hashimoto, Surface acoustic wave devices in telecommunications, Springer, pp. 176-179, 2000.
[25] H. Shimizu, Y. Suzuki, and T. Kanda, "Love-Type-SAW resonator of small size with low capacitance ratio and its application to VCO", IEEE Ultrasonic Symp., pp. 103-108, 1990.
[26] Y. Shimizu and M. Tanaka, "A new cut of quartz for SAW devices with extremely small temperature coefficient by leaky surface wave", Electronics and Communications in Japan, vol. 69, pp. 48-56, 1986.
[27] C. C. W. Rupple, W. Ruile, G. Scholl, K. Ch. Wagner, and O. Manner, "Review of models for loss-loss filter design and applications", IEEE Ultrasonic Symp., pp. 313-324, 1994.
[28] M. Buchner, W. Ruile, A. Dietz, and R. Dill, "FEM analysis of the reflection coefficient of SAWs in an infinite periodic array", IEEE Ultrasonic Symp., pp. 371-375, 1991.
[29] U. Rosler, D. Cohrs, A. Dietz, G. Fischerauer, W. Ruile, and P. Russer et al, "Determination of leaky SAW propagation, reflection and coupling on LiTaO3", IEEE Ultrasonic Symp., pp. 247-250, 1995.
[30] T. Sato and H. Abe, "Propagation of longitudinal leaky surface acoustic waves under periodic metal grating structure on lithium tetraborate", IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 45, pp. 394-408, 1998.
[31] P. Ventura, J. Desbois, and L. Boyer, "A mixed FEM / analytical model of the electrode mechanical perturbation for SAW and PSAW propagation", IEEE Ultrasonic Symp., pp. 205-208, 1993.
[32] P. Ventura, J. M. Hode, and M. Solal, "A new efficient combined FEM and periodic Green's function formalism for the analysis of periodic SAW structures", IEEE Ultrasonic Symp., pp. 263-268, 1995.
[33] P. Ventura and J. M. Hode, "A new accurate analysis of periodic IDTs built on conventional orientation on quartz", IEEE Ultrasonic Symp., pp. 139-142, 1997.
[34] K. Hashimoto and M. Yamaguchi, "Precise simulation of surface transcerse wave devices by discrete Green function theory", IEEE Ultrasonic Symp., pp. 253-258, 1994.
[35] K. Hashimoto, G. Endoh, and M. Yamaguchi, "Coupling-of-modes modeling for fast and precise simulation of leaky surface acoustic wave devices", IEEE Ultrasonic Symp., pp. 251-256, 1995.
[36] K. Hashimoto and M. Yamaguchi, "General-purpose simulator for leaky surface acoustic wave devices based on coupling-of-modes theory", IEEE Ultrasonic Symp., pp. 117-122, 1996.
[37] R. C. Peach, "A general Green function analysis for SAW devices", IEEE Ultrasonic Symp., pp. 221-225, 1995.
[38] V. P. Plessky and T. Thorvaldsson, "Periodic Green's function analysis of SAW and leaky SAW propagation in a periodic system of electrodes on a piezoelectric crystal", IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 42, pp. 280-293, 1995.
[39] J. Koskela, V. P. Plessky, and M. S. Salomaa, "Suppression of the leaky SAW attenuation with heavy mechanical loading", IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 45, pp. 439-449, 1998.
[40] A. Isobe, M. Hikita, and K. Asai, "Propagation characteristics of longitudinal leaky SAW in Al-grating structure", IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 46, pp. 849-855, 1999.
[41] V. P. Plessky, "SAW impedance elements", IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 42, pp. 870-875, 1995.
[42] T. Matsuda, H. Uchishiba, O. Ikata, T. Nishihara, and Y. Satoh, "L and S band low-loss filters using SAW resonators", IEEE Ultrasonic Symp., pp. 163-167, 1994.
[43] C. S. Hartmann, P. V. Wright, R. J. Kansy, and E. M. Garber, "An analysis of SAW interdigital transducers with internal reflections and the application to the design of single-phase unidirectional transducers", IEEE Ultrasonic Symp., pp. 40-45, 1982.
[44] S. Datta, B. J. Hunsinger, and D. C. Malocha, "A generalized model for periodic transducers with arbitrary voltages", IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 26, pp. 243-245, 1979.
[45] J. Koskela, V. P. Plessky, and M. M. Salomaa, "COM parameter extraction from computer experiments with harmonic admittance of a periodic array of electrodes", IEEE Ultrasonic Symp., pp. 119-122, 1997.
[46] W. R. Smith, H. M. Gerard, J. H. Collins, T. M. Reeder, and H. J. Shaw, "Analysis of interdigital surface wave transducers by use of an equivalent circuit model", IEEE Trans. Microwave Theory and Tech., vol. 17, pp. 856-864, 1969.
