簡易檢索 / 詳目顯示

研究生: 許良伊
Hsu, Liang-Yi
論文名稱: Halbach磁環於永磁無刷馬達之設計與特性分析
Design and Characteristic Analysis of Permanent Magnet Brushless Motors with Halbach Cylinders
指導教授: 蔡明祺
Tsai, Mi-Ching
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 80
中文關鍵詞: 永磁無刷馬達Halbach磁環
外文關鍵詞: Permanent Magnet Brushless Motor, Halbach Cylinder
相關次數: 點閱:119下載:23
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Halbach磁環具有極佳的磁通分布,本論文探討Halbach磁環於永磁無刷馬達設計之應用,在不改變馬達幾何結構的前提下,使具有較低之頓轉扭矩,且反電動勢常數與磁交鏈在位置變化上呈現弦波式分佈,該特性易於增加永磁無刷馬達的伺服性能。
    本論文提出一套最佳化方法的馬達設計流程,以一個Halbach磁環的三相八極九槽永磁無刷馬達為設計應用例,利用遺傳演算法先求具最佳效率馬達合適的結構尺寸,接著分別以有限元素法分析與等效磁網路分析法模擬馬達最大磁通密度,最後再進行馬達電氣參數的設計。
    另外,由於磁鐵磁化型態的不同會影響馬達的特性,本論文亦探討在相同結構尺寸與電氣下,進一步改變馬達的轉子磁鐵設計為常見的平行磁化與徑向磁化兩種不同的型態,並分別利用有限元素分析軟體,模擬分析三種不同磁化型態之永磁無刷馬達,其在磁場與輸出特性上的差異性。

    In this thesis, Halbach cylinders are applied to the design of permanent magnet brushless motors. The use of Halbach cylinders is able to improve motor characteristics such as low cogging torque and sinusoidal back-EMF, due to the excellent flux distribution. Therefore, the output performance of the permanent magnet servomotor with the Halbach cylinder design can be significantly improved without recourse to the motor structure.
    This thesis mainly presents an optimal motor design procedure based on the genetic algorithm. For a Halbach magnet brushless motor of 3 phases, 8 poles and 9 slots, the genetic algorithm is first employed to determine the motor dimensions to achieve for the highest efficiency fitness. Both of the finite element analysis and the magnetic network analysis are then used respectively to calculate the air gap flux density and the related motor electrical parameters. Due to considering the possible effects of different magnetized magnets on motor characteristics, two commonly used types of rotors which are with parallel and radial magnetization are also studied under the same geometry dimensions and electrical parameters. Finally, the flux density and motor output performance resulting from these three models are compared using the finite element analysis method.

    中文摘要………………………………………………………………I 英文摘要………………………………………………………………II 致謝……………………………………………………………………III 目錄……………………………………………………………………IV 表目錄…………………………………………………………………VI 圖目錄…………………………………………………………………VII 第一章 緒論..……………………………………………………… 1 1.1 前言..……………………………………………………………1 1.2 研究動機與目的…………………………………………………3 1.3 本文架構…………………………………………………………5 第二章 馬達尺寸參數的設計…..………………………………… 7 2.1 單目標最佳設計問題……………………………………………7 2.1.1 設計變數處理…………………………………………………7 2.1.2 設計目標函數…………………………………………………8 2.1.3 限制條件…...……………………………………………… 8 2.2 遺傳演算法………………………………………………………9 2.2.1 傳演算法的理論簡介…………………………………………9 2.2.2 遺傳演算法的基本架構………………………………………9 2.2.3 影響遺傳演算法結果之因素…………………………………14 2.3 罰函數法…………………………………………………………15 2.3.1 懲罰函數法的基本理論………………………………………16 2.4 達最佳尺寸設計…………………………………………………17 2.4.1 馬達設計規劃…………………………………………………17 2.4.2 馬達效率最佳化………………………………………………19 第三章 馬達氣隙磁通密度分析與電氣參數……………………… 23 3.1 馬達氣隙磁通密度分析…………………………………………23 3.1.1 有限元素分析…………………………………………………24 3.1.2 等效磁路網分析………………………………………………26 3.2 馬達電氣參數……………………………………………………32 3.2.1 通鏈、感應電動勢及轉矩……………………………………32 3.2.2 相電阻、相電流及相電感……………………………………35 3.2.3 各種損失與效率………………………………………………36 第四章 Halbach磁環之新型馬達設計應用…………………………38 4.1 Halbach磁環…………………………………………………… 38 4.2 新型馬達設計……………………………………………………41 4.2.1 馬達設計目標…………………………………………………42 4.2.2 馬達設計步驟…………………………………………………45 4.3 馬達模型建立與氣隙磁通密度分析……………………………52 4.3.1利用Maxwell有限元素軟體分析………………………………52 4.3.2 利用等效磁路網分析…………………………………………56 4.4 電氣參數設計……………………………………………………58 4.4.1 繞線方式與繞線因素…………………………………………58 4.4.2 相電流、匝數設計……………………………………………60 第五章 模擬結果與分析…………………………………………… 63 5.1三種不同磁化型態之永磁無刷馬達模擬結果………………… 66 5.2 綜合分析比較……………………………………………………72 第六章 結論與建議…………………………………………… 76 參考文獻………………………………………………………………78 作者簡述……………………………………………………………… 81

