| 研究生: |
陳俐方 Chen, Li-Fang |
|---|---|
| 論文名稱: |
HuR 調控TM 蛋白質表現之分子機轉研究 To study the molecular mechanism of HuR mediating TM protein expression |
| 指導教授: |
曾大千
Tseng, T. Joseph |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生物資訊研究所 Institute of Bioinformatics |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | HuR 、TM 、ARE (AU-rich element) 、IRES (internalribosome entry site) |
| 外文關鍵詞: | HuR, TM, ARE (AU-rich element), IRES (internalribosome entry site) |
| 相關次數: | 點閱:130 下載:11 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
細胞在對於DNA轉錄成RNA,到RNA轉譯成蛋白質的最終生成量上有著多重的調控機制,其中在RNA的層級上,可以經由不同的cis-acting elements及trans-acting factors來調控RNA的穩定度及RNA在轉譯時的效率,進而影響蛋白質最終的合成量。IRES是其中一種調控轉譯的cis-acting element,其位於mRNA的5’端非轉譯區(5’UTR),具有直接招聚核醣體(Ribosomes)的能力,因而提供一條不須經由cap即可進行轉譯啟始的途徑。HuR是一個廣泛存在於生物體中的RNA結合蛋白,其被廣為人知的功能是可以藉由與帶有AU-rich的mRNA 3’UTR結合,增強目標mRNA的穩定度。由於HuR能夠調節mRNA的出核、穩定度與轉譯,因此在後轉錄修飾的調控(post-transcriptional regulation) 扮演了一個重要的角色。先前的研究發現,在IL-1β的刺激下HuR可以增加與凝血酶調節素( thrombomodulin,TM ) mRNA 5’端非轉譯區作用。TM在抗凝血及抗發炎中扮演著調節的角色。此外,我們亦發現HuR還可以與TM mRNA的3’端非轉譯區作用而增加TM mRNA的穩定度。
由於HuR可以同時與TM mRNA的3’及5’UTR作用,並達到各自的調控,因此我們想要進一步去探討HuR如何分別去調控這兩個非轉譯區。 HuR蛋白上面帶有三個RNA recognition motifs ( RRMs),首先利用了biotin pull-down分析,確認了HuR經由第三個RRM (RRM3)與TM 5’UTR作用,而第一個RRM (RRM1)及第二個RRM (RRM2)則在HuR與TM 3’UTR的結合上扮演了角色。在RRM1及RRM2的定點突變株(site-directed mutants) ( F65/Y68A及F154/157A ),同樣也觀察到這兩株突變株無法與TM 3’UTR結合。此外,reporter assay的結果顯示,當HuR同時與TM 5’及3’端非轉譯區結合時,HuR對TM轉譯抑制的效果會比單獨結合到TM 5’端非轉譯區的抑制效果還要明顯。此外,我們發現了另一個RNA結合蛋白polypyrimidine-tract-binding protein (PTB)也會參與在TM的後轉錄調控當中,其可能與HuR互相競爭,能夠促進TM的表現。
總結來說,HuR藉由RRM3與TM 5’端非轉譯區作用,而藉由RRM1及RRM2與TM 3’端結合,當HuR能夠同時與TM mRNA的兩端結合時,能提供HuR較佳的作用效率。此外,PTB能藉由參與在TM的後轉錄調控而促進TM的表現。
The cell has many ways to regulate the production of proteins, including the modulation of translation efficiency and transcripts turnover through cis-acting elements and trans-acting factors. One of the cis-acting elements is IRES (internal ribosomal entry site). IRES is a RNA element that can recruit ribosome complex and allow cap-independent translation initiation in the mRNA 5’UTR. HuR is a ubiquitous RNA-binding protein which is well-known to stabilize mRNA by interacting with AU-rich element-containing mRNA and plays an important role in post-transcriptional regulation through altered mRNA export, turnover and translation. Our previous study demonstrates that HuR interacts with the 5’UTR of thrombomodulin (TM), an critical factor in mediating anticoagulation and anti-inflammation, and represses TM IRES activity under IL-1β treatment. Besides, there is also an AU-rich element in TM mRNA 3’UTR, and HuR can also stabilize TM mRNA via interacting with TM mRNA 3’UTR. Since HuR may regulate TM expression by simultaneous interacting with TM mRNA 5’and 3’ UTRs, we are interesting to explore how HuR coordinates these two elements to regulate TM expression.