[47] V. P. Plessky, C. S. Hartmann, and J. Koskela, "Suppression of the leakage effect in 64°YX-LiNbO3 for thick aluminum electrodes", IEEE Ultrasonic Symp., pp. 1603-1606, 1996.
[48] W. R. Smith, "Studies of microwave acoustic transducers and dispersive delay lines", Ph.D. dissertation, Department of Applied Physics, Standford University, U.S.A., 1969.
[49] P. S. Cross and R. V. Schmidt, "Coupled surface-acoustic-wave resonators", Bell System Tech. Journal, vol. 56, pp. 1447-1481, 1977.
[50] S. H. Tsai, I. T. Tang, M. P. Houng, and Y. H. Wang, "A design rule of surface acoustic wave filter," J. Mat. Sci. & Eng., vol. 34, pp. 231-238, 2002.
[51] I. T. Tang, F. L. Jenq, J. H. Horng, M. P. Houng, and Y. H. Wang, "A Novel Microwave Microstrip Surface Acoustic Wave Filter with Gigahertz Band Low-Loss Wide Bandwidth for Broad Spectrum Communication System," Jpn. J. Appl. Phys., vol. 41, pp. 2974-2977, 2002.
[52] K. Hohakawa, K. Koh, C. Kaneshiro, Y. Aoki, and C. Hong, "Fabrication process for semiconductor bonded SAW devices," IEEE Ultrasonic Symp., pp. 301-304, 1999.
[53] K. Eda, K. Onishi, H. Sato, Y. Taguchi, and M. Tomita, "Direct bonding of piezoelectric materials and its applications," IEEE Ultrasonics Symp., pp. 299-309, 2000.
[54] C. Kaneshiro, S. Noge, C. Hong, K. Koh, Y. Aoki, and K. Hohkawa, "Fabrication of SAW device coupled with semiconductor," IEEE Ultrasonics Symp., pp. 357-360, 2000.
[55] A. Yuhara, T. Mizutani, N. Hosaka, J. Yamada, and S. Kobayashi, "Dry process technology for high frequency SAW devices", IEEE Ultrasonics Symp., pp. 343-349, 1989.
[56] Z. Bei, S. Forouhar, S. Huang, and W. Chang, "C2F6 reactive ion-beam etching of LiNbO3 and Nb2O5 and their application to optical waveguides", J. Lightwave Technol., vol. 2, pp. 528-530, 1984.
[57] M. Belanger and G. Yip, "A novel Ti:LiNbO3 ridge waveguide linear mode confinement modulator fabricated by reactive ion-beam etching", J. Lightwave Technol., vol. 5, pp. 1252-1257, 1987.
[58] A. Yuhara, T. Mizutani, N. Hosaka, J. Yamada, and A. Iwama, "Damage free Al reactive-ion-etching for high frequency SAW devices", IEEE/CHMT Japan Symp., pp. 176-179, 1989
[59] F. K. Christensen and M. Mullenborn, "Improved laser processing of lithium niobate", IEEE Ultrasonic Symp., pp. 391-396, 1994.
[60] H. Haga, M. Izutsu, and T. Sueta, "LiNbO3 traveling-wave light modulator/switch with an etched groove", IEEE J. Quantum Electron., vol. QE-22, pp. 902-906, 1986.
[61] C. W. Piit, "Properties of lithium niobate," INSPEC, London, 1989.
[62] B. L. Sopori, C. M. Phillips, and W. W. C. Chang, "Efficient optical waveguide coupler," Appl. Opt., vol. 19, pp. 790-801, 1980.
[63] C. L. Lee and C. L. Lu, "CF4 plasma etching on LiNbO3," Appl. Phys. Lett., vol. 35, pp. 756-758, 1979.
[64] F. Laurell, J. Webjorn, G. Arvidsson, and J. Holmberg, "Wet etching of proton-exchanged lithium niobate - A novel processing technique," J. Lightwave Technol., vol. 10, pp. 1606-1069, 1992.
[65] R. S. Cheng, W. L. Chen, and W. S. Wang, "Mach-Zehnder modulators with lithium niobate ridge waveguides fabricated by proton-exchange wet etch and nickel indiffusion," IEEE Photon. Technol. Lett., vol. 7, pp. 1282-1284, 1995.
[66] H. J. Lee and S. Y. Shin, "Lithium niobate ridge waveguides fabricated by wet etching," Electron. Lett., vol. 31, pp. 268-269, 1995.
[67] R. S. Cheng, T. J. Wang, and W. S. Wang, "Wet-etched ridge waveguides in y-cut lithium niobate," J. Lightwave Technol., vol. 15, pp. 1880-1887, 1997.
[68] C. C. Cheng, "Properties of surface acoustic wave in proton-exchanged LiNbO3 and RF-Sputtered AlN films", Ph.D. dissertation, Department of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan, 1996.
