簡易檢索 / 詳目顯示

研究生: 陳建勳
Chen, Chien-Hsun
論文名稱: 利用官能基聚(3,4)二氧乙烯噻吩促進蛋白質干擾下多巴胺感測應用
Functionalized Poly(3,4-ethylenedioxythiophene) (PEDOT)-Based Electrode for High Sensitive Dopamine Detection under Protein Interference-The Morphology and Electrostatic Effect
指導教授: 羅世強
Luo, Shyh-Chyang
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 106
中文關鍵詞: 多巴胺電化學感測非特異性吸附導電性高分子
外文關鍵詞: dopamine, electrochemical sensor, non-specific adsorption, conducting polymer
相關次數: 點閱:120下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在了解奈米結構與表面電性對多巴胺偵測的影響。我們合成具羧酸、乙二醇及磷酸官能基團的數個聚(3,4)二氧乙烯噻吩對多巴胺進行偵測,從結果中顯示具備羧酸官能基的聚(3,4)二氧乙烯噻吩與多巴胺分子藉由靜電交互作用而得到較高的偵測界限。除此之外,我們亦評估電極在蛋白質吸附下的表現。將電極浸入牛血清蛋白、溶菌酶、纖維蛋白元溶液中6小時後並進行偵測,結果顯示蛋白的非特異性吸附降低了偵測靈敏度,然而該電極在1~50 μM多巴胺濃度中呈現相當一致的偵測能力,並能達到1 μM的偵測界限。這些顯示出電化學聚合官能基聚(3,4)二氧乙烯噻吩具備了輕薄穩定、蛋白質影響下的一致性,以及大量生產等特性。

    In this research, we aim to understand the influence of nanostructures and surface charge on the detection of dopamine. We synthesize several functionalized poly(3,4-ethylenedioxythiophene) (PEDOT), including carboxylic acid, ethylene glycol, and phosphocholine functional groups. The results showed the nanostructured PEDOT with carboxylic acid groups provides best detection limit mainly contributed by electrostatic interaction between carboxylic acid and dopamine. Furthermore, we evaluate the performance of our electrodes in the presence of proteins. The electrodes are immersed into solutions containing BSA, lysozyme and fibrinogen for 6 hours before test. The results show the non-specific binding of protein lower the detection sensitivity. However the electrode presents a similar detection ability from 1 to 50 μM of domamine concentration, and achieves a lower detection limit about 1 μM. These show the electropolymerized functionalized PEDOT having the properties of light stability, consistency under protein influence and mass production.

    目錄 中文摘要 i Abstract ii 致謝 vi 目錄 viii 表目錄 xii 圖目錄 xiii 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 2 第二章 文獻回顧 3 2.1 多巴胺、抗壞血酸、尿酸 3 2.1.1 多巴胺 3 2.1.2 抗壞血酸 5 2.1.3 尿酸 6 2.2 導電性高分子 8 2.2.1 導電性高分子的種類 9 2.2.2 導電高分子的導電原理 13 2.2.3 導電高分子的生物親和性 16 2.3 多巴胺生物感測 18 2.3.1 生物感測器 18 2.3.2 電化學原理 24 2.3.3 多巴胺、抗壞血酸及尿酸電化學行為 35 2.3.4 多巴胺生物感測器文獻回顧 37 2.4 非特異性吸附 39 第三章 實驗 43 3.1 藥品 43 3.2 儀器 47 3.3 溶液配製 51 3.3.1 二茂鐵溶液 51 3.3.2 官能基EDOT溶液 51 3.3.3 磷酸鹽緩衝溶液 53 3.3.4 多巴胺、尿酸、抗壞血酸溶液 54 3.3.5 蛋白質溶液 56 3.4 實驗裝置與流程 57 3.4.1 參考電極製備 58 3.4.2 工作電極製備 58 3.4.3 儀器分析 62 3.4.4 pH值對多巴胺影響 63 3.4.5 表面電性與結構之影響 63 3.4.6 BSA影響下的DPV分析 64 3.4.7 多巴胺感測器之DPV分析 64 3.4.8 蛋白質吸附下多巴胺感測器之DPV分析 64 第四章 結果與討論 66 4.1 帶負電官能基導電性高分子比較 66 4.2 多巴胺之氧化還原行為 69 4.2.1 pH值之影響 69 4.3 表面形態研究 71 4.3.1 SEM和Contact angle分析 71 4.3.2 ESCA成分分析 77 4.4 表面電性與結構之影響 78 4.4.1 表面電性探討 78 4.4.2 結構探討 82 4.5 蛋白質非特異性吸附之影響 84 4.5.1 表面電性探討 85 4.5.2 結構探討 88 4.6 多巴胺偵測 91 4.7 蛋白質影響下的多巴胺偵測 94 4.8 Nano PEDOT-COOH穩定性及再現性 97 第五章 結論與未來展望 99 第六章 參考文獻 100

    [1] Textbook of biochemistry with clinical correlations, Fourth edition, 1997.