According to the result of biotin pull-down assay, we find that HuR RNA recognition motif (RRM) 1 and 2 are important for the direct interaction between HuR and TM 3’UTR; meanwhile, HuR RRM 3 is related to interact with TM 5’ UTR. Site direct mutagenesis of F65/Y68A of RRM1 and F154/157A of RRM2 will abolish the binding of HuR with TM 3’UTR. Furthermore, we demonstrate that HuR simultaneously bound with 3’UTR and 5’UTR displays higher repression effect on TM translation than bound with 5’UTR only by reporter assay. Besides, we find that polypyrimidine-tract-binding protein (PTB), another RNA-binding protein, also involved in the translation regulation of TM protein expression.
In conclusion, HuR interact with TM 5’UTR via RRM3 and with TM 3’UTR by RRM1 and RRM2. It provides better repression effect on TM IRES when HuR simultaneously binds with TM 5’and 3’UTR. Besides, PTB also play a role in enhancing TM protein expression.
Sachs, A.B., Messenger RNA degradation in eukaryotes. Cell, 1993. 74(3): p. 413-21.
2. Standart, N. and R.J. Jackson, Regulation of translation by specific protein/mRNA interactions. Biochimie, 1994. 76(9): p. 867-79.
3. Peltz, S.W., et al., Regulation of mRNA turnover in eukaryotic cells. Crit Rev Eukaryot Gene Expr, 1991. 1(2): p. 99-126.
4. Paulding, W.R. and M.F. Czyzyk-Krzeska, Hypoxia-induced regulation of mRNA stability. Adv Exp Med Biol, 2000. 475: p. 111-21.
5. Staton, J.M., A.M. Thomson, and P.J. Leedman, Hormonal regulation of mRNA stability and RNA-protein interactions in the pituitary. J Mol Endocrinol, 2000. 25(1): p. 17-34.
6. Guhaniyogi, J. and G. Brewer, Regulation of mRNA stability in mammalian cells. Gene, 2001. 265(1-2): p. 11-23.
7. Ross, J., mRNA stability in mammalian cells. Microbiol Rev, 1995. 59(3): p. 423-50.
8. Brennan, C.M. and J.A. Steitz, HuR and mRNA stability. Cell Mol Life Sci, 2001. 58(2): p. 266-77.
9. Gillis, P. and J.S. Malter, The adenosine-uridine binding factor recognizes the AU-rich elements of cytokine, lymphokine, and oncogene mRNAs. J Biol Chem, 1991. 266(5): p. 3172-7.
10. Wilson, G.M. and G. Brewer, Identification and characterization of proteins binding A + U-rich elements. Methods, 1999. 17(1): p. 74-83.
11. Misquitta, C.M., et al., The role of 3'-untranslated region (3'-UTR) mediated mRNA stability in cardiovascular pathophysiology. Mol Cell Biochem, 2001. 224(1-2): p. 53-67.
12. Dixon, D.A., et al., Altered expression of the mRNA stability factor HuR promotes cyclooxygenase-2 expression in colon cancer cells. J Clin Invest, 2001. 108(11): p. 1657-65.
13. Hollams, E.M., et al., MRNA stability and the control of gene expression: implications for human disease. Neurochem Res, 2002. 27(10): p. 957-80.
14. Jacobson, A. and S.W. Peltz, Interrelationships of the pathways of mRNA decay and translation in eukaryotic cells. Annu Rev Biochem, 1996. 65: p. 693-739.
15. Wilson, T. and R. Treisman, Removal of poly(A) and consequent degradation of c-fos mRNA facilitated by 3' AU-rich sequences. Nature, 1988. 336(6197): p. 396-9.
16. Levy, A.P., N.S. Levy, and M.A. Goldberg, Post-transcriptional regulation of vascular endothelial growth factor by hypoxia. J Biol Chem, 1996. 271(5): p. 2746-53.
17. Caput, D., et al., Identification of a common nucleotide sequence in the 3'-untranslated region of mRNA molecules specifying inflammatory mediators. Proc Natl Acad Sci U S A, 1986. 83(6): p. 1670-4.
18. Nair, A.P., et al., Cyclosporin A promotes translational silencing of autocrine interleukin-3 via ribosome-associated deadenylation. Mol Cell Biol, 1999. 19(1): p. 889-98.
19. Kruys, V., et al., Translational blockade imposed by cytokine-derived UA-rich sequences. Science, 1989. 245(4920): p. 852-5.
20. Yeap, B.B., et al., Novel binding of HuR and poly(C)-binding protein to a conserved UC-rich motif within the 3'-untranslated region of the androgen receptor messenger RNA. J Biol Chem, 2002. 277(30): p. 27183-92.
21. Zhang, W., et al., Purification, characterization, and cDNA cloning of an AU-rich element RNA-binding protein, AUF1. Mol Cell Biol, 1993. 13(12): p. 7652-65.
22. Carballo, E., W.S. Lai, and P.J. Blackshear, Feedback inhibition of macrophage tumor necrosis factor-alpha production by tristetraprolin. Science, 1998. 281(5379): p. 1001-5.
23. Loflin, P., C.Y. Chen, and A.B. Shyu, Unraveling a cytoplasmic role for hnRNP D in the in vivo mRNA destabilization directed by the AU-rich element. Genes Dev, 1999. 13(14): p. 1884-97.
24. Antic, D. and J.D. Keene, Embryonic lethal abnormal visual RNA-binding proteins involved in growth, differentiation, and posttranscriptional gene expression. Am J Hum Genet, 1997. 61(2): p. 273-8.
25. Suswam, E.A., et al., IL-1beta induces stabilization of IL-8 mRNA in malignant breast cancer cells via the 3' untranslated region: Involvement of divergent RNA-binding factors HuR, KSRP and TIAR. Int J Cancer, 2005. 113(6): p. 911-9.
26. Chen, C.Y. and A.B. Shyu, AU-rich elements: characterization and importance in mRNA degradation. Trends Biochem Sci, 1995. 20(11): p. 465-70.
27. Bakheet, T., et al., ARED: human AU-rich element-containing mRNA database reveals an unexpectedly diverse functional repertoire of encoded proteins. Nucleic Acids Res, 2001. 29(1): p. 246-54.
28. Wilusz, C.J., M. Wormington, and S.W. Peltz, The cap-to-tail guide to mRNA turnover. Nat Rev Mol Cell Biol, 2001. 2(4): p. 237-46.
29. Xu, N., C.Y. Chen, and A.B. Shyu, Modulation of the fate of cytoplasmic mRNA by AU-rich elements: key sequence features controlling mRNA deadenylation and decay. Mol Cell Biol, 1997. 17(8): p. 4611-21.
30. Derrigo, M., et al., RNA-protein interactions in the control of stability and localization of messenger RNA (review). Int J Mol Med, 2000. 5(2): p. 111-23.
31. Moore, M.J., From birth to death: the complex lives of eukaryotic mRNAs. Science, 2005. 309(5740): p. 1514-8.
32. Wilkie, G.S., K.S. Dickson, and N.K. Gray, Regulation of mRNA translation by 5'- and 3'-UTR-binding factors. Trends Biochem Sci, 2003. 28(4): p. 182-8.
33. Shim, J., et al., Nuclear export of NF90 is required for interleukin-2 mRNA stabilization. Mol Cell, 2002. 10(6): p. 1331-44.
34. Lopez de Silanes, I., et al., Identification and functional outcome of mRNAs associated with RNA-binding protein TIA-1. Mol Cell Biol, 2005. 25(21): p. 9520-31.
35. Dreyfuss, G., V.N. Kim, and N. Kataoka, Messenger-RNA-binding proteins and the messages they carry. Nat Rev Mol Cell Biol, 2002. 3(3): p. 195-205.
36. Campos, A.R., D. Grossman, and K. White, Mutant alleles at the locus elav in Drosophila melanogaster lead to nervous system defects. A developmental-genetic analysis. J Neurogenet, 1985. 2(3): p. 197-218.
37. King, P.H., et al., Mammalian homologs of Drosophila ELAV localized to a neuronal subset can bind in vitro to the 3' UTR of mRNA encoding the Id transcriptional repressor. J Neurosci, 1994. 14(4): p. 1943-52.
38. Ma, W.J., et al., Cloning and characterization of HuR, a ubiquitously expressed Elav-like protein. J Biol Chem, 1996. 271(14): p. 8144-51.