[69] S. T. Vohra, A. R. Mickelson, and S. E. Asher, "Diffusion characteristics and waveguiding properties of proton-exchanged and annealed LiNbO3 channel waveguides", J. Appl. Phys., vol. 66, pp. 5161-5174, 1989.
[70] S. Rooth, S. Bardal, and O. Dugstad, "High efficient SAW transducers with low internal reflections and their application in high performance boardband SAW filters," IEEE Ultrasonic Symp., pp. 63-67, 1998.
[71] A. Campari, C. Ferrari, G. Mazzi, C. Summonte, S. M. Al Shukri, and A. Dawar et al, "Strain and surface damage induced by proton exchange in y-cut LiNbO3", J. Appl. Phys., vol. 58, pp. 4521-4524, 1985.
[72] C. Canali, A. Carnera, G. Della Mea, P. Mazzoldi, S. M. Al Shukri, and A. C. G. Nutt et al, "Structural characterization of proton exchanged LiNbO3 optical waveguides", J. Appl. Phys., vol. 59, pp. 2643-2649, 1986.
[73] M. De Micheli, J. Botineau, S. Neveu, P. Sibillot, D. B. Ostrowsky, and M. Papuchon, "Extension of second-harmonic phase-matching range in lithium niobate guides", Opt. Lett., vol. 8, pp. 116-118, 1983.
[74] K. Hohkawa, H. Suzuki, K. Komine, and Q. Huang, "Surface acoustic wave semiconductor coupled devices employing epitaxial lift-off films", Jpn. J. Appl. Phys., vol. 35, pp. 3015-3019, 1996.
[75] Y. Aoki, K. Koh, S. M. Nam, C. Kaneshiro, and K. Hokawa, "Programmable surface acoustic wave-semiconductor correlator with multi-strip structure", Jpn. J. Appl. Phys., vol. 41, pp. 6443-6450, 2002.
[76] K. Hohakawa, H. Suzuki, Q. S. Huang, and S. Noge, "Fabrication of Surface Acoustic Wave Semiconductor Coupled Devices Using Epitaxial Lift-off Technology," IEEE Ultrasonic Symp., pp. 401-404, 1995.
[77] K. Hohakawa, K. Koh, C. Kaneshiro, Y. Aoki, and C. Hong, "Fabrication process for semiconductor bonded SAW devices," IEEE Ultrasonic Symp., pp. 301-304, 1999.
[78] C. Kaneshiro, S. Noge, C. Hong, K. Koh, Y. Aoki, and K. Hohkawa, "Fabrication of SAW device coupled with semiconductor," IEEE Ultrasonics Symp., pp. 357-360, 2000.
[79] C. Kaneshiro, T. Nakajima, Y. Aoki, K. Koh, and K. Hohkawa, "Transfer and Bonding Process of Semiconductor Coupled SAW Device Suited for Mass-Production", IEEE Ultrasonics Symp., pp. 221-224, 2001.
[80] H. Takagi, K. Kikuchi, R. Maeda, T. R. Chung, and T. Suga, "Surface activated bonding of silicon wafers at room temperature," Appl. Phys. Lett., vol. 68, pp. 2222-2224, 1996.
[81] T. R. Chung, N. Hosoda, T. Suga, and H. Takagi, " 1.3 μm InGaAsP/InP lasers on GaAs substrate fabricated by the surface activated wafer bonding method at room temperature," Appl. Phys. Lett., vol. 72, pp. 1565-1566, 1998.
[82] H. Takagi, R. Maeda, N. Hosoda, and T. Suga, "Room-temperature bonding of lithium niobate and silicon wafers by argon-beam surface activation," Appl. Phys. Lett., vol. 74, pp. 2387-2389, 1999.
[83] J. B. Lasky, "Wafer bonding for silicon-on-insulator technologies", Appl. Phys. Lett., vol. 48, pp. 78-80, 1986.
[84] M. Shimbo, K. Furukawa, K. Fukuda, and K. Tanzawa, "Silicon-to-silicon direct bonding method", J. Appl. Phys., vol. 60, pp. 2987-2989, 1986.
[85] W. P. Maszara, G. Goetz, A. Caviglia, and J. B. McKitterick, "Bonding of silicon wafers for silicon-on-insulator ", J. Appl. Phys., vol. 64, pp. 4943-4950, 1988.
[86] R. Stengl, K.-Y. Ahn, and U. Gosele, "Bubble-Free Silicon Wafer Bonding in a Non-Cleanroom Environment", Jpn. J. Appl. Phys., vol. 27, pp. 2364-2366, 1988.
[87] J. F. Klem, E. D. Jones, D. R. Myers, and J. A. Lott, "Characterization of thin AlGaAs/InGaAs/GaAs quantum-well structures bonded directly to SiO2/Si and glass substrates", J. Appl. Phys., vol. 66, pp. 459-462, 1989.
