簡易檢索 / 詳目顯示

研究生: 黃彥慈
Huang, Yen-Tzu
論文名稱: 考量社群資訊建構研究主題地圖之方法
A Method of Constructing Research Topic Maps Considering Social Information
指導教授: 王惠嘉
Wang, Hei-Chia
學位類別: 碩士
Master
系所名稱: 管理學院 - 資訊管理研究所
Institute of Information Management
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 66
中文關鍵詞: 知識本體主題地圖社群資訊共同作者
外文關鍵詞: Ontology, Topic Maps, Social information, Co-authorship
相關次數: 點閱:137下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在許多國家已開始重視研究成效以及越來越多跨領域研究合作的環境下,對於研究人員而言,知識管理可以幫助學術計算效率、加強研究管理和促進知識解決方案及創新。網路的蓬勃發展使得知識與資訊不再侷限於紙本、地點及時間,在研究人員時常參考的眾多資訊中,研討會在學術交流上扮演很重要的角色,因為研討會提供學者發表和討論其研究初步結果的機會、增進彼此間的社交關係,此外研討會亦可使研究人員掌握目前領域研究趨勢及發展情況。
    但網路上資訊量的快速成長卻使得研究人員在搜尋研究相關的資訊時往往須經過篩選才能得到真正想要的資訊,以及針對關鍵字為主的搜尋功能和沒有提供分類及分類之間關聯可能造成某些對研究人員有幫助的資訊沒有被找出來,因此需要一個合適的知識管理平台來輔佐研究人員,其中知識本體可以提供數位資訊需要制式化且具備讓機器可理解、傳遞的知識結構、幫助知識管理。但先前知識本體建構大多沒有考慮到「人」的訊息,因為研究知識中,那些研究主題的相關是可以透過社群網路,知道社群成員之間的關聯性,藉由考慮誰與誰和合作,便能豐富所擷取的知識本體。
    為達到研究知識管理,主題地圖為實作知識本體的方法之一,因此本研究提出考量社群資訊來完成建構主題地圖之知識本體。並將所提出之方法以研討會資料集為例子,針對各研討會資料之標題、關鍵字、摘要及研究社群所探勘的資訊來進行處理,並以本研究所提出之主題地圖建構方法找出這些研討會資料集的主題與這些主題間的關聯,視覺化後供使用者查詢與瀏覽。本研究利用知識本體富含的知識階層架構,實驗證明能夠幫助研究人員更輕鬆且快速地幫助找尋所需的資訊,並且加入社群資訊的考量,加入了ODP類別資訊和社群資訊也能成功幫助使用者在搜尋和瞭解研討會資訊,提供更好的結果。

    Nowadays, many countries have begun to pay attention on research effectiveness and more and more cross disciplinary research has been made. For researchers, knowledge management can enhance our ability to streamline academic computing support, augment research stewardship, and accelerate the creation of knowledge-based solutions and innovations. The booming of the Internet makes knowledge and information no longer restricted to paper, location and time. Among numerous information that researches may refer to, conferences play an important role in scholarly communication since they provide researchers with an opportunity to present and discuss preliminary results of their research and improve their personal social networks. Furthermore, conferences allow researchers to stay abreast of current research trends in their field and learn about cutting-edge developments in their specialty.
    However, because of the explosive increase in information published on the Web, researchers have to filter information in order to get what they really want when they are searching for conference related information. Researchers cannot find the associations between topics which may cause some useful information for them not shown. Hence, they need a proper knowledge management platform while ontology can provide the formalisms and knowledge structuring for comprehensive and transportable machine understanding that digital information requires. But most previous ontology construction methods did not take “people” into account. Through considering of social information like who collaborates with whom, research topics can be associated, thus the extracted ontology might be improved.
    Topic Maps is a way of implementing ontology. To achieve research knowledge management, this paper proposes a method of constructing research Topic Maps considering social information. First, extract conference data from the Web. Then extract conference topics and the relationships between them through the proposed method. Finally visualize it for users to search and browse. And the questionnaire survey has proven that the research Topic Maps not only successfully facilitates researchers getting useful search results but also offers better results by analyzing social information which successfully helps researchers find the possibilities of cooperation/combination as well as associations between research topics.