39. Ma, W.J., S. Chung, and H. Furneaux, The Elav-like proteins bind to AU-rich elements and to the poly(A) tail of mRNA. Nucleic Acids Res, 1997. 25(18): p. 3564-9.
40. Levine, T.D., et al., Hel-N1: an autoimmune RNA-binding protein with specificity for 3' uridylate-rich untranslated regions of growth factor mRNAs. Mol Cell Biol, 1993. 13(6): p. 3494-504.
41. Levy, N.S., et al., Hypoxic stabilization of vascular endothelial growth factor mRNA by the RNA-binding protein HuR. J Biol Chem, 1998. 273(11): p. 6417-23.
42. Wang, W., et al., HuR regulates cyclin A and cyclin B1 mRNA stability during cell proliferation. EMBO J, 2000. 19(10): p. 2340-50.
43. Peng, S.S., et al., RNA stabilization by the AU-rich element binding protein, HuR, an ELAV protein. EMBO J, 1998. 17(12): p. 3461-70.
44. Sengupta, S., et al., The RNA-binding protein HuR regulates the expression of cyclooxygenase-2. J Biol Chem, 2003. 278(27): p. 25227-33.
45. Wang, W., et al., HuR regulates p21 mRNA stabilization by UV light. Mol Cell Biol, 2000. 20(3): p. 760-9.
46. Park, S., et al., HuD RNA recognition motifs play distinct roles in the formation of a stable complex with AU-rich RNA. Mol Cell Biol, 2000. 20(13): p. 4765-72.
47. Zhao, Z., F.C. Chang, and H.M. Furneaux, The identification of an endonuclease that cleaves within an HuR binding site in mRNA. Nucleic Acids Res, 2000. 28(14): p. 2695-701.
48. Kullmann, M., et al., ELAV/Hu proteins inhibit p27 translation via an IRES element in the p27 5'UTR. Genes Dev, 2002. 16(23): p. 3087-99.
49. Mazan-Mamczarz, K., et al., RNA-binding protein HuR enhances p53 translation in response to ultraviolet light irradiation. Proc Natl Acad Sci U S A, 2003. 100(14): p. 8354-9.
50. Komar, A.A. and M. Hatzoglou, Internal ribosome entry sites in cellular mRNAs: mystery of their existence. J Biol Chem, 2005. 280(25): p. 23425-8.
51. Baird, S.D., et al., Searching for IRES. RNA, 2006. 12(10): p. 1755-85.
52. Rogers, G.W., Jr., A.A. Komar, and W.C. Merrick, eIF4A: the godfather of the DEAD box helicases. Prog Nucleic Acid Res Mol Biol, 2002. 72: p. 307-31.
53. Scheper, G.C. and C.G. Proud, Does phosphorylation of the cap-binding protein eIF4E play a role in translation initiation? Eur J Biochem, 2002. 269(22): p. 5350-9.
54. Sachs, A.B., P. Sarnow, and M.W. Hentze, Starting at the beginning, middle, and end: translation initiation in eukaryotes. Cell, 1997. 89(6): p. 831-8.
55. Gingras, A.C., B. Raught, and N. Sonenberg, eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annu Rev Biochem, 1999. 68: p. 913-63.
56. Spriggs, K.A., et al., Internal ribosome entry segment-mediated translation during apoptosis: the role of IRES-trans-acting factors. Cell Death Differ, 2005. 12(6): p. 585-91.
57. Pelletier, J. and N. Sonenberg, Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature, 1988. 334(6180): p. 320-5.
58. Jang, S.K., et al., A segment of the 5' nontranslated region of encephalomyocarditis virus RNA directs internal entry of ribosomes during in vitro translation. J Virol, 1988. 62(8): p. 2636-43.
59. Gradi, A., et al., A novel functional human eukaryotic translation initiation factor 4G. Mol Cell Biol, 1998. 18(1): p. 334-42.
60. Gradi, A., et al., Proteolysis of human eukaryotic translation initiation factor eIF4GII, but not eIF4GI, coincides with the shutoff of host protein synthesis after poliovirus infection. Proc Natl Acad Sci U S A, 1998. 95(19): p. 11089-94.
61. Svitkin, Y.V., et al., Eukaryotic initiation factor 4GII (eIF4GII), but not eIF4GI, cleavage correlates with inhibition of host cell protein synthesis after human rhinovirus infection. J Virol, 1999. 73(4): p. 3467-72.
62. Macejak, D.G. and P. Sarnow, Internal initiation of translation mediated by the 5' leader of a cellular mRNA. Nature, 1991. 353(6339): p. 90-4.
63. Stoneley, M., et al., C-Myc 5' untranslated region contains an internal ribosome entry segment. Oncogene, 1998. 16(3): p. 423-8.
64. Giraud, S., et al., Translation initiation of the insulin-like growth factor I receptor mRNA is mediated by an internal ribosome entry site. J Biol Chem, 2001. 276(8): p. 5668-75.
65. Ray, P.S., R. Grover, and S. Das, Two internal ribosome entry sites mediate the translation of p53 isoforms. EMBO Rep, 2006. 7(4): p. 404-10.
66. Coldwell, M.J., et al., Initiation of Apaf-1 translation by internal ribosome entry. Oncogene, 2000. 19(7): p. 899-905.
67. Coldwell, M.J., et al., The p36 isoform of BAG-1 is translated by internal ribosome entry following heat shock. Oncogene, 2001. 20(30): p. 4095-100.
68. Evans, J.R., et al., Members of the poly (rC) binding protein family stimulate the activity of the c-myc internal ribosome entry segment in vitro and in vivo. Oncogene, 2003. 22(39): p. 8012-20.
69. Kim, Y.K., B. Hahm, and S.K. Jang, Polypyrimidine tract-binding protein inhibits translation of bip mRNA. J Mol Biol, 2000. 304(2): p. 119-33.
70. Mitchell, S.A., et al., Protein factor requirements of the Apaf-1 internal ribosome entry segment: roles of polypyrimidine tract binding protein and upstream of N-ras. Mol Cell Biol, 2001. 21(10): p. 3364-74.
71. Suzuki, K., et al., Functionally active thrombomodulin is present in human platelets. J Biochem, 1988. 104(4): p. 628-32.
72. Conway, E.M., et al., The amino terminal lectin-like domain of thrombomodulin is required for constitutive endocytosis. Blood, 1997. 89(2): p. 652-61.
73. Conway, E.M., et al., The lectin-like domain of thrombomodulin confers protection from neutrophil-mediated tissue damage by suppressing adhesion molecule expression via nuclear factor kappaB and mitogen-activated protein kinase pathways. J Exp Med, 2002. 196(5): p. 565-77.
74. Sampoli Benitez, B.A., et al., Structure of the fifth EGF-like domain of thrombomodulin: An EGF-like domain with a novel disulfide-bonding pattern. J Mol Biol, 1997. 273(4): p. 913-26.
75. Light, D.R., et al., The interaction of thrombomodulin with Ca2+. Eur J Biochem, 1999. 262(2): p. 522-33.
76. Tolkatchev, D. and F. Ni, Calcium binding properties of an epidermal growth factor-like domain from human thrombomodulin. Biochemistry, 1998. 37(25): p. 9091-100.
77. Zushi, M., et al., Aspartic acid 349 in the fourth epidermal growth factor-like structure of human thrombomodulin plays a role in its Ca(2+)-mediated binding to protein C. J Biol Chem, 1991. 266(30): p. 19886-9.
78. Sadler, J.E., Thrombomodulin structure and function. Thromb Haemost, 1997. 78(1): p. 392-5.
79. Dittman, W.A. and P.W. Majerus, Structure and function of thrombomodulin: a natural anticoagulant. Blood, 1990. 75(2): p. 329-36.
80. Sadler, J.E., et al., Structure-function relationships of the thrombin-thrombomodulin interaction. Haemostasis, 1993. 23 Suppl 1: p. 183-93.
81. Bourin, M.C., E. Lundgren-Akerlund, and U. Lindahl, Isolation and characterization of the glycosaminoglycan component of rabbit thrombomodulin proteoglycan. J Biol Chem, 1990. 265(26): p. 15424-31.
82. Tsiang, M., S.R. Lentz, and J.E. Sadler, Functional domains of membrane-bound human thrombomodulin. EGF-like domains four to six and the serine/threonine-rich domain are required for cofactor activity. J Biol Chem, 1992. 267(9): p. 6164-70.
83. Weiler, H. and B.H. Isermann, Thrombomodulin. J Thromb Haemost, 2003. 1(7): p. 1515-24.
84. Esmon, C.T., Introduction: are natural anticoagulants candidates for modulating the inflammatory response to endotoxin? Blood, 2000. 95(4): p. 1113-6.
