簡易檢索 / 詳目顯示

研究生: 葉修銘
Yeh, Hsiu-Ming
論文名稱: 三維微結構與半導體製程模擬系統之發展與應用
Developments and Applications of Process Emulators for MEMS and Semiconductor Fabrication Processing
指導教授: 陳國聲
Chen, Kuo-Shen
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 165
中文關鍵詞: 微製程製程模擬電腦輔助設計幾何模擬迴旋積分法化學機械研磨電子束微影細胞自動機
外文關鍵詞: electron-beam lithography, MEMS, chemical-mechanical polishing (CMP), computer aided design (CAD), digital convolution, Process emulation, cellular automata (CA), solid modeling
相關次數: 點閱:167下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 微製程技術在目前的科技發展中扮演著重要的地位,在三維微結構的設計製作過程中,適當的運用電腦輔助設計將可大幅度減少重新設計與試做的過程,並建構虛擬原型的開發與迅速地評估設計變更的效果及產品的製造與效率,得以加速實體成品的開發時間。在目前的微機電製程中,主要是利用半導體製程的方式來製作,但其加工形狀受到較大的限制,不易製作出三維微結構;而近來發展出許多新興的微製程技術,如電子束微影等,其可直接製作出精度高且任意曲面之三維微結構。但由於必須考量其本身的製程特性,在獲得一產品前常需經過多次的試做,其將影響產品開發的時間且提高成本。所以,若要製作出更精細複雜之結構並減少試做的過程,則必須藉由電腦輔助設計來加速元件的製作。除此之外,隨著積體電路線寬不斷縮小,晶圓表面高低起伏對微影聚焦能力的影響很大,使得晶圓平坦化的要求不斷提升。由於化學機械研磨涉及化學蝕刻與機械研磨相互的複雜過程,必須考慮各研磨參數與條件之影響。因此,藉由電腦輔助設計並整合多領域之分析,將有助於CMP製程技術之發展。在本論文中,依模擬分析的方法介紹三種在微製程與半導體製程常用之製程模擬法,分別為幾何模擬法、細胞自動機法以及迴旋積分法等,並介紹其模擬方法之特性與應用。並依據各模擬方法之特性,將其應用在不同的製程技術上,分別建立合理之模擬方法與流程,以發展幾何模擬之微製程模擬模組、迴旋積分法之EBL製程模擬模組以及細胞自動機法之CMP製程模擬模組與CMP研磨墊修整製程模擬模組等,並針對各製程技術之製程參數進行探討與應用,以提供實際製程上之參考。

    Computer aided design (CAD) is a key issue for the development of all engineering products to reduce the cost and to accelerate product updating. Recently, with the advances in microelectromechanical (MEMS) and semiconductor fabrications, new CADs are needed for optimizing the fabrication performances. Therefore, this dissertation aims to develop process emulators for MEMS and semiconductor fabrication processing using various modeling techniques. Three process emulators are developed in this dissertation. First, a MEMS fabrication emulator based on solid modeling. Second, a process emulator for electron-beam based 3D structure fabrication by using digital convolution method. Finally, a chemical-mechanical polishing (CMP) CAD and a pad dressing module for predicting material removing rate based on cellular automata (CA) method. For MEMS fabrication, its 2D extruded nature of the MEMS fabrication process makes it extremely suitable to be represented by using an automatic solid modeling flow. The correlation between individual fabrication process and their corresponding solid modeling procedure is established and a rational process emulation flow is proposed and a fabrication process emulator, called the NCKU Z-Fabricator is developed for emulating both MEMS and semiconductor interconnection process. For the E-beam based 3D fabrication, this work utilizes the proximity effect of E-beam lithography and uses experimental data to form the kernel function to predict the influence of key process parameters on the final structure geometry. That is, this emulator calculates the dosage of electron beam accumulation and the relationship between the dosage of electron beam and the height of photoresist under an OpenGL environment to generate 3D visualizations. By the tool, it is possible to provide guidelines for optimizing EBL performance and reducing fabrication cost. Finally, for the CMP and dresser CADs, by utilizing CA method, this emulator integrates kinematics, stress analysis, and fluid mechanics under an OpenGL environment to generate 3D visualizations for predict the material removal rate, pressure distribution, as well as the polishing uniformity of wafers and the recovery area ratio (RAR) of pads. By the developed utilities, it is possible to provide guidelines for enhancing CMP performance. In addition, the methodology used to develop these emulators could also be further applied in related novel fabrication routes such as excimer laser ablations and electroforming.