[88] K. Eda, A. Kanaboshi, T. Ogura, and Y. Taguchi, "Direct bonding of quartz crystal onto silicon", J. Appl. Phys., vol. 74, pp. 4801-4802, 1993.
[89] K. Eda, T. Ogura, Y. Tomita, and Y. Taguchi, "One-chip quartz crystal oscillator using a direct-bonding technique of quartz crystal onto silicon", IEEE Ultrasonics Symp., pp. 1045-1049, 1994.
[90] S. H. Tsai, N. F. Wang, M. P. Houng, and Y. H. Wang, "Proton-exchanged wet etching of recessed-structure SAW filter", IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 50, pp. 1219-1222, 2003.
[91] Q. Y. Tong and U. Gosele, Semiconductor Wafer Bonding: Science and Technology, pp. 52-53, Wiley, New York, 1999.
[92] M. Miyashita, T. Tusga, K. Makihara, and T. Ohmi, "Dependence of surface microroughness of CZ, FZ, and EPI wafers on wet chemical processing", J. Electrochem. Soc., vol. 139, pp. 2133-2142, 1992.
[93] K. Mitani, V. Lehmann, R. Stengl, D. Feijoo, U. Gosele, and H. Massoud, "Causes and prevention of temperature-dependent bubbles in silicon wafer bonding", Jpn. J. Appl. Phys., vol. 30, pp. 615-622, 1991.
[94] S. Tonami, A. Nishikata, and Y. Shimizu, "Characteristics of leaky surface acoustic waves propagating on LiNbO3 and LiTaO3 substrates", Jpn. J. Appl. Phys. vol. 34, pp. 2664-2667, 1995.
[95] K. Nakamura, and A. Tourlog, "Propagation characteristics of leaky surface acoustic waves and surface acoustic waves on LiNbO3 substrate with a ferroelectric inversion layer", Jpn. J. Appl. Phys. vol. 34, pp. 5273-5275, 1995.
[96] T. Morita, Y. Watanabe, M. Tanaka, and Y. Nakazawa, "Windband low loss double mode SAW filters", IEEE Ultrasonics Symp., pp. 95-104, 1992.
[97] K. Dota, K. Motegi, Y. Akutsu, and A. Sawaguchi, "Measurement of vibration displacement using a layered-structure leaky wave interdigital transducer", Jpn. J. Appl. Phys. vol. 35, pp. 3187-3191, 1996.
[98] M. B. Assouar, O. Elmazria, L. Le Brizoual, M. Belmahi, and P. Alnot, "Growth of piezoelectric aluminum nitride for layered SAW devices", IEEE Ultrasonics Symp., pp. 333-336, 2002.
[99] S. H. Tsai, N. F. Wang, J. H. Horng, M. P. Houng, and Y. H. Wang, "Direct bonding of recessed-structure SAW filter on silicon substrate", IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 51, pp. 912-915, 2004.
[100] K. Y Hashimoto, Surface acoustic wave devices in telecommunications, Springer, pp. 238, 2000.
[101] G. Endoh, O. Kawachi, and M. Ieda, "A study of leaky SAW on piezoelectric substrate", IEEE Ultrasonics Symp., pp. 309-312, 1999.
[102] S. Rooth, S. Bardal, and Oystein Dugstad, "High efficiency SAW transducers with low internal reflections and their application in high performance broadband SAW filters", IEEE Ultrasonics Symp., pp. 63-67, 1998.
[103] S. Datta and B. J. Hunsinger, "First-order reflection coefficient of surface acoustic waves from thin-strip overlays", J. Appl. Phys. vol. 50, pp. 5661-5665, 1979.
[104] K. Y Hashimoto, Surface acoustic wave devices in telecommunications, Springer, pp. 109, 2000.
[105] F. S. Hickernell, H. D. Knuth, R. C. Dablemont, and T. S. Hickernell, "The surface acoustic wave propagation characteristics of 64o Y-X LiNbO3 and 36o Y-X LiTaO3 substrates with thin-film SiO2", IEEE Ultrasonics Symp., pp. 345-348, 1995.
[106] K. Nakamura and A. Tourlog, "Effect of a ferroelectric inversion layer on the temperature characteristics of SH-type surface acoustic wave on 36o Y-X LiTaO3 substrates", IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 41, pp. 872-875, 1994.
[107] K. Yamanouchi and M. Takeuchi, "Applications for piezoelectric Leaky Surface Waves", IEEE Ultrasonics Symp., pp. 11-18, 1990.
[108] K. Nakamura, M. Kazumi, and H. Shimizu, "SH-type and Rayleigh-type surface wave in rotated y-cut LiTaO3", IEEE Ultrasonics Symp., pp. 819-822, 1977.