    第 1 章 緒論 1 1.1研究背景 2 1.2研究動機與目的 5 1.3研究範圍與限制 7 1.4研究流程 8 1.5論文大綱 10 第 2 章 文獻探討 11 2.1 知識本體與主題地圖 11 2.1.1 主題地圖的基本模型 11 2.1.2 XTM格式 13 2.1.3 主題地圖的建構方法 15 2.1.4 主題地圖的應用 16 2.1.5建構主題地圖的相關資源 17 2.1.6主題地圖的評估 19 2.2 社群資訊與知識管理 20 2.3自然語言處理 21 2.3.1 詞性標註 22 2.3.2 自然語言分析器 22 2.3.3 字根還原 24 2.4資訊擷取 25 2.5 小結 27 第 3 章 研究方法 28 3.1研究架構 30 3.2資料收集模組 31 3.3主題地圖元素擷取模組 33 3.3.1主題擷取 34 3.3.2關聯擷取 35 3.3.3資源指引擷取 39 3.4社群資訊主題關聯分析模組 39 3.5主題地圖視覺化模組 40 3.6小結 41 第 4 章 實作與驗證 43 4.1系統實作設計 43 4.2實驗方法 44 4.2.1資料來源 45 4.2.2評估指標 46 4.2.3實驗方法設計 46 4.3實驗結果與分析 48 4.3.1問卷基本資料分析 48 4.3.2實驗一 50 4.3.3實驗二 51 4.3.4實驗三 53 4.4系統畫面範例 54 4.5小結 57 第 5 章 結論及未來研究方向 59 5.1研究成果 59 5.2未來研究方向 60 參考文獻 62 中文文獻 62 英文文獻 62 網路資料 66

    中文文獻
    林信成、歐陽慧、歐陽崇榮(民92)。主題地圖及其在索引典之應用。2003 年資訊科技與圖書館學術研討會,頁229-253。民國100年5月17日,取自: http://mail.tku.edu.tw/sclin/research/pub/200305TopicMaps.pdf
    林信成、歐陽慧、歐陽崇榮(民95)。以主題地圖建構索引典之語意網路模型。圖書資訊學刊,頁35-56。民國100年5月17日,取自: http://mail.tku.edu.tw/sclin/research/pub/200402TMSemanticNet.pdf
    陳文華、徐聖訓、施人英、吳壽山(民92)。應用主題地圖於知識整理。圖書資訊學刊,頁37-58。民國100年5月23日,取自: http://jlis.lis.ntu.edu.tw/article/v1-1-3.pdf
    英文文獻
    Al Qady, M., & Kandil, A. (2010). Concept relation extraction from construction documents using natural language processing. Journal of Construction Engineering and Management-Asce, 136(3), 294-302.
    Al-Rajebah, N. I., & Al-Khalifa, H. S. (2010). Semantic relationship extraction and ontology building using wikipedia: A comprehensive survey. International Journal of Computer Applications 12(3), 6-12.
    Brank, J., Grobelnik, M., & Mladenić, D. (2005). A survey of ontology evaluation techniques. Proceedings of the Conference on Data Mining and Data Warehouses SiKDD 2005, (SiKDD), 166–170.
    Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16(3), 297-334.
    De Maio, C., Fenza, G., Loia, V., & Senatore, S. (2010). Knowledge structuring to support facet-based ontology visualization. International Journal of Intelligent Systems, 25(12), 1249-1264.
    Dicks, D., Venkatesh, V., Shaw, S., Lowerison, G. & Zhang, D. (2004). An empirical evaluation of Topic Map search capabilities in an educational context. In L. Cantoni & C. McLoughlin (Eds.), Proceedings of World Conference on Educational Multimedia, Hypermedia and Telecommunications 2004(pp. 1031-1038). Chesapeake, VA: AACE.
    Dong, Y., & Li, M. (2004). HyO-XTM: a set of hyper-graph operations on XML Topic Map toward knowledge management. Future Generation Computer Systems, 20(1), 81-100.
    Du, T. C., Li, F., & King, I. (2009). Managing knowledge on the Web - Extracting ontology from HTML Web. Decision Support Systems, 47(4), 319-331.
    El-Gohary, N. M., & El-Diraby, T. E. (2010). Domain ontology for processes in infrastructure and construction. Journal of Construction Engineering and Management-Asce, 136(7), 730-744.
    Ellouze, N., Ahmed, M. B., & Métais, E. (2008). Overview of Topic Map construction approaches. Paper presented at the 22nd International Conference on Advanced Information Networking and Applications - Workshops.