    中文摘要…………………………………………………………………………I 英文摘要 ………………………………………………………………………II 致謝 …………………………………………………………………………III 目錄 ……………………………………………………………………………IV 表目錄 …………………………………………………………………………IX 圖目錄 …………………………………………………………………………X 符號說明 ………………………………………………………………………XV 第一章 序論 1.1 前言 ………………………………………………………………………1 1.2 製程模擬方法與相關研究…………………………………………………3 1.3 研究動機……………………………………………………………………6 1.4 本文架構……………………………………………………………………7 第二章 微製程與半導體製程技術之介紹 2.1 微製程技術…………………………………………………………………9 2.1.1 積體電路技術…………………………………………………………9 2.1.2 體型微加工技術 ……………………………………………………12 2.1.3 面型微加工技術 ……………………………………………………13 2.2 三維微製程技術 …………………………………………………………13 2.3 化學機械研磨製程技術 …………………………………………………19 2.4 製程技術與製程模擬法 …………………………………………………21 2.5 本章結論 …………………………………………………………………22 第三章 製程模擬方法之介紹 3.1 前言 ………………………………………………………………………23 3.2 幾何模擬法 ………………………………………………………………24 3.3 迴旋積分法 ………………………………………………………………26 3.4 細胞自動機理論法 ………………………………………………………28 3.5 本章結論 …………………………………………………………………31 第四章 微機電製程模擬模組之應用 4.1 幾何模型與微機電製程之對應關係 ……………………………………33 4.1.1 微製造技術之流程 …………………………………………………33 4.1.2 微機電製造技術與幾何模擬之關係 ………………………………34 4.2 NCKU Z-Fabricator製程模擬模組………………………………………39 4.3 半導體內連線結構幾何模型之建立 ……………………………………42 4.3.1 前言 …………………………………………………………………42 4.3.2 內連線製程流程 ……………………………………………………43 4.3.3 以NCKU Z-Fab建立內連線結構 ……………………………………46 4.4 本章結論 …………………………………………………………………48 第五章 電子束微影製程模擬模組之發展 5.1 前言 ………………………………………………………………………49 5.2 電子束微影製程技術 ……………………………………………………50 5.3 電子束微影之近似分析函數 ……………………………………………52 5.4 電子束微影製程模擬模組之建構 ………………………………………56 5.4.1 EBL製程模擬演算法…………………………………………………56 5.4.2 EBL製程模擬模組之建構……………………………………………58 5.5 製程模擬與參數研究 ……………………………………………………60 5.5.1 EBL製程模擬與驗證…………………………………………………60 5.5.2 核心函數之修正 ……………………………………………………61 5.5.3 EBL製程模擬…………………………………………………………63 5.5.4 EBL製程參數研究……………………………………………………67 5.6 結果討論 …………………………………………………………………70 5.7 本章結論 …………………………………………………………………71 第六章 化學機械研磨製程有限元素應力分析 6.1 前言 ………………………………………………………………………73 6.2 化學機械研磨製程之接觸力學理論分析 ………………………………74 6.3 Wafer-level CMP FEM模擬模型建立……………………………………76 6.4 晶圓與研磨墊之接觸應力分析 …………………………………………79 6.4.1 平坦晶圓與具有溝槽研磨墊之接觸應力分析 ……………………79 6.4.2 晶圓翹曲效應 ………………………………………………………81 6.4.3 多區段晶圓背壓之接觸應力分析 …………………………………84 6.4.4 製程資料庫之建立 …………………………………………………87 6.5 Device-level CMP FEM模擬模型之建立 ………………………………87 6.5.1 Device-level CMP之介紹 …………………………………………87 6.5.2 Device-level CMP FEM之接觸應力分析 …………………………89 6.5.3 Device-level CMP製程資料庫之建立 ……………………………90 6.6 本章結論 …………………………………………………………………92 第七章 化學機械研磨製程模擬模組之發展 7.1 研究架構與製程模擬模組資料庫之建立 ………………………………93 7.1.1 研究架構 ……………………………………………………………93 7.1.2 化學機械研磨之研磨模型 …………………………………………94 7.1.3 晶圓與研磨墊間之相對速度 ………………………………………95 7.1.4 晶圓與研磨墊間接觸應力分佈之分析 ……………………………96 7.2 化學機械研磨製程模擬模組之建立 ……………………………………97 7.3 化學機械研磨製程模擬與驗證…………………………………………100 7.3.1 幾何模型建構………………………………………………………100 7.3.2 晶圓與研磨墊之相對速度模擬……………………………………101 7.3.3 晶圓與研磨墊之接觸應力模擬……………………………………102 7.3.4 晶圓之瞬時移除率與平均移除率…………………………………107 7.4 Device-level CMP製程模擬模組之發展………………………………110 7.4.1 研究架構……………………………………………………………110 7.4.2 Device-level CMP製程模擬模組之建立與製程模擬……………111 7.5 本章結論…………………………………………………………………114 第八章 化學機械研磨中研磨墊修整製程模擬模組之發展 8.1 前言………………………………………………………………………115 8.2 文獻回顧…………………………………………………………………117 8.3 研磨墊修整製程模擬模組之發展………………………………………120 8.3.1 鑽石修整器之修整路徑分析………………………………………120 8.3.2 研磨墊修整模擬演算法……………………………………………122 8.3.3 研磨墊修整製程模擬模組之建構…………………………………124 8.4 製程模擬與參數研究……………………………………………………127 8.4.1 鑽石修整器修整路徑模擬…………………………………………127 8.4.2 研磨墊修整面積恢復率之模擬……………………………………130 8.4.3 製程參數研究………………………………………………………135 8.5 結果與討論………………………………………………………………142 8.6 本章結論…………………………………………………………………143 第九章 製程模擬系統之整合與討論 9.1 微機電製程模擬模組……………………………………………………145 9.2 電子束微影製程模擬模組………………………………………………146 9.3 化學機械研磨製程模擬模組……………………………………………147 9.4 化學機械研磨之研磨墊修整製程模擬模組……………………………148 第十章 結論與未來展望 10.1 本文結論 ………………………………………………………………149 10.2 本文貢獻 ………………………………………………………………150 10.3 未來工作與展望 ………………………………………………………151 參考文獻………………………………………………………………………153 自述……………………………………………………………………………163

    [1] I. Schneegaß and J. M. Köhler, “Flow-through Polymerase Chain Reactions in Chip Thermocyclers,” Reviews in Molecular Biotechnology, Vol. 82, pp. 101-121, 2001.
    [2] C. Marxer, C. Thio, M.-A. Gretillat, N.F. de Rooij, R. Battig, O. Anthamatten, B. Valk, and P. Vogel, “Vertical Mirrors Fabricated by Deep Reactive Ion Etching for Fiber-Optic Switching Applications,” J. Microelectromech. Syst., Vol. 6, No. 3, pp. 277-285, September 1997.
    [3] P. M. Zavracky, S. Majumder, and N. E. McGruer, “Micromechanical Switches Fabricated Using Nickel Surface Machining,” J. Microelectromech. Syst., Vol. 6, pp. 3-9, 1997.
    [4] Y. C. Lee, C. M. Chen, and C. Y. Wu, “A New Excimer Laser Micromachining Method for Axially Symmetric 3D Microstructures with Continuous Surface Profiles,” Sensors and Actuators A, Vol. 117, No. 2, pp. 349-355, Jan. 2005.
    [5] Y. C. Lee and C. Y. Wu, “Excimer Laser Micromachining of Aspheric Microlenses with Precise Surface Profile Control and Optimal Focusing Capability,” Optics and Lasers in Engineering, Vol. 45, No. 1, pp. 116-125, Jan. 2007.
    [6] K. S. Chen, I. K. Lin, and F. H. Ko, “Fabrication of 3D Polymer Microstructures Using Electron Beam Lithography and Nanoimprinting Technologies,” J. Micromech. Microeng., Vol. 15, pp. 1894-1903, 2005.
    [7] 林奕寬,三維微結構製程技術研究,國立成功大學機械系碩士論文,2004。
    [8] P. B. Zantye, A. Kumar, and A. K. Sikder, “Chemical Mechanical Planarization for Microelectronics Applications,” Materials Science and Engineering: R, Vol. 45, No. 3-6, pp. 89–220, 2004.
    [9] K. S. Chen, C. J. Cheng, and H. M. Yeh, “Development of Microelectromechanical System Fabrication Emulator by Solid Modeling Technology,” J. Chin. Soc. Mech. Eng., Vol. 23, No. 6, pp. 525-532, 2002.
    [10] 黎立民,微機電製程模組與機電耦合之分析,國立成功大學機械系碩士論文,2002。
    [11] 姚志民,“電腦輔助微機電系統設計與分析”,科技發展月刊,第三期,pp. 174-179,2001。
    [12] T. J. Hubbard and E. K. Antonsson, “Cellular Automata in MEMS Design,” Sens. Mater. Conf., Vol. 7, pp. 437–448, Tokyo, Japan, 1997.
    [13] Z. Zhu and C. Liu, “Anisotropic Crystalline Etching Simulation Using a Continuous Cellular Automata Algorithm,” ASME Symposium on Computer Aided Simulation of MEMS, Aneheim, CA, Nov. 1998.
    [14] Z. Zhu and C. Liu, “Micromachining Process Simulation Using a Continuous Cellular Automata Method,” J. Microelectromech. Syst., Vol. 9, No. 2, pp. 252-261, June, 2000.
    [15] R. C. Agarwal and J. W. Cooley, “New Algorithms for Digital Convolution,” IEEE Trans. on Acoust., Speech, and Signal Process., Vol. ASSP-25, No. 5, pp.392-410, Oct. 1977.
    [16] G. Koppelman, “OYSTER, A Three-Dimensional Structural Simulator for Microelectromechanical Design,” Sensors and Actautors, Vol. 20, pp. 179-185, 1989.
    [17] S. D. Senturia, R. M. Harris, B. P. Johnson, S. Kim, K. Nabors, M. A. Shulman, and J. K. White, “A Computer-aided Design System for Microelectromechanical Systems (MEMCAD),” J. Microelectromech. Syst., Vol. 1, No. 1, March, 1992.
    [18] CoventorWare: http://www.coventor.com/
    [19] IntelliSuite: http://www.intellisensesoftware.com/
    [20] K. S. Chen, L. M. Li, and K. S. Ou, “Accuracy Assessment of Simplified Electromechanical Coupling Solvers for MEMS Applications” J. of Micromechanics and Microengineering, Vol. 14, pp. 159-169, 2004.
    [21] R. C. Jaeger, Introduction to Microelectronic Fabrication, 2nd ed., Prentice Hall, 2002.
    [22] G. T. A. Kovacs, N. I. Maluf, and K. E. Petersen, “Bulk Micromachining of Silicon,” Proceedings of the IEEE, Vol. 86, No. 8, pp. 1536-1551, August, 1998.
    [23] J. M. Bustillo, R. T. Howe, and R. S. Muller, “Surface Micromachining for Microelectromechanical Systems,” Proceedings of the IEEE, Vol. 86, No. 8, pp. 1552-1574, August, 1998.
    [24] 美商Iolon公司網站, http://www.iolon.com/literature.html
    [25] Y. Fu, and N. K. A. Bryan, ‘‘Investigation of Integrated Diffractive -refractive Microlens Microfabricated by Focused Ion Beam,” J. American Institute of Physics, Vol. 71, No. 6, pp. 2263-2266, 2000.
    [26] G. M. Rebeiz, RF MEMS: Theory, Design and Technology, John Wiley & Sons, New Jersey, 2003.
    [27] K. F. Harsh, V. M. Bright, Y.C. Lee, “Solder Self-assembly for Three-dimensional Microelectromechanical Systems,” Sensors and Actuators, Vol. 77, pp.237-244, 1999.
    [28] H. Guckel, “High-Aspect-Ratio Micromachining Via Deep X-Ray Lithography,” Proceedings of the IEEE, Vol. 86, No. 8, pp. 1586-1593, August, 1998.
