簡易檢索 / 詳目顯示

研究生: 李雪鈴
Li, Syue-Ling
論文名稱: 篩選結合登革病毒第二型NS5 DNA核酸適體做為檢測及治療用途
Identification of DNA Aptamers Targeting NS5 protein of type 2 Dengue Viruses for diagnostic and/or therapeutic purpose
指導教授: 王憲威
Wang, Shainn-Wei
學位類別: 碩士
Master
系所名稱: 醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 61
中文關鍵詞: 登革病毒去氧核酸適體NS5蛋白系統性配體演化指數擴增法次世代定序分析解離常數酵素連結免疫吸附分析法核酸連結免疫吸附分析法
外文關鍵詞: Dengue virus NS5, DNA aptamer, SELEX, NGS, Dissociation constant, ELISA, ELONA
相關次數: 點閱:55下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 登革病毒(DENV)乃經病媒蚊傳染,廣泛傳染流行於熱帶及亞熱帶區域包含東南亞、南美洲、西太平洋地區,特別好發於雨季過後,且近年來更似有向全球各地蔓延的趨勢。感染登革病毒患者一般會出現輕微發燒類似感冒症狀或嚴重者出現登革出血熱的症狀,尤其現也發現有不少的案例是屬於無症狀,惟迄今仍無針對DENV的藥物或疫苗來防治登革病毒感染。DENV屬於黃熱病毒科,含四種血清型(DV1-4),其基因是正股RNA,可轉譯成一條多胜肽蛋白由三個結構蛋白(C-M-E)以及七個非結構蛋白(NS1-NS2a-NS2b-NS3-NS4a-NS4b-NS5)組成。其中的NS5蛋白具有甲基化轉移酶(MTase)與RNA依賴性RNA聚合酶(RdRp)的功能。MTase作用在病毒RNA的5’端,致使其甲基化後類似宿主的RNA結構,以利於逃脫宿主免疫反應;而RdRp則負責產生大量病毒RNA,誠然NS5蛋白在病毒生活史中扮演重要的角色。另外,NS5的蛋白質序列保守性在登革四型中高於其他病毒蛋白,若以它為DENV偵測或藥物結合的評定目標應是極佳的選擇。基於此,我們利用系統性配體演化指數擴增法(SELEX)篩選出一些具有專一結合力的短片段核酸適體(Aptamer),來作為DENV感測探針,甚且進行治療登革病毒抑制劑之可能性探討。為此,本研究(1)以細菌質體(pET15b)為載體建構帶有組胺酸標籤的NS5 重組蛋白(6xHis-NS5)並確認了具功能的6xHis-NS5,再(2)導入純化後的6xHis-NS5蛋白於SELEX,經由15輪的篩選終能得到該專一性的適體,並藉次世代定序分析定序之,結果取得了三個DNA序列相似的適體族群,繼之(3)從其中各挑出一個出現頻率最高者(稱為A1、A2、A3)當作具有潛力之適體候選者,遂以ELISA的技術評比其對病毒NS5的親和效果,發現A3親和力最高,A2最低(A3>A1>A2,其解離常數(Kd)分別為22, 32, and 12 nM。最後(4)利用ELONA做為初步測試作為感測探針之功能,結果顯示此三個候選適體,非但皆可對於第二型登革熱感染之細胞所產生的NS5蛋白,而且登革熱一至四型的6xHis-NS5重組蛋白也都可被偵測到。另外,在抑制登革病毒複製的效果方面,從目前的結果尚未能發現較有效的DNA適體。總言之,此研究提供了數個對登革病毒NS5蛋白有專一結合力的適體當作潛力性的偵測試劑,未來尚需在病毒繁衍的抑制性或干擾性治療上,有更深入的探討,盼選擇到最小且有效結合序列的適體,或尚需加入其他化學修飾以延長DNA適體在細胞內之半衰期等,期能達到限制病毒感染並避免產生有害的免疫反應之目的。

    The mosquito-borne Dengue virus (DV) is a single positive-stranded RNA virus belonging to the family Flaviviridae. Four serotypes, DV1–4, have caused widespread epidemics in human and nearly 40% of the world’s population is at risk of being infected. Patients may suffer from life threatening dengue hemorrhagic fever (DHF) with or without shock (DSS) and present with wide spectrum of clinical manifestations. No vaccines and antivirals have been approved to treat DV so far. The DV NS5 is the viral RNA-dependent-RNA-polymerase, which is highly conserved among the four serotypes and therefore represents an effective target for diagnosis and/or antiviral therapeutics. To screen novel ligands for a desired molecular target, a SELEX (Systematic evolution of ligands by exponential enrichment) technology is employed as an in vitro selection method to evolve target-specific nucleic acid ligands, called aptamers. In comparison to target-specific antibodies, aptamers are less likely to induce host immune responses and thus a useful alternative for biomedical studies and disease therapy. In this study, we aimed to develop DV2 NS5-specific aptamers which are potent for diagnosis and prevention of pandemic DVs. Our results indicated a successful purification of recombinant NS5 with His tag at the N-terminus (6xHis-NS5) and the selection of 6xHis-NS5 specific aptamers through 15-rounds of SELEX. Sequence identification of cycling enriched aptamers by NGS revealed three major groups of homologous aptamer sequences in cycle 10 to 15. Three dominant aptamer