    [1]Ansoft Corporaton, Maxwell 2D Field Simulator User Reference, 2000.
    [2]D. J. Sim, D. K. Cho, J. S. Chun, H. K. Jung and T. K. Chung, “Efficiency Optimization of Interior Permanent Magnet Synchronous Motor Using Genetic Algorithms,” IEEE Transactions on Magnetics, Vol.33, No.2, pp.1880-1883, 1997.
    [3]D. C. Hanselman, Brushless Permanent-Magnet Motor Design, International Edition, McGraw-Hill Inc., New York, 1994.
    [4]D. C. Hanselman, “Effect of Skew, Pole Count and Slot Count on Brushless Motor Radial Force, Cogging Torque and Back EMF,” IEE Proceedings-Electric Power Applications, Vol. 144, No 5, pp.325-330, 1997.
    [5]D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley Publishing Company, 1989.
    [6]G. R. Slemon and X. Liu, “Core Losses in Permanent Magnet Motors,’’ IEEE Transactions on Magnetics, Vol. 26, No.5, pp.1653-1656, 1990.
    [7]G. R. Slemon, “An Equivalent Circuit Approach to Analysis of Synchronous Machines with Saliency and Saturation,” IEEE Transactions on Energy Conversion, Vol. 5, No.3, pp.538-544, 1990.
    [8]J. H. Holland, “Outline for a Logical Theory of Adaptive Systems,” Journal of the Association for Computing Machinery, Vol.3, pp.297-314, 1962.
    [9]J. L. Chen and Y. C. Tsao, “Optimal Design of Machine Elements Using Genetic Algorithms,” Journal of the Chinese Society of Mechanical Engineers, Vol.14, No.2, pp.193-199, 1993.
    [10]K. Atallah and D. Howe, “The Application of Halbach Cylinders to Brushless AC Servo Motors,” IEEE Transactions on Magnetics, Vol. 34, No.4, pp. 2060-2062, 1998.
    [11]Kawasaki Steel Corporation, RM-CORE, Japan, 1998.
    [12]K. Halbach, “Design of Permanent Multipole Magnets with Oriented Rare Earth Cobalt Material.” Nuclear Instruments and Methods, Vol.169, pp.1-10, 1980.
    [13]M. Marinescu and N. Marinescu, “New Concept of Permanent Magnet Excitation for Electrical Machines: Analytical and Numerical Computation,” IEEE Transactions on Magnetics, Vol. 28, No.2, pp. 1390-1393, 1992.
    [14]Z. Q. Zhu and D. Howe, “Influence of Design Parameters on Cogging Torque in Permanent,” IEEE Transactions on Energy Conversion, Vol. 15, No.4, pp.407-412, 2000.
    [15]Z. Q. Zhu and D. Howe, “Instantsneous Magnetic Field Distrubtion in Brushless Permanent Magnet DC motors, Part III: Effect of Stator Slotting,” IEEE Transactions on Magnetics, Vol. 29, No.1, pp.143-151, 1993.
    [16]Z. Q. Zhu, Z. P. Xia, K. Atallah, G. W. Jewll and D. Howe, “Novel Permanent Magnet Machines Using Halbach Cylinders,” Proceedings of Power Electronics and Motion Control Conference, Vol. 2, pp.903-908, 2000.
    [17]Z. Q. Zhu, Z. P. Xia, G. W. Jewll and D. Howe, “Analysis of Aisotropic Bonded NdFeB Halbach Cylinders Accounting for Partial Powder Alignment,” IEEE Transactions on Magnetics, Vol. 36, pp.3575-3577 No.5, 2000.
    [18]茆尚勳,直驅式跑步機用直流無刷馬達之設計,碩士論文,國立成功大學機械工程學系,民國91年。
    [19]賴益志,無刷直流馬達之磁路特性分析,碩士論文,國立成功大學機械工程學系,民國89年。
    [20]何世江,控制用交流馬達設計課程講義,國立清華大學動力機械工程學系,民國88年。
    [21]許良伊、茆尚勳、蔡明祺,“環形Halbach磁鐵於馬達設計應用之特性分析”,第十五屆磁學與磁性技術研討會,民國91年七月。
    [22]張琛,直流無刷電動機原理及應用,機械工業出版社,民國88年。
    [23]陳家豪、李志光,“遺傳演算法於機械元件設計最佳化之應用”,中國機械工程學會第十二屆學術研討會,民國84年11月。
    [24]陳雙穩,永磁無刷馬達之繞線結構對性能影響之研究,碩士論文,國立成功大學機械工程學系,民國90年。
    [25]陳世毓,多重進化遺傳演算法於結構最佳化設計之應用,碩士論文, 國立台灣大學機械工程學系,民國90年。
    [26]翁銘鴻,新型風扇馬達之電腦輔助設計與分析,碩士論文, 國立成功大學機械工程學系,民國90年。

    下載圖示 校內:2006-07-16公開
    校外:2006-07-16公開
    QR CODE