    [29] 楊啟榮,SU-8厚膜光阻於微系統UV-LIGA製程的應用,科儀新知,Vol. 20,1999。
    [30] H. Hocheng, C. T. Pan, and C. C. Cheng, “Formation of Microlens by Reflow of Dual Photoresist,” Jpn. J. Appl. Phys, Vol. 42, pp. 4044-4047, 2003.
    [31] B. Morgan, C. M. Waits, J. Krizmanic, and R. Ghodssi, “Development of a Deep Silicon Phase Fresnel Lens Using Gray-Scale Lithography and Deep Reactive Ion Etching,” Journal of microelectromechanical system, Vol. 13, pp. 113-120, 2004.
    [32] 吳俊穎,任意曲面3D微結構之準分子雷射加工及光學應用,國立成功大學微機電系統工程研究所碩士論文,2005。
    [33] W. L. Guthrie, “A Four-level VLSI Bipolar Metallization Design with Chemical-mechanical Planarization,” IBM Journal of Research and Development, Vol. 36, No. 5, pp. 845-857, 1992.
    [34] 莊達人,VLSI製造技術,高立圖書有限公司,第二版,2002。
    [35] Poli-1200, Copyright AM Technology, 北京奧美創新機電科技有限公司,2003。
    [36] H. Kim, H. Kim, H. Jeong, S. Lee, and D. Dornfeld, “Kinematic Analysis of Chemical Mechanical Polishing and its Effect on Polishing Results,” Key Engineering Materials, Vols. 238-239, pp. 229-234, 2003.
    [37] F. Tyan, “Nonuniformity of Wafer and Pad in CMP: Kinematic Aspects of View,” IEEE Trans. Semicond. Manuf., Vol. 20, No. 4, pp. 451-463, 2007.
    [38] L. M. Cook, “Chemical Processes in Glass Polishing”, J. Non-Cryst. Solids, Vol. 120, pp.152-171, 1990.
    [39] G. Fu and A. Chandra, “The Relationship between Wafer Surface Pressure and Wafer Backside Loading in Chemical Mechanical Polishing,” Thin Solid Films, Vol. 474, pp. 217-221, 2005.
    [40] 葉修銘,以幾何模擬法分析微機電製程與建立其電腦輔助設計模組,國立成功大學機械系碩士論文,2004。
    [41] K. S. Chen and H. M. Yeh, “Development of Geometrically Based Fabrication Emulator for MEMS Micromachining and Excimer Laser Ablation,” J. Chin. Inst. Eng., Vol. 31, No. 1, pp. 41-51, Jan. 2008.
    [42] M. W. Firebaugh, Artificial intelligence: a knowledge-based approach, Boyd and Fraser, 1988.
    [43] M. Batty, H. Couclelis, and M. Eichen, “Urban Systems as Cellular Automata,” Environment and Planning B: Planning and Design., Vol. 24, No. 2, pp. 159-64, 1997.
    [44] M. H. Lawry, I-DEAS/Student Guide, SDRC, 2000.
    [45] 尤春風,CATIA V5 使用手冊,知城數位科技股份有限公司出版,2002。
    [46] 林清安,PRO-E 2000 零件設計基礎篇,知城數位科技股份有限公司出版,2000。
    [47] V. Ananthakrishnan, R. Sarma, and G. K. Ananthasuresh, “Systematic Mask Synthesis for Surface Micromachined Microelectromechanical Systems,” J. Micromech. Microeng., Vol. 13, pp. 927-941, 2003.
    [48] D. A. Koester, R. Mahadevan, B. Hardy, and K. W. Markus, MUMPs Design Handbook Rev.7.0, MCNC, 2001.
    [49] Y. P. Ho, P. T. Liu, C. C. Lo, and H. Y. Lin, SMart Design Handbook Rev.2.2, Walsin Lihwa Corp., 2003.
    [50] 黃瑞星,黃義佑,陳建亨,微機電共用晶片設計與製作規範,Rev. 3,國科會中區微機電系統研究中心,2003。
    [51] P. Josh Wolf, “Overview of Dual Damascene Cu/Low-k Interconnect,” IITC workshop, 2004.