candidates of each group called A1, A2 and A3 were identified and capable of pulldown His-NS5. The binding affinity of these biotinylated aptamer was in the order of A3>A1>A2, by ELISA assay, with the Kd of 22, 32, and 12 nM, respectively. Most importantly, Aptamer-based ELONA assay, established as a diagnostic tool with detection limits in the range of 40-1000 ng of His-NS5, was capable of specific detection of NS5 from lysates of DV2-infected cells. However, inhibition of DV2 replication in Huh7 cells was not achieved with the three aptamer candidates during intracellular interaction, presumably due to short half-live of three aptamer candidates. This study identified three promising aptamers to be used for diagnostic purpose. Further dissecting of these aptamers to identify structural domains with specific binding and/or functional domains may be required to improve their applications.

    摘要 II Abstract III Acknowledgements IV Index V Figure Index VII Table Index VII Supplementary Figure Index VIII Supplementary Tables Index VIII Introduction 1 Epidemic of Dengue Fever 1 Serotypes and Genome Organization of Dengue Virus 1 Diagnostic Tools for Dengue Virus 2 Therapies of Dengue Virus Infectoin 3 Aptamer and Systematic Evolution of Ligands by Exponential Enrichment (SELEX) 3 Aptamer Applications in Biosensor 4 Aptamer Applications in Therapeutics 5 Goals and specific aims: 6 Materials and Methods 7 Cells and virus 7 Plaque assay 7 Reagents and Antibodies 8 Plasmids and constructs: 11 Recombine protein expression and purification 11 SDS-PAGE gel staining and Western blot analysis 12 Systematic evolution of ligands by exponential enrichment (SELEX) 13 Pull-down assays 14 Binding affinity measurements of aptamer candidates by ELISA 15 ELONA (Enzyme- Linked Oligonucleotide Assays) development for viral detection 16 Aptamer transfection for functional assays and half-life determination 16 Functional inhibition of viral replication 17 Confocal imaging analyses of subcellular aptamers and their half-life 17 Cell viability assay 18 Results 19 Induction and expression of the 6xHis-NS5 recombinant protein 19 Purification of the recombinant 6xHis-NS5 of DV2 19 Screening of 6xHis-NS5-specific aptamers by Systematic Evolution of Ligands by EXponential Enrichment (SELEX). 20 Next generation sequencing (NGS) analysis of cycling-eluted apatmers 21 Three candidate aptamers A1-3 captured recombinant His-NS5 with high affinities 23 Aptamer-based ELONA assay for specific and sensitive detection of Dengue NS5 from DV2-infected cells 23 Inhibition of DV2 replication in Huh7 cells was not achieved with the 3 aptamer candidates during intracellular interaction. 24 Discussion 26 References 33 Figures 37 Tables 50 Supplementary Figure 53 Supplementary Tables 54 Figure Index Fig. 1 The gene maps of plasmids pET28a-DV2-NS5 and pET-15b-DV2-NS5 ................. 37 Fig. 2 Induction and expression of the DV2 6xHis-NS5 recombinant protein ………...…. 38 Fig. 3 Purification of the DV2 6xHis-NS5 recombinant protein …………………….….... 39 Fig. 4 The preparation of DNA Aptamer library and its step-wise evolution through Systematic Evolution of Ligands by Exponential Enrichment (SELEX) ………….. 