85. Grey, S.T. and W.W. Hancock, A physiologic anti-inflammatory pathway based on thrombomodulin expression and generation of activated protein C by human mononuclear phagocytes. J Immunol, 1996. 156(6): p. 2256-63.
86. Joyce, D.E., et al., Gene expression profile of antithrombotic protein c defines new mechanisms modulating inflammation and apoptosis. J Biol Chem, 2001. 276(14): p. 11199-203.
87. Riewald, M., et al., Activation of endothelial cell protease activated receptor 1 by the protein C pathway. Science, 2002. 296(5574): p. 1880-2.
88. Yeh, C.H., et al., RNA-binding protein HuR interacts with thrombomodulin 5'untranslated region and represses internal ribosome entry site-mediated translation under IL-1 beta treatment. Mol Biol Cell, 2008. 19(9): p. 3812-22.
89. Sakai, K., Y. Kitagawa, and G. Hirose, Analysis of the RNA recognition motifs of human neuronal ELAV-like proteins in binding to a cytokine mRNA. Biochem Biophys Res Commun, 1999. 256(2): p. 263-8.
90. Clery, A., M. Blatter, and F.H. Allain, RNA recognition motifs: boring? Not quite. Curr Opin Struct Biol, 2008. 18(3): p. 290-8.
91. Al-Ahmadi, W., et al., Alternative polyadenylation variants of the RNA binding protein, HuR: abundance, role of AU-rich elements and auto-Regulation. Nucleic Acids Res, 2009. 37(11): p. 3612-24.
92. Anderson, P. and N. Kedersha, Stressful initiations. J Cell Sci, 2002. 115(Pt 16): p. 3227-34.
93. Anderson, P. and N. Kedersha, RNA granules. J Cell Biol, 2006. 172(6): p. 803-8.
94. Dever, T.E., Gene-specific regulation by general translation factors. Cell, 2002. 108(4): p. 545-56.
95. Kimball, S.R., Regulation of translation initiation by amino acids in eukaryotic cells. Prog Mol Subcell Biol, 2001. 26: p. 155-84.
96. Stoecklin, G., et al., MK2-induced tristetraprolin:14-3-3 complexes prevent stress granule association and ARE-mRNA decay. EMBO J, 2004. 23(6): p. 1313-24.
97. Katsanou, V., et al., HuR as a negative posttranscriptional modulator in inflammation. Mol Cell, 2005. 19(6): p. 777-89.
98. Li, B. and T.S. Yen, Characterization of the nuclear export signal of polypyrimidine tract-binding protein. J Biol Chem, 2002. 277(12): p. 10306-14.
99. Cote, C.A., et al., A Xenopus protein related to hnRNP I has a role in cytoplasmic RNA localization. Mol Cell, 1999. 4(3): p. 431-7.
100. Tillmar, L., C. Carlsson, and N. Welsh, Control of insulin mRNA stability in rat pancreatic islets. Regulatory role of a 3'-untranslated region pyrimidine-rich sequence. J Biol Chem, 2002. 277(2): p. 1099-106.
101. Tillmar, L. and N. Welsh, Hypoxia may increase rat insulin mRNA levels by promoting binding of the polypyrimidine tract-binding protein (PTB) to the pyrimidine-rich insulin mRNA 3'-untranslated region. Mol Med, 2002. 8(5): p. 263-72.
102. Coles, L.S., et al., A multi-protein complex containing cold shock domain (Y-box) and polypyrimidine tract binding proteins forms on the vascular endothelial growth factor mRNA. Potential role in mRNA stabilization. Eur J Biochem, 2004. 271(3): p. 648-60.
103. Pautz, A., et al., The polypyrimidine tract-binding protein (PTB) is involved in the post-transcriptional regulation of human inducible nitric oxide synthase expression. J Biol Chem, 2006. 281(43): p. 32294-302.
104. Sawicka, K., et al., Polypyrimidine-tract-binding protein: a multifunctional RNA-binding protein. Biochem Soc Trans, 2008. 36(Pt 4): p. 641-7.
105. Yi, J., et al., Reduced nuclear export of HuR mRNA by HuR is linked to the loss of HuR in replicative senescence. Nucleic Acids Res, 2010. 38(5): p. 1547-58.