    [52] 邱顯光、蔡明蒔、林鴻志,雙鑲嵌結構製作技術簡介,奈米通訊,Vol. 6, No. 3, pp. 36-42, 1999.
    [53] E. Kratschmer, “Verification of a Proximity Effect Correction Program in Electron Beam Lithography,” J. Vac. Sci. Technol., Vol. 19, No. 4, pp. 1264-1268, Nov. 1981.
    [54] N. D. Wittels and C. I. Youngman, “The Proximity Effect Correction in Electron Beam Lithography,” Proc. Symp. 8th Int. Conf. on Electron and Ion Beam Sci. Technol., pp. 361-370, 1978.
    [55] G. Owen and P. Rissam, “The Proximity Effect Correction in Electron Beam Lithography by Equalization of Background Dose,” J. Appl. Phys., Vol. 54, pp. 3573-3581, 1983.
    [56] R. D. Heidenreich, “Empirical Electron Backscatter Model for Thin Resist Films on a Substrate,” J. Appl. Phys., Vol. 48, No. 4, pp. 1418-1425, 1977.
    [57] C. R. K. Marrian, F. K. Perkins, D. Park, E. A. Dobisz, M. C. Peckerar, K. W. Rhee, and R. Bass, “Modeling of Electron Elastic and Inelastic Scattering,” J. Vac. Sci. Technol. B, Vol. 14, No.6, pp. 3864-3869, 1996.
    [58] H. Eisenmann, T. Waas, and Hartmann, “PROXECCO-proximity Effect Correction by Convolution,” J. Vac. Sci. Technol. B, Vol. 11, No. 6, pp. 2741-2745, 1993.
    [59] A. N. Broers, “Resolution Limits for Electron-beam Lithography,” IBM J. Res. Develop., Vol. 32, No. 4, pp. 502-513, Jul. 1988.
    [60] D. M. Tennant, G. E. Doran, R. E. Howard, and J. S. Denker, “Electron Scattering Distribution in InP at 50 kV,” J. Vac. Sci. Technol. B, Vol. 6, No. 1, pp. 426-431, Jan. 1988.
    [61] K. L. Tai, W. R. Sinclair, R. G. Vadimsky, J. M. Moran, and M. J. Rand, “Bilevel High Resolution Photolithographic Technique for Use with Wafers with Stepped and/or Reflecting Surfaces,” J. Vac. Sci. Technol., Vol. 16, No. 6, pp. 1977-1979, Nov. 1979.
    [62] K. L. Tai, R. G. Vadimsky, C. T. Kemmerer, J. S. Wagner, V. E. Lamberti, and A. G. Timko, “Submicron Optical Lithography Using an Inorganic Resist/Polymer Bilevel Scheme,” J. Vac. Sci. Technol., Vol. 17, No. 5, pp. 1169-1176, 1980.
    [63] L. F. Johnson, “Optical Writing of Dense 1000-A Features in Photoresist”, Appl. Opt., Vol. 21, No. 11, pp. 1892-1893, 1982.
    [64] F. W. Preston, “The Theory and Design of Plate Glass Polishing Machine,” J. Soc. Glass Technol., Vol. 11, pp.214–256, 1927.
    [65] Y. Y. Lin and S. P. Lo, “A Study on the Stress and Nonuniformity of the Wafer Surface for the Chemical-mechanical Polishing Process,” Int J Adv Manuf Technol, Vol. 22, pp. 401–409, 2003.
    [66] Y. Y. Lin and S. P. Lo, “A Study of a Finite Element Model for the Chemical Mechanical Polishing Process,” Int J Adv Manuf Technol, Vol. 23, pp. 644–650, 2004.
    [67] G. G. Stoney, “The Tension of Thin Metallic Film Deposited by Electrolysis,” Proc. R. Soc. Lond A, Vol. 82, pp. 172–175, 1909.
    [68] S. J. Shiu, C. C. Yu, and S. H. Shen, “Multivariable Control of Multizone Chemical Mechanical Polishing,” J. Vac. Sci. Technol. B, Vol. 22, pp. 1679–1687, 2004.
