簡易檢索 / 詳目顯示

研究生: 廖淑貞
Liao, Shu-Zhen
論文名稱: 光動力治療改變金黃色葡萄球菌傷口分離株對甲氧苯青黴素的感受性
Photodynamic therapy can alter methicillin susceptibility in Staphylococcus aureus wound isolates
指導教授: 王德華
Wong, Tak-Wah
學位類別: 碩士
Master
系所名稱: 醫學院 - 生物化學暨分子生物學研究所
Department of Biochemistry and Molecular Biology
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 34
中文關鍵詞: 抗藥性循血綠抗藥性金黃色葡萄球菌光動力療法
外文關鍵詞: drug-resistant, indocyanine green, methicillin-resistant Staphylococcus aureus, photodynamic therapy
相關次數: 點閱:190下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 細菌抗藥性已經成為一個全球臨床及公共衛生的問題,methicillin抗藥性金黃色葡萄球菌(MRSA) 是臨床上重要的皮膚病原菌之一,並且有可能進展至菌血症而致死。光動力療法經由適當波長激發感光劑來產生許多活性氧化物,可以破壞細菌的多種標的,因此已漸漸成為抗生素一種新的輔助替代療法。最近我們發現MRSA在光動力治療後會改變細菌的抗藥性,但作用機制未明。在此研究中,我們想要探索為何光動力療法可以改變細菌的抗藥性。
    我們首先分類三株對光動力療法感受性不同的臨床菌株去探究抗藥性變化的濃度效應,藉由測定細菌的生長速率與細胞壁厚度來分析光動力療法如何改變細菌的生理特性,並探討光動力療法後基因表達(DNA、RNA)及相關蛋白的改變。光動力療法存活下的MRSA生長變得較快速、細胞壁變得較薄,這些存活者有趨向藥物敏感的趨勢而且具有濃度效應,失去抗藥性的機轉與 mec A複合體的基因遺失有部分的相關性。
    總括來說,光動力療法透過抗藥基因的剔除,將細菌從抗藥性的表型轉變偏向敏感性表型,可能具有成為抗生素的輔助療法的潛力。

    Antibiotic resistance has become a serious clinical and public health problem globally. Methicillin-resistant Staphylococcus aureus (MRSA) is one of the major pathogens causing skin infections and may be life threatening if progresses to bacteremia. Photodynamic therapy (PDT) damages multiple targets in a bacterium by free radicals which are generated after exciting a photosensitizer with a specific wavelength of light and has becoming a new adjuvant/ alternative for antibiotics. We found PDT altered drug sensitivity in MRSA recently. However, the mechanism is unknown. In this study, we aim to explore how PDT overcome drug resistance in MRSA.
    We first classified 3 MRSA strains isolated from skin wounds with different sensitivities towards PDT to study the dose-dependent effects on drug sensitivity. Bacteria growth rate and cell wall thickness were analyzed to determine how PDT changed bacteria physiologically. Gene regulations after PDT were determined by DNA, RNA and the related protein expressions. PDT-survived MRSA grew faster and had a thinner cell wall. They had a trend to march toward a methicillin-sensitive S. aureus (MSSA) phenotype and was dose-dependent. The loss of drug resistant mechanism was partly related to mecA complex gene deletion.
    In conclusion, PDT skewed MRSA toward a drug sensitive phenotype via drug resistant gene deletion and may have the potential to become an adjuvant treatment for MRSA.

    Abstract I Acknowledgement III Abbreviations VII 1. Introduction 1 2. Materials and methods 3 2.1 Bacterial isolates 3 2.2 Photodynamic therapy system 4 2.3 Photoinactivation of MRSA 4 2.4 Growth curves 5 2.5 Antibiotic susceptibility testing 5 2.6 Transmission electron microscopy 6 2.7 DNA fragmentation analysis 6 2.8 Polymerase chain reaction 7 2.9 Quantitative reverse transcription polymerase chain reaction 7 2.10 Western blot 8 2.11 Statistics 9 3. Results 9 3.1 MRSA grew faster after PDT 9 3.2 The MRSA cell wall become thinner after PDT 9 3.3 MRSA were driven toward a drug sensitive phenotype by PDT 9 3.4 Gene alterations and deletions after PDT 10 3.5 Reduction of PBP2a by PDT 10 4. Discussion 11 5. References 14 6. Table 18 Table 1. The alteration of MIC value of oxacillin after PDT 18 7. Figures 19 Figure 1. Bacterial growth curves after photodynamic therapy. 19 Figure 2. Changes of cell wall thickness of MRSA-L after photodynamic therapy. 20 Figure 3. Changes of drug sensitivity of MRSA after photodynamic therapy. 21 Figure 4. Genotyping of three clinical isolate after one photodynamic therapy. 23 Figure 5A. MecA complex deletion after photodynamic therapy in MRSA-L. 24 Figure 5B. No changes of mecA complex after photodynamic therapy in MRSA-M. 25 Figure 5C. No changes of mecA complex after photodynamic therapy in MRSA-H. 26 Figure 6. Quantitative changes of mecA mRNA of three clinical MRSA isolates after photodynamic therapy. 27 Figure 7. PBP2a protein expression in three clinical MRSA isolates after photodynamic therapy. 28 8. Supplementary Tables 29 Supplementary Table 1. The MRSA inhibition zone diameter and MIC value according to CLSI criteria. 29 Supplementary Table 2. The PCR primer used in this study.30 9. Supplementary Figures 31 Supplementary Figure 1. The mechanism of photodynamic therapy. 31 Supplementary Figure 2. The photodynamic therapy system. 32 Supplementary Figure 3. The photodynamic inactivation effects on three clinical MRSA strains. 33 Supplementary Figure 4. Mec gene typing of three MRSA clinical isolates. 34

    1 Wertheim, H. F. et al. The role of nasal carriage in Staphylococcus aureus infections. The Lancet infectious diseases 5, 751-762 (2005).
    2 Van Hal, S. J. et al. Predictors of mortality in Staphylococcus aureus bacteremia. Clinical microbiology reviews 25, 362-386 (2012).
    3 Anantha, R. V. et al. Risk factors for mortality among patients with Staphylococcus aureus bacteremia: a single-centre retrospective cohort study. Canadian Medical Association Open Access Journal 2, E352-E359 (2014).
    4 Tipper, D. Mode of action of β-lactam antibiotics. Review of Infectious Diseases 1, 39-53 (1979).
    5 Chambers, H. F. The changing epidemiology of Staphylococcus aureus? Emerging infectious diseases 7, 178 (2001).
    6 Blot, S. I., Vandewoude, K. H., Hoste, E. A. & Colardyn, F. A. Outcome and attributable mortality in critically ill patients with bacteremia involving methicillin-susceptible and methicillin-resistant Staphylococcus aureus. Archives of Internal Medicine 162, 2229-2235 (2002).
    7 Cosgrove, S. E. et al. The impact of methicillin resistance in Staphylococcus aureus bacteremia on patient outcomes mortality, length of stay, and hospital charges. Infection Control 26, 166-174 (2005).
    8 Cosgrove, S. E. et al. Comparison of mortality associated with methicillin-resistant and methicillin-susceptible Staphylococcus aureus bacteremia: a meta-analysis. Clinical infectious diseases 36, 53-59 (2003).
    9 Klevens, R. M. et al. Invasive methicillin-resistant Staphylococcus aureus infections in the United States. Jama 298, 1763-1771 (2007).
    10 Hartman, B. J. & Tomasz, A. Low-affinity penicillin-binding protein associated with beta-lactam resistance in Staphylococcus aureus. Journal of bacteriology 158, 513-516 (1984).
    11 Goldstein, F. et al. Identification and phenotypic characterization of a beta-lactam-dependent, methicillin-resistant Staphylococcus aureus strain. Antimicrob Agents Chemother 51, 2514-2522 (2007).
    12 Shang, W., Davies, T. A., Flamm, R. K. & Bush, K. Effects of ceftobiprole and oxacillin on mecA expression in methicillin-resistant Staphylococcus aureus clinical isolates. Antimicrob Agents Chemother 54, 956-959, (2010).
    13 Oppegaard, H., Steinum, T. M. & Wasteson, Y. Horizontal transfer of a multi-drug resistance plasmid between coliform bacteria of human and bovine origin in a farm environment. Applied and environmental microbiology 67, 3732-3734 (2001).
    14 Tenover, F. C. et al. Vancomycin-resistant Staphylococcus aureus isolate from a patient in Pennsylvania. Antimicrobial agents and chemotherapy 48, 275-280 (2004).
    15 Chang, S. et al. Infection with vancomycin-resistant Staphylococcus aureus containing the vanA resistance gene. New England Journal of Medicine 348, 1342-1347 (2003).
    16 Juzeniene, A. & Moan, J. The history of PDT in Norway: Part II. Recent advances in general PDT and ALA-PDT. Photodiagnosis and photodynamic therapy 4, 80-87 (2007).
    17 Robertson, C., Evans, D. H. & Abrahamse, H. Photodynamic therapy (PDT): a short review on cellular mechanisms and cancer research applications for PDT. Journal of Photochemistry and Photobiology B: Biology 96, 1-8 (2009).
    18 Bandyopadhyay, U., Das, D. & Banerjee, R. K. Reactive oxygen species: oxidative damage and pathogenesis. Current science 77, 658-666 (1999).
    19 Dolmans, D. E., Fukumura, D. & Jain, R. K. Photodynamic therapy for cancer. Nature reviews cancer 3, 380-387 (2003).
    20 Dai, T., Huang, Y.-Y. & Hamblin, M. R. Photodynamic therapy for localized infections – state of the art. Photodiagnosis and photodynamic therapy 6, 170-188 (2009).
    21 Menezes, S., Capella, M. & Caldas, L. Photodynamic action of methylene blue: repair and mutation in Escherichia coli. Journal of Photochemistry and Photobiology B: Biology 5, 505-517 (1990).
    22 Wakayama, Y., Takagi, M. & Yano, K. Photosensitized inactivation of E. coli cells in toluidine blue‐light system. Photochemistry and photobiology 32, 601-605 (1980).
    23 Wong, T.-W., Wang, Y.-Y., Sheu, H.-M. & Chuang, Y.-C. Bactericidal effects of toluidine blue-mediated photodynamic action on Vibrio vulnificus. Antimicrobial agents and chemotherapy 49, 895-902 (2005).
    24 Kömerik, N., Wilson, M. & Poole, S. The effect of photodynamic action on two virulence factors of gram‐negative bacteria¶. Photochemistry and photobiology 72, 676-680 (2000).
    25 Kranz, S. et al. Antibacterial photodynamic treatment of periodontopathogenic bacteria with indocyanine green and near-infrared laser light enhanced by Trolox(TM). Lasers in surgery and medicine 47, 350-360 (2015).
    26 Omar, G. S., Wilson, M. & Nair, S. P. Lethal photosensitization of wound-associated microbes using indocyanine green and near-infrared light. BMC microbiology 8, 111 (2008).
    27 Desmettre, T., Devoisselle, J. & Mordon, S. Fluorescence properties and metabolic features of indocyanine green (ICG) as related to angiography. Survey of ophthalmology 45, 15-27 (2000).
    28 Urbanska, K. et al. Indocyanine green as a prospective sensitizer for photodynamic therapy of melanomas. Acta Biochimica Polonica 49, 387-391 (2001).
    29 Okochi, O. et al. ICG pulse spectrophotometry for perioperative liver function in hepatectomy. Journal of Surgical Research 103, 109-113 (2002).
    30 Allison, R. R. et al. Photosensitizers in clinical PDT. Photodiagnosis and photodynamic therapy 1, 27-42 (2004).
    31 Barth, B. M. et al. Targeted indocyanine-green-loaded calcium phosphosilicate nanoparticles for in vivo photodynamic therapy of leukemia. Acs Nano 5, 5325-5337 (2011).
    32 Bäumler, W. et al. Photo-oxidative killing of human colonic cancer cells using indocyanine green and infrared light. British journal of cancer 80, 360 (1999).
    33 Wu, E.-C. The antibacterial mechanism of photodynamic therapy on bacterial pathogen: oxacillin-resistant Staphylococcus aureus as a modle organism. The master thesis of insititute of biochemistry and molecular biology of National Cheng Kung University, 1-32 (2013).
    34 Chen, C.-Y., Nace, G. W. & Irwin, P. L. A 6× 6 drop plate method for simultaneous colony counting and MPN enumeration of Campylobacter jejuni, Listeria monocytogenes, and Escherichia coli. Journal of microbiological methods 55, 475-479 (2003).
    35 Park, M. J. et al. Accessory gene regulator polymorphism and vancomycin minimum inhibitory concentration in methicillin-resistant Staphylococcus aureus. Annals of laboratory medicine 35, 399-403 (2015).
    36 Ender, M., McCallum, N., Adhikari, R. & Berger-Bachi, B. Fitness cost of SCCmec and methicillin resistance levels in Staphylococcus aureus. Antimicrob Agents Chemother 48, 2295-2297 (2004).
    37 Yuan, W. et al. Cell wall thickening is associated with adaptive resistance to amikacin in methicillin-resistant Staphylococcus aureus clinical isolates. The Journal of antimicrobial chemotherapy 68, 1089-1096 (2013).
    38 Cui, L. et al. Cell wall thickening is a common feature of vancomycin resistance in Staphylococcus aureus. Journal of Clinical Microbiology 41, 5-14 (2003).
    39 Tseng, S. P. et al. Toluidine blue O photodynamic inactivation on multidrug-resistant Pseudomonas aeruginosa. Lasers in surgery and medicine 41, 391-397 (2009).
    40 岩本義久 et al. Photodynamic DNA strand breaking activities of acridine compounds. Biological and Pharmaceutical Bulletin 16, 1244-1247 (1993).
    41 Ouédraogo, G. D. & Redmond, R. W. Secondary reactive oxygen species extend the range of photosensitization effects in cells: DNA damage produced via initial membrane photosensitization¶†. Photochemistry and photobiology 77, 192-203 (2003).
    42 Weller, T. M. The distribution of mecA, mecR1 and mecI and sequence analysis of mecI and the mec promoter region in Staphylococci expressing resistance to methicillin. Journal of Antimicrobial Chemotherapy 43, 15-22 (1999).
    43 Hou, Z. et al. Restoration of antibiotic susceptibility in methicillin‐resistant Staphylococcus aureus by targeting mecr1 with a phosphorothioate deoxyribozyme. Clinical and Experimental Pharmacology and Physiology 34, 1160-1164 (2007).
    44 Enright, M. C., Day, N. P., Davies, C. E., Peacock, S. J. & Spratt, B. G. Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones ofStaphylococcus aureus. Journal of clinical microbiology 38, 1008-1015 (2000).
    45 Burgdorf, W. H. Fitzpatrick's dermatology in general medicine. Journal of the American Academy of Dermatology 51, 325-326 (2004).

    無法下載圖示
    校外:不公開
    電子論文及紙本論文均尚未授權公開
    QR CODE