    [2] M. T. Abousaleh, "The biochemical basis of neuropharmacology, 5th edition - Cooper,JR, Bloom,FE, Roth,RH," British Journal of Psychiatry, vol. 151, pp. 576-576, 1987.
    [3] Bernheim.H, Birkmaye.W, Hornykie.O, Jellinge.K, and Seitelbe.F, "Brain dopamine and syndromes of parkinson and huntington- clinical, morphological and neurochemical correlations " Journal of the Neurological Sciences, vol. 20, pp. 415-455, 1973.
    [4] F. Mora, G. Segovia, A. del Arco, M. de Blas, and P. Garrido, "Stress, neurotransmitters, corticosterone and body-brain integration," Brain Research, vol. 1476, pp. 71-85, 2012.
    [5] K. Jackowska and P. Krysinski, "New trends in the electrochemical sensing of dopamine," Analytical and Bioanalytical Chemistry, vol. 405, pp. 3753-3771, 2013.
    [6] D. W. Lillard, P. A. Seib, and R. C. Hoseney, "Isomeric ascorbic acids and derivatives of L-ascorbic-acid - their effect on the flow of dough " Cereal Chemistry, vol. 59, pp. 291-296, 1982.
    [7] 劉. 洪. 張. 黃. 陳鴻鈞, "尿酸與腎臟病," 內科學誌, vol. 21, pp. 197-203, 2010.
    [8] J. C. W. Chien, Polyacetylene: Chemistry, physics and materials science, 1984.
    [9] A. G. MacDiarmid, ""Synthetic metals": a novel role for organic polymers," Current Applied Physics, vol. 1, pp. 269-279, 2001.
    [10] M. A. Rahman, P. Kumar, D.-S. Park, and Y.-B. Shim, "Electrochemical sensors based on organic conjugated polymers," Sensors, vol. 8, pp. 118-141, 2008.
    [11] G. Zotti, S. Cattarin, and N. Comisso, "Electrodeposition of polythiophene, polypyrrole and polyaniline by the cyclic potential sweep method. ," Journal of Electroanalytical Chemistry, vol. 235, pp. 259-273, 1987.
    [12] Z. Ping, G. E. Nauer, H. Neugebauer, J. Theiner, and A. Neckel, "Protonation and electrochemical redox doping processes of polyaniline in aqueous solutions: Investigations using in situ FTIR-ATR spectroscopy and a new doping system," Journal of the Chemical Society-Faraday Transactions, vol. 93, pp. 121-129, 1997.
    [13] A. A. Syed and M. K. Dinesan, "Polyaniline - A novel polymeric material - review," Talanta, vol. 38, pp. 815-837, 1991.
    [14] M. B. H. Letheby, M.A., Ph.D., &c. , "XXIX.—On the production of a blue substance by the electrolysis of sulphate of aniline," J. Chem. Soc., vol. 15, 1862.
    [15] T. V. V. O. N. Efimov, "Polypyrrole: a conducting polymer; its synthesis, properties and applications," Russian Chemical Reviews, vol. 66, pp. 443-457, 1997.
    [16] A. F. D. K. K. K. G. P. Gardini, "Electrochemical polymerization of pyrrole," J. Chem. Soc., Chem. Commun., pp. 635-636, 1979.
    [17] G. Heywang and F. Jonas, "Poly(alkylenedioxythiophene)s - new, very stable conducting polymers," Advanced Materials, vol. 4, pp. 116-118, 1992.
    [18] M. Dietrich, J. Heinze, G. Heywang, and F. Jonas, "Electrochemical and spectroscopic characterization of polyalkylenedioxythiophenes," Journal of Electroanalytical Chemistry, vol. 369, pp. 87-92, 1994.
    [19] N. K. Guimard, N. Gomez, and C. E. Schmidt, "Conducting polymers in biomedical engineering," Progress in Polymer Science, vol. 32, pp. 876-921, 2007.
    [20] M. Kertesz, "Electronic-structure of highly doped conducting polymers," International Journal of Quantum Chemistry, vol. 29, pp. 1165-1176, 1986.