    [69] G. Fu and A. Chandra, “An Analytical Dishing and Step Height Reduction Model for Chemical Mechanical Planarization,” IEEE Trans. Semicond. Manuf., Vol. 16, No. 3, pp.477–485, 2003.
    [70] 顏嘉良,化學機械拋光有限元素力學分析與多尺度接觸力學模式之建立,國立成功大學機械系碩士論文,2007。
    [71] J. Y. Lai, Mechanics, Mechanisms, and Modeling of The Chemical Mechanical Polishing Process, Ph.D. dissertation, Dept. Mech. Eng., MIT, USA, 2001.
    [72] S. H. Ng, Measurement and Modeling of Fluid Pressures in Chemical Mechanical Polishing, Ph.D. dissertation, Dept. Mech. Eng., Georgia Institute of Technology, USA, 2005.
    [73] A. Maury, D. Ouma, D. Boning, and J. Chung, “A Modification to Preston’s Equation and Impact on Pattern Density Effect Modeling,” Program Abstracts, Advanced Metalization and Interconnect Systems for ULSI Applications, 1997.
    [74] F. Zhang and A. Busnaina, “The Role of Particle Adhesion and Surface Deformation in Chemical Mechanical Polishing Processes,” Electrochemical and Solid-State Letters, Vol. 1, No. 4, pp. 184–187, 1998.
    [75] B. Zhao and F. G. Shi, “Chemical Mechanical Polishing in IC Processes: New Fundamental Insights,” 1999 CMP-MIC conference, Santa Clara, CA, USA, pp. 13–22, 1999.
    [76] Y. C. Wang and T. S. Yang, “Effects of Pad Grooves on Chemical Mechanical Planarization,” J. Electrochem. Soc., Vol. 154, No. 6, pp. H486–H494, 2007.
    [77] B. J. Hooper, G. Byrne, and S. Galligan, “Pad Conditioning in Chemical Mechanical Polishing,” J. Mater. Process. Technol., Vol. 123, pp. 107-113, 2002.
    [78] J. McGrath and C. Davis, “Polishing Pad Surface Characterisation in Chemical Mechanical Planarization,” J. Mater. Process. Technol., Vol. 153-154, pp. 666-673, 2004.
    [79] K.H. Park, H.J. Kim, O.M. Chang, and H.D. Jeong, “Effects of Pad Properties on Material Removal in Chemical Mechanical Polishing,” J. Mater. Process. Technol., Vol. 187-188, pp. 73-76, 2007.
    [80] Y. S. Liao, P. W. Hong, and C. T. Yang, “A Study of the Characteristics of the Diamond Dresser in the CMP Process,” Key Engineering Materials, Vol. 257-258, pp. 371-376, 2004.
    [81] Z. Z. Zhou, J. L. Yuan, B. H. Lv, and J. J. Zheng, “Study on Pad Conditioning Parameters in Silicon Wafer CMP Process,” Key Engineering Materials, Vol. 359-360, pp. 309-313, 2008.
    [82] J. Sung and Y. L. Pai, “CMP Pad Dresser: A Diamond Grid Solution,” in Advances in Abrasive Technology III, pp. 189-196, Soc. Grinding Engineers, 2000.
    [83] P. L. Tso and S. Y. Ho, “Factors Influencing the Dressing Rate of Chemical Mechanical Polishing Pad Conditioning,” Int. J. Adv. Manuf. Technol., Vol. 33, pp. 720-724, 2007.
    [84] C. C. Hu, Modeling of Chemical Mechanical Polishing, M.S. thesis, Dept. Mech. Eng., DEKALB ILLINOIS, USA, 2004.
    [85] F. Tyan, “Pad Conditioning Density Distribution in CMP Process with Diamond Dresser,” IEEE Trans. on Semi. Manuf., Vol. 20, No. 4, pp. 464-475, 2007.
    [86] Y. M. Liao, H. Y.Yan, F. J.Wang, and K-S Chen, “Mechanical Properties Characterization for CMP Pads,” 23rd National Conference on Mech. Eng., CSME, Tainan, Taiwan, 2006.

    下載圖示 校內:2011-07-14公開
    校外:2011-07-14公開
    QR CODE