    Ellouze, N., Lammari, N., & Métais, E.(in press) CITOM: An incremental construction of topic maps. Data & Knowledge Engineering
    Gashaw, K. (2010). Knowledge management: An information science perspective. International Journal of Information Management, 30(5), 416-424.
    Girju, R., Beamer, B., Rozovskaya, A., Fister, A., & Bhat, S. (2010). A knowledge-rich approach to identifying semantic relations between nominals. Information Processing & Management, 46(5), 589-610.
    González-Albo, B., & Bordons, M. (2011). Articles vs. proceedings papers: Do they differ in research relevance and impact? A case study in the Library and Information Science field. Journal of Informetrics, 5(3), 369-381.
    Hamasaki, M., Matsuo, Y., Nisimura, T., & Takeda, H. (2007). Ontology extraction using social network. Paper presented at International Workshop on Semantic Web for Collaborative Knowledge Acquisition, Hyderabad, India
    Han, L., & Chen, G. (2009). A fuzzy clustering method of construction of ontology-based user profiles. Advances in Engineering Software, 40(7), 535-540.
    Haythornthwaite, C. (2006). Learning and knowledge networks in interdisciplinary collaborations. Journal of the American Society for Information Science and Technology, 57(8), 1079-1092.
    Hu, C., & Racherla, P. (2008). Visual representation of knowledge networks: A social network analysis of hospitality research domain. International Journal of Hospitality Management, 27(2), 302-312.
    Hwang, S. Y., Wei, C. P., & Liao, Y. F. (2010). Coauthorship networks and academic literature recommendation. Electronic Commerce Research and Applications, 9(4), 323-334.
    Jiang, S. Q., Du, J., Huang, Q. M., Huang, T. J., & Gao, W. (2005). Visual ontology construction for digitized art image retrieval. Journal of Computer Science and Technology, 20(6), 855-860.
    Jiang, X., & Tan, A. H. (2009). Learning and inferencing in user ontology for personalized Semantic Web search. Information Sciences, 179(16), 2794-2808.
    Jung, Y., Ryu, J., Kim, K. M., & Myaeng, S. H. (2010). Automatic construction of a large-scale situation ontology by mining how-to instructions from the web. Web Semantics: Science, Services and Agents on the World Wide Web, 8(2-3), 110-124.
    Kim, J. M., Shin, H., & Kim, H. J. (2007). Schema and constraints-based matching and merging of Topic Maps. Information Processing & Management, 43(4), 930-945.
    Kim, W., Jeong, O. R., & Lee, S. W. (2010). On social Web sites. Information Systems, 35(2), 215-236.
    Klein, D., & Manning, C. (2003). Fast Exact Inference with a Factored Model for Natural Language Parsing. Paper presented at the Advances in Neural Information Processing Systems.
    Lee, C. S., Kao, Y. F., Kuo, Y. H., & Wang, M. H. (2007). Automated ontology construction for unstructured text documents. Data & Knowledge Engineering, 60(3), 547-566.
    Levenshtein, V. I. (1966). Binary codes capable of correcting deletions, insertions, and reversals. Soviet Physics Doklady, 10(8), 707-710.
    Li, Y. H., McLean, D., Bandar, Z. A., O'Shea, J. D., & Crockett, K. (2006). Sentence similarity based on semantic nets and corpus statistics. IEEE Transactions on Knowledge and Data Engineering, 18(8), 1138-1150.
    Liu, L., Li, J., & Lv, C. G. (2009). A method for enterprise knowledge map construction based on social classification. Systems Research and Behavioral Science, 26(2), 143-153.
    Liu, X., Bollen, J., Nelson, M. L., & Van de Sompel, H. (2005). Co-authorship networks in the digital library research community. Information Processing and Management, 41(6), 1462-1480.
    Ma, Z. Z., & Yu, K. H. (2010). Research paradigms of contemporary knowledge management studies: 1998-2007. Journal of Knowledge Management, 14(2), 175-189.
    Manning, C. D., Raghavan, P. & Schütze, H. (2008). Introduction to Information Retrieval: Cambridge University Press.
    Oezguer, L., & Geungoer, T. (2010). Text classification with the support of pruned dependency patterns. Pattern Recognition Letters, 31(12), 1598-1607.