41 Fig. 5 Ex-situ quantification and verification of cycling enriched DV2 6xHis-NS5 specific aptamers after SELEX …………………………………….……………………….. 42 Fig. 6 Binding specificities and dissociation constants of three aptamer candidates to recombinant DV2 6xHis-NS5 …………………….……………………………..… 43 Fig. 7 Enzyme Linked Oligonucleotide assay (ELONA) development for DV2 NS5 detection ………………………………………………………………….…….….. 45 Fig. 8 Effects of aptamer candidates to DV2 replication and cell viability. (A) Time course evaluation of DV2 NS5 production during viral infection ….……………………... 47 Fig. 9 The decay of Aptamers after transfection into Huh7 cells ………………..……...… 49 Table Index Table 1 Ranking and grouping of highly occurrent aptamer sequences between SELEX cycles 10 to 15 ……………………………………………………………………………... 51 Table 2 The percent occurrence and the representative Weblogo sequences of the three conserved aptamer populations in the cycles of C10 to C15 ………………………………...…. 52 Table 3 Sequences and secondary structures of three selected aptamer candidates …………. 5 Supplementary Figure Index Fig. S1 Imaging analyses of the decay of Aptamers A2 and A3 ………………………….… 54 Supplementary Tables Index Table S1 Summary of pre-processed NGS data of cycling enriched aptamers ………………... 55 Table S2 Top 50 hit sequences of cycle-10 enriched aptamers ……………………………...… 56 Table S3 Top 50 hit sequences of cycle-11 enriched aptamers ………………………………... 57 Table S4 Top 50 hit sequences of cycle-12 enriched aptamers ………………………………... 58 Table S5 Top 50 hit sequences of cycle-13 enriched aptamers ………………………………... 59 Table S6 Top 50 hit sequences of cycle-14 enriched aptamers ……………………………...… 60 Table S7 Top 50 hit sequences of cycle-15 enriched aptamers ………………………………... 61

    References

    1. Messina, J.P., et al., Global spread of dengue virus types: mapping the 70 year history. Trends Microbiol, 2014. 22(3): p. 138-46.
    2. Mousson, L., et al., Phylogeography of Aedes (Stegomyia) aegypti (L.) and Aedes (Stegomyia) albopictus (Skuse) (Diptera: Culicidae) based on mitochondrial DNA variations. Genet Res, 2005. 86(1): p. 1-11.
    3. Gubler, D.J., et al., Urbanization and Globalization: The Unholy Trinity of the 21(st) Century. Trop Med Health, 2011. 39(4 Suppl): p. 3-11.
    4. Bhatt, S., et al., The global distribution and burden of dengue. Nature, 2013. 496(7446): p. 504-7.
    5. Yeo, A.S.L., et al., Lack of clinical manifestations in asymptomatic dengue infection is attributed to broad down-regulation and selective up-regulation of host defence response genes. PloS one, 2014. 9(4): p. e92240-e92240.
    6. Beatty ME, L.G., et al., The Second International Conference on Dengue and Dengue Haemorrhagic Fever. Phuket, Thailand. Estimating the Global Burden of Dengue. In: Abstract Book: Dengue 2008., 2008.
    7. Shu, P.Y., et al., Molecular characterization of dengue viruses imported into Taiwan during 2003-2007: geographic distribution and genotype shift. Am J Trop Med Hyg, 2009. 80(6): p. 1039-46.
    8. Tsai, J.-J., et al., Low frequency of asymptomatic dengue virus-infected donors in blood donor centers during the largest dengue outbreak in Taiwan. PloS one, 2018. 13(10): p. e0205248-e0205248.
    9. Thomas J. Chambers, et al., Flavivirus genome organization, expression, and replication. Annu. Rev. Microbiol., 1990: p. 44:649-88.
    10. Screaton, G., et al., New insights into the immunopathology and control of dengue virus infection. Nat Rev Immunol, 2015. 15(12): p. 745-59.
    11. El Sahili, A. et al., Dengue Virus Non-Structural Protein 5. Viruses, 2017. 9(4).
    12. Zhao, Y., et al., A crystal structure of the Dengue virus NS5 protein reveals a novel inter-domain interface essential for protein flexibility and virus replication. PLoS Pathog, 2015. 11(3): p. e1004682.
    13. Muller, D.A., et al., Clinical and Laboratory Diagnosis of Dengue Virus Infection. J. Infect. Dis, 2017. 215(suppl_2): p. S89-S95.
    14. Guzman, M.G., et al., Advances in dengue diagnosis. Clin Diagn Lab Immunol, 1996. 3(6): p. 621-7.
    15. Deubel, V., et al., Identification of dengue sequences by genomic amplification: rapid diagnosis of dengue virus serotypes in peripheral blood. J. Virol. Methods, 1990. 30(1): p. 41-54.
    16. Duong, V., et al., Clinical and virological factors influencing the performance of a NS1 antigen-capture assay and potential use as a marker of dengue disease severity. PLoS Negl Trop Dis, 2011. 5(7): p. e1244.
    17. Chaterji, S., et al., Evaluation of the NS1 rapid test and the WHO dengue classification schemes for use as bedside diagnosis of acute dengue fever in adults. Am. J. Trop. Med. Hyg, 2011. 84(2): p. 224-228.
    18. Shu, P.-Y., et al., Dengue virus serotyping based on envelope and membrane and nonstructural protein NS1 serotype-specific capture immunoglobulin M enzyme-linked immunosorbent assays. J. Clin. Microbiol, 2004. 42(6): p. 2489-2494.
    19. Byrd, C.M., et al., A novel inhibitor of dengue virus replication that targets the capsid protein. Antimicrobial agents and chemotherapy, 2013. 57(1): p. 15-25.
    20. Chen, Y.L., et al., Activation of peripheral blood mononuclear cells by dengue virus infection depotentiates balapiravir. J Virol, 2014. 88(3): p. 1740-7.
    21. Ellington, et al., In vitro selection of RNA molecules that bind specific ligands. Nature, 1990. 346: p. 818.
    22. Ellington, et al., Selection in vitro of single-stranded DNA molecules that fold into specific ligand-binding structures. Nature, 1992. 355: p. 850.
    23. Song, et al., Aptamers and their biological applications. Sensors (Basel), 2012. 12(1): p. 612-31.
    24. Tuerk, C., et al., Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science, 1990. 249(4968): p. 505-510.
    25. Murphy, M.B., et al., An improved method for the in vitro evolution of aptamers and applications in protein detection and purification. Nucleic Acids Res, 2003. 31(18): p. e110.
    26. Mann, D., et al., In vitro selection of DNA aptamers binding ethanolamine. Biochem Biophys Res Commun, 2005. 338(4): p. 1928-34.
    27. Weng, C.H., et al., Screening of aptamers on microfluidic systems for clinical applications. Sensors (Basel), 2012. 12(7): p. 9514-29.
    28. Stoltenburg, et al., SELEX--a (r)evolutionary method to generate high-affinity nucleic acid ligands. Biomol Eng, 2007. 24(4): p. 381-403.
    29. Cho, E.J., et al., Applications of Aptamers as Sensors. ANNU REV ANAL CHEM , 2009. 2(1): p. 241-264.
    30. Xu, Y., et al., An Aptamer-Based Protein Biosensor by Detecting the Amplified Impedance Signal. Electroanalysis, 2006. 18(15): p. 1449-1456.
    31. Stojanovic, et al., Aptamer-based folding fluorescent sensor for cocaine. J Am Chem Soc, 2001. 123(21): p. 4928-31.
    32. Vivekananda, et al., Anti-Francisella tularensis DNA aptamers detect tularemia antigen from different subspecies by Aptamer-Linked Immobilized Sorbent Assay. Lab Invest, 2006. 86: p. 610.
    33. Lee, K.H., et al., Aptamer-Based ELISA Assay for Highly Specific and Sensitive Detection of Zika NS1 Protein. Anal Chem, 2017. 89(23): p. 12743-12748.
    34. Ng, E.W., et al., Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat Rev Drug Discov, 2006. 5(2): p. 123-32.
    35. Kourlas, H., et al., Pegaptanib sodium for the treatment of neovascular age-related macular degeneration: a review. Clin Ther, 2006. 28(1): p. 36-44.
    36. Waters, E., et al., Effect of NU172 and bivalirudin on ecarin clotting time in human plasma and whole blood-Posters. J THROMB HAEMOST, 2009. Vol. 7.
    37. Zhang, Y., et al., Tumor-targeted drug delivery with aptamers. Curr Med Chem , 2011. 18(27): p. 4185-4194.
    38. Bagalkot, et al., An aptamer-doxorubicin physical conjugate as a novel targeted drug-delivery platform. Angew Chem Int Ed Engl, 2006. 45(48): p. 8149-52.
    39. Lee, C.H., et al., Inhibition of hepatitis C virus (HCV) replication by specific RNA aptamers against HCV NS5B RNA replicase. J Virol, 2013. 87(12): p. 7064-74.
    40. Blank, M., Next-Generation Analysis of Deep Sequencing Data: Bringing Light into the Black Box of SELEX Experiments. Methods Mol Biol, 2016. 1380: p. 85-95.
    41. Thiel, W.H., et al., Analyzing HT-SELEX data with the Galaxy Project tools--A web based bioinformatics platform for biomedical research. Methods, 2016. 97: p. 3-10.
    42. Alves, R., et al., Production of a Recombinant Dengue Virus 2 NS5 Protein and Potential Use as a Vaccine Antigen. Clin Vaccine Immunol, 2016. 23(6): p. 460-469.
    43. Selisko, B., et al., Comparative mechanistic studies of de novo RNA synthesis by flavivirus RNA-dependent RNA polymerases. Virology, 2006. 351(1): p. 145-58.
    44. Hasegawa, H., et al., Methods for Improving Aptamer Binding Affinity. Molecules, 2016. 21(4): p. 421.
    45. Fukaya, T., et al., Improvement of the VEGF binding ability of DNA aptamers through in silico maturation and multimerization strategy. J Biotechnol, 2015. 212: p. 99-105.
    46. Hernandez, F.J., et al., Aptamers as a model for functional evaluation of LNA and 2'-amino LNA. Bioorg Med Chem Lett, 2009. 19(23): p. 6585-7.
    47. Wang, Y.-X., et al., Application of Aptamer Based Biosensors for Detection of Pathogenic Microorganisms. CHINESE J ANAL CHEM , 2012. 40(4): p. 634-642.
    48. Fraser, J.E., et al., Investigating dengue virus nonstructural protein 5 (NS5) nuclear import. Methods Mol Biol, 2014. 1138: p. 301-28.
    49. Ni, S., et al., Chemical Modifications of Nucleic Acid Aptamers for Therapeutic Purposes. International journal of molecular sciences, 2017. 18(8): p. 1683.
    50. Dougan, H., et al., Extending the lifetime of anticoagulant oligodeoxynucleotide aptamers in blood. Nucl Med Biol, 2000. 27(3): p. 289-97.
    51. Ruckman, J., et al., 2'-Fluoropyrimidine RNA-based aptamers to the 165-amino acid form of vascular endothelial growth factor (VEGF165). Inhibition of receptor binding and VEGF-induced vascular permeability through interactions requiring the exon 7-encoded domain. J Biol Chem, 1998. 273(32): p. 20556-67.
    52. Da Pieve, C., et al., PEGylation and biodistribution of an anti-MUC1 aptamer in MCF-7 tumor-bearing mice. Bioconjug Chem, 2012. 23(7): p. 1377-81.

    下載圖示 校內:2024-02-01公開
    校外:2024-02-01公開
    QR CODE