    [21] T. G., "Polythiophene and its derivatives. In: Skotheim TA, editor. Handbook of conducting polymers, vol. I. ," New York: Marcel Dekker, pp. 293-350, 1986.
    [22] B. L. Seal, T. C. Otero, and A. Panitch, "Polymeric biomaterials for tissue and organ regeneration," Materials Science & Engineering R-Reports, vol. 34, pp. 147-230, 2001.
    [23] J. N. Turner, W. Shain, D. H. Szarowski, M. Andersen, S. Martins, M. Isaacson, et al., "Cerebral astrocyte response to micromachined silicon implants," Experimental Neurology, vol. 156, pp. 33-49, 1999.
    [24] J. D. Weiland and D. J. Anderson, "Chronic neural stimulation with thin-film, iridium oxide electrodes," Ieee Transactions on Biomedical Engineering, vol. 47, pp. 911-918, 2000.
    [25] X. Y. Cui, J. F. Hetke, J. A. Wiler, D. J. Anderson, and D. C. Martin, "Electrochemical deposition and characterization of conducting polymer polypyrrole/PSS on multichannel neural probes," Sensors and Actuators a-Physical, vol. 93, pp. 8-18, 2001.
    [26] J. Y. Wong, R. Langer, and D. E. Ingber, "Electrically conducting polymers can noninvasively control the shape and growth of mammalian-cells " Proceedings of the National Academy of Sciences of the United States of America, vol. 91, pp. 3201-3204, 1994.
    [27] G. X. Shi, M. Rouabhia, Z. X. Wang, L. H. Dao, and Z. Zhang, "A novel electrically conductive and biodegradable composite made of polypyrrole nanoparticles and polylactide," Biomaterials, vol. 25, pp. 2477-2488, 2004.
    [28] "Medical electronics labratory http://melab.snu.ac.kr/melab/lib/exe/detail.php?id=research%3Aresearch.in.melab%3Abiosensor&cache=cache&media=data:%EB%B0%94%EC%9D%B4%EC%98%A4.%EC%84%BC%EC%84%9C.1.jpg."
    [29] 謝振傑, "光纖生物感測器," 物理雙月刊, vol. 28, 2006.
    [30] 鄭. 張. 高啟瀛, "葡萄糖與尿酸酵素電極生物感測器," 中國化學會, vol. 71, pp. 195-203, 2013.
    [31] S. Zhang, G. Wright, and Y. Yang, "Materials and techniques for electrochemical biosensor design and construction," Biosensors & Bioelectronics, vol. 15, pp. 273-282, 2000.
    [32] M. E. Tess and J. A. Cox, "Chemical and biochemical sensors based on advances in materials chemistry," Journal of Pharmaceutical and Biomedical Analysis, vol. 19, pp. 55-68, 1999.
    [33] 殷立德, "以離子感測場效電晶體做為生物感測器之研究," 2001.
    [34] 胡啟章, "電化學原理與方法," 2012.
    [35] E. Gileadi, "Electrode Kinetics for Chemists, Chemical Engineers and Materials Scientists," 1993.
    [36] L. R. F. Allen J. Bard, "Electrochemical Methods: Fundamentals and Applications, 2nd edition," 2000.
    [37] R. Compton, "Electroanalytical Chemistry - Vassos,B.H., Ewing,G.W.," Nature, vol. 310, pp. 519-519, 1984.
    [38] W. A. Maccrehan, "Differential pulse detection in liquid-chromatography and its application to the measurement of organometal cations," Analytical Chemistry, vol. 53, pp. 74-77, 1981.
    [39] T. Luczak, "Electrochemical oxidation of dopamine in the presence of secondary amine. An alternative way for quantitative dopamine determination at a gold electrode," Electroanalysis, vol. 20, pp. 1639-1646, Aug 2008.
    [40] Y. L. Zeng, C. X. Li, C. R. Tang, X. B. Zhang, G. L. Shen, and R. Q. Yu, "The electrochemical properties of Co(TPP), tetraphenylborate modified glassy carbon electrode: Application to dopamine and uric acid analysis," Electroanalysis, vol. 18, pp. 440-448, 2006.
    [41] Z. Zhuang, J. Li, R. Xu, and D. Xiao, "Electrochemical detection of dopamine in the presence of ascorbic acid using overoxidized polypyrrole/graphene modified electrodes," International Journal of Electrochemical Science, vol. 6, pp. 2149-2161, 2011.
    [42] H. Wang, F. Ren, C. Wang, B. Yang, D. Bin, K. Zhang, et al., "Simultaneous determination of dopamine, uric acid and ascorbic acid using a glassy carbon electrode modified with reduced graphene oxide," Rsc Advances, vol. 4, pp. 26895-26901, 2014.
    [43] L. Wu, L. Feng, J. Ren, and X. Qu, "Electrochemical detection of dopamine using porphyrin-functionalized graphene," Biosensors & Bioelectronics, vol. 34, pp. 57-62, 2012.
    [44] S.-J. Li, J.-Z. He, M.-J. Zhang, R.-X. Zhang, X.-L. Lv, S.-H. Li, et al., "Electrochemical detection of dopamine using water-soluble sulfonated graphene," Electrochimica Acta, vol. 102, pp. 58-65, 2013.
    [45] J. Maciejewska, K. Pisarek, I. Bartosiewicz, P. Krysinski, K. Jackowska, and A. T. Biegunski, "Selective detection of dopamine on poly(indole-5-carboxylic acid)/tyrosinase electrode," Electrochimica Acta, vol. 56, pp. 3700-3706, 2011.
    [46] S. Cosnier, C. Innocent, L. Allien, S. Poitry, and M. Tsacopoulos, "An electrochemical method for making enzyme microsensors. Application to the detection of dopamine and glutamate," Analytical Chemistry, vol. 69, pp. 968-971, 1997.
    [47] J. Njagi, M. M. Chernov, J. C. Leiter, and S. Andreescu, "Amperometric detection of dopamine in vivo with an enzyme based carbon fiber microbiosensor," Analytical Chemistry, vol. 82, pp. 989-996, 2010.
    [48] K. Min and Y. J. Yoo, "Amperometric detection of dopamine based on tyrosinase-SWNTs-Ppy composite electrode," Talanta, vol. 80, pp. 1007-1011, 2009.
    [49] M. Zhu, C. Zeng, and J. Ye, "Graphene-modified carbon fiber microelectrode for the detection of dopamine in mice hippocampus tissue," Electroanalysis, vol. 23, pp. 907-914, 2011.
    [50] S. Hou, M. L. Kasner, S. Su, K. Patel, and R. Cuellari, "Highly sensitive and selective dopamine biosensor fabricated with silanized graphene," Journal of Physical Chemistry C, vol. 114, pp. 14915-14921, 2010.
    [51] P. Si, H. Chen, P. Kannan, and D.-H. Kim, "Selective and sensitive determination of dopamine by composites of polypyrrole and graphene modified electrodes," Analyst, vol. 136, pp. 5134-5138, 2011.
    [52] R. F. Vreeland, C. W. Atcherley, W. S. Russell, J. Y. Xie, D. Lu, N. D. Laude, et al., "Biocompatible PEDOT:Nafion composite electrode coatings for selective detection of neurotransmitters in vivo," Analytical Chemistry, vol. 87, pp. 2600-2607, 2015.
    [53] X. Gu, G. Jiang, G. Jiang, T. Chen, W. Zhan, X. Li, et al., "Detection of dopamine on a mercapto-terminated hexanuclear Fe(III) cluster modified gold electrode," Talanta, vol. 137, pp. 189-196, 2015.
    [54] S. R. Jeyalakshmi, S. S. Kumar, J. Mathiyarasu, K. L. N. Phani, and V. Yegnaraman, "Simultaneous determination of ascorbic acid, dopamine and uric acid using PEDOT polymer modified electrodes," Indian Journal of Chemistry Section a-Inorganic Bio-Inorganic Physical Theoretical & Analytical Chemistry, vol. 46, pp. 957-961, 2007.
    [55] L. H. Zhang, N. Teshima, T. Hasebe, M. Kurihara, and T. Kawashima, "Flow-injection determination of trace amounts of dopamine by chemiluminescence detection," Talanta, vol. 50, pp. 677-683, 1999.
    [56] T. J. Panholzer, J. Beyer, and K. Lichtwald, "Coupled-column liquid chromatographic analysis of catecholamines, serotonin, and metabolites in human urine," Clinical Chemistry, vol. 45, pp. 262-268, 1999.
    [57] A. Naccarato, E. Gionfriddo, G. Sindona, and A. Tagarelli, "Development of a simple and rapid solid phase microextraction-gas chromatography-triple quadrupole mass spectrometry method for the analysis of dopamine, serotonin and norepinephrine in human urine," Analytica Chimica Acta, vol. 810, pp. 17-24, 2014.
    [58] P. Nagaraja, R. A. Vasantha, and K. R. Sunitha, "A sensitive and selective spectrophotometric estimation of catechol derivatives in pharmaceutical preparations," Talanta, vol. 55, pp. 1039-1046, 2001.
    [59] "Catechol oxidase (Tyrosinase) - Enzymes
    http://www.science-projects.com/Tyrosinase.htm."
    [60] G. Fabregat, J. Casanovas, E. Redondo, E. Armelin, and C. Aleman, "A rational design for the selective detection of dopamine using conducting polymers," Physical Chemistry Chemical Physics, vol. 16, pp. 7850-7861, 2014.
    [61] N. J. Ke, S.-S. Lu, and S.-H. Cheng, "A strategy for the determination of dopamine at a bare glassy carbon electrode: p-Phenylenediamine as a nucleophile," Electrochemistry Communications, vol. 8, pp. 1514-1520, 2006.
    [62] D. G. Castner and B. D. Ratner, "Biomedical surface science: Foundations to frontiers," Surface Science, vol. 500, pp. 28-60, 2002.
    [63] A. L. Gui, E. Luais, J. R. Peterson, and J. J. Gooding, "Zwitterionic Phenyl Layers: Finally, stable, anti-biofouling coatings that do not passivate electrodes," Acs Applied Materials & Interfaces, vol. 5, pp. 4827-4835, 2013.
    [64] M. S. Sheu, A. S. Hoffman, and J. Feijen, "A glow-discharge treatment to immobilize poly(ethylene oxide) poly(propylene oxide) surfactants for wettable and nonfouling biomaterials," Journal of Adhesion Science and Technology, vol. 6, pp. 995-1009, 1992.
    [65] D. Leckband, S. Sheth, and A. Halperin, "Grafted poly(ethylene oxide) brushes as nonfouling surface coatings," Journal of Biomaterials Science-Polymer Edition, vol. 10, pp. 1125-1147, 1999.
    [66] S. I. Jeon, J. H. Lee, J. D. Andrade, and P. G. Degennes, "protein surface interactions in the presence of polyethylene oxide .1. Simplified theory," Journal of Colloid and Interface Science, vol. 142, pp. 149-158, 1991.
    [67] B. Zhu, S.-C. Luo, H. Zhao, H.-A. Lin, J. Sekine, A. Nakao, et al., "Large enhancement in neurite outgrowth on a cell membrane-mimicking conducting polymer," Nature Communications, vol. 5, 2014.
    [68] B.-R. Li, M.-Y. Shen, H.-H. Yu, and Y.-K. Li, "Rapid construction of an effective antifouling layer on a Au surface via electrodeposition," Chemical Communications, vol. 50, pp. 6793-6796, 2014.
    [69] C. R. M.-R. Fairman, "Preparation and modification of thin carbon films," 2010.
    [70] S. Lacher, N. Obata, S.-C. Luo, Y. Matsuo, B. Zhu, H.-h. Yu, et al., "Electropolymerized conjugated polyelectrolytes with tunable work function and hydrophobicity as an anode buffer in organic optoelectronics," Acs Applied Materials & Interfaces, vol. 4, pp. 3396-3404, 2012.
    [71] E. M. Ali, E. A. B. Kantchev, H.-h. Yu, and J. Y. Ying, "Conductivity shift of polyethylenedioxythiophenes in aqueous solutions from side-chain charge perturbation," Macromolecules, vol. 40, pp. 6025-6027, 2007.
    [72] N. C. Tansil, E. A. B. Kantchev, Z. Gao, and H.-h. Yu, "Electropolymerization of intercalator-grafted conducting polymer for direct and amplified DNA detection," Chemical Communications, vol. 47, pp. 1533-1535, 2011.
    [73] S.-C. Luo, E. M. Ali, N. C. Tansil, H.-H. Yu, S. Gao, E. A. B. Kantchev, et al., "Poly(3,4-ethylenedioxythiophene) (PEDOT) nanobiointerfaces: Thin, ultrasmooth, and functionalized PEDOT films with in vitro and in vivo biocompatibility," Langmuir, vol. 24, pp. 8071-8077, 2008.
    [74] S.-C. Luo, J. Sekine, B. Zhu, H. Zhao, A. Nakao, and H.-H. Yu, "Polydioxythiophene nanodots, nonowires, nano-networks, and tubular structures: The effect of functional groups and temperature in template-free electropolymerization," Acs Nano, vol. 6, pp. 3018-3026, 2012.

    下載圖示 校內:2017-07-01公開
    校外:2018-07-01公開
    QR CODE