    Oh, S. G., & Park, O. N. (2007). Design and users' evaluation of a topic maps-based Korean folk music retrieval system. Paper presented at the Proceedings of the 2nd international conference on Topic maps research and applications.
    Oliva, J., Serrano, J. I., del Castillo, M. D., & Iglesias, Á. (2011). SyMSS: A syntax-based measure for short-text semantic similarity. Data & Knowledge Engineering, 70(4), 390-405.
    Ponzetto, S. P., & Strube, M. (2011). Taxonomy induction based on a collaboratively built knowledge repository. Artificial Intelligence, 175(9–10), 1737-1756.
    Porter, M. F. (1980). An algorithm for suffix stripping. Program, 14(3), 130-137.
    Salton, G., Wong, A., & Yang, C. S. (1975). A vector space model for automatic indexing. Commun. ACM, 18(11), 613-620.
    Sanchez, D., & Moreno, A. (2008). Learning non-taxonomic relationships from web documents for domain ontology construction. Data & Knowledge Engineering, 64(3), 600-623.
    Santoso, H. A., Haw, S. C., & Abdul-Mehdi, Z. T. (2011). Ontology extraction from relational database: Concept hierarchy as background knowledge. Knowledge-Based Systems, 24(3), 457-464.
    Shah, P. K., Perez-Iratxeta, C., Bork, P., & Andrade, M. A. (2003). Information extraction from full text scientific articles: Where are the keywords? BCM Bioinformatics, 4(1), 20-28.
    Slawsky, D. (2007). Building a keyword library for description of visual assets: Thesaurus basics. Journal of Digital Asset Management, 3(3), 130-138.
    Venkatesh, V., Shaw, S., Dicks, D., Lowerison, G., Zhang, D., & Sanjakdar, R. (2007). Topic Maps: Adopting User-Centred Indexing Technologies in Course Management Systems. Journal of Interactive Learning Research, 18(3), 429-450.
    Vrandečić, D. (2009). Ontology evaluation. In S. Staab & D. Rudi Studer (Eds.), Handbook on ontologies(pp. 293-313): Springer Berlin Heidelberg.
    Wang, H. C., Huang, T. H., Guo, J. L., & Li, S. C. (2009) Journal Article Topic Detection Based on Semantic Features. Lecture Notes in Artificial Intelligence, 5579, 644-652.
    Weng, S. S., Tsai, H. J., Liu, S. C., & Hsu, C. H. (2006). Ontology construction for information classification. Expert Systems with Applications, 31(1), 1-12.
    Yang, C. Z., Chen, I. X., & Chou, C. H. (2011). XRVAT: A visual Topic Maps-based environment for ontology construction. Journal of Internet Technology, 12(3), 429-439.
    Yi, M. (2008). Information organization and retrieval using a Topic Maps-based ontology: Results of a task-based evaluation. Journal of the American Society for Information Science and Technology, 59(12), 1898-1911.
    Zeng, M. L., & Salaba, A. (2005). Toward an international sharing and use of subject authority data. Paper presented at FRBR Workshop, OCLC 2005, Dublin, Ohio.
    網路資料
    維基百科
    (http://www.wikipedia.org/)
    ACM Digital Library
    (http://dl.acm.org/)
    Anklam, P. KM and the social network. (2003, May) Inside Knowledge, 6(8). Retrieved November 10, 2011, from the World Wide Web: http://www.ikmagazine.com/xq/asp/sid.0/articleid.F79B4E31-7854-4B6A-9202-164FB18672D3/eTitle.KM_and_the_social_network/qx/display.htm
    Cain, T. J., Branin, J. J., & Sherman, W. M. (2008). Knowledge management and the academy. EDUCAUSE Quarterly, 4, 26-33. Retrieved November 17, 2011, from the World Wide Web: http://net.educause.edu/ir/library/pdf/EQM0845.pdf
    Ontopia-the product. Retrieved November 29, 2011, from the World Wide Web: http://www.ontopia.net/section.jsp?id=id824
    Pepper, S.(2002) The TAO of Topic Maps. Retrieved May 22, 2011, from the World Wide Web: http://www.ontopia.net/topicmaps/materials/tao.html#d0e632
    The Stanford Natural Language Processing Group. The Stanford Parser: A statistical parser. Retrieved May 22, 2011, from the World Wide Web: http://nlp.stanford.edu/software/lex-parser.shtml

    無法下載圖示 校內:2022-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE