簡易檢索 / 詳目顯示

研究生: 阮馨怡
Juan, Hsin-Yi
論文名稱: 藉由慢病毒載體傳遞介白素十九基因以治療膠原蛋白誘導之小鼠關節炎
Lentivirus-Mediated IL-19 Gene Transfer for the Treatment of Collagen-Induced Arthritis in Mice
指導教授: 蕭璦莉
Shiau, Ai-Li
學位類別: 碩士
Master
系所名稱: 醫學院 - 微生物及免疫學研究所
Department of Microbiology & Immunology
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 66
中文關鍵詞: 類風濕性關節炎慢病毒介白素十九
外文關鍵詞: lentivirus, rheumatoid arthritis, IL-19
相關次數: 點閱:90下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 類風濕性關節炎是一種慢性發炎性疾病,主要是Th1 (T helper 1)細胞的自體免疫功能失調所引起的。此種疾病的特徵為免疫細胞和活化的滑液膜細胞浸潤於關節腔中,導致發炎反應產生並伴隨著進展性的軟骨和硬骨的侵蝕與破壞。細胞激素介白素10 一直以來被認為具有潛在抗發炎和抑制免疫反應的特性,這是由於它可抑制先天性免疫細胞的許多功能包括抗原呈獻和發炎性細胞激素的釋放。介白素19 是介白素10 的轉錄活化因子,在過去的文獻指出,其有能力去誘導下游介白素10 的產生。除此之外,介白素19 還可影響T 細胞的成熟,改變Th1/Th2 的平衡,使之偏向於Th2 的反應。而此篇研究的主要目的是在研究介白素19 基因的給予對於實驗性關節炎的小鼠是否具有治療的效果。我們首先利用DBA/1J 小鼠建立了一個膠原蛋白誘發關節炎 (collagen-induced arthritis, CIA)的小鼠動物模式,模擬人類上的類風濕性關節炎。接著我們構築帶有小鼠介白素19 基因之慢病毒,命名為Lv.mIL19,利用Lv.mIL-19 感染細胞探討介白素19 的生物功能。此外,更進一步地評估Lv.mIL19 和病毒控制組Lv.GFP 全身性地給予CIA 的DBA/1J 小鼠動物模式之影響。與Lv.GFP 和saline 組比較起來,我們發現在Lv.mIL19 治療之CIA 小鼠,其關節炎的臨床症狀、關節指數 (articular index)與組織病理學 (histological appearance)都有改善的情況。這些發現提供了實驗上的證據已便未來利用慢病毒載體攜帶介白素19 基因以治療人類的類風濕性關節炎或甚至其他的發炎性疾病,並提供了介白素19 也許可用來治療類風濕性關節炎的新觀念。

    Rheumatoid arthritis (RA) is an inflammatory autoimmune disease with a dominant Th1 (T helper 1) phenotype. In the case of RA, the synovium is highly infiltrated by immune cells and activated of synovial cells, leading to joint inflammation as well as progressive cartilage and bone erosion. Interleukin (IL)-10 exerts potent anti-inflammatory and immunosuppressive properties, which contribute to its ability to inhibit several functions of innate immune cells, including antigen presentation and proinflammatory cytokine production. IL-19 is a transcriptional activator of IL-10, which potently induces IL-10 production. Furthermore, IL-19 can alter the balance
    of Th1/Th2 cells in favor of Th2. The aim of this study was to investigate the therapeutic effects of IL-19 gene transfer on experimental arthritis in mice. We first established a mouse model of collagen-induced arthritis (CIA) in DBA/1 mice that mimics human RA. We constructed a lentiviral vector encoding mouse IL-19, designated Lv.mIL-19. The characterization and bioactivity of IL-19 expressed by Lv.mIL-19 were validated in vitro. Furthermore, Lv.mIL-19 and Lv.GFP were injected systemically to DBA/1 mice that had been immunized with bovine type II collagen, and their treatment responses were monitored. Compared with Lv.GFP or saline treatment, Lv.mIL-19 treatment reduced articular index and histological appearance of the mice with CIA. Taken together, these findings provide experimental evidence for the feasibility of lentivirus-mediated IL-19 gene transfer for the amelioration of RA or other inflammatory diseases. In addition, this study also supports the concept that IL-19 may be a new therapeutics for the treatment of RA.

    中文摘要................................................1 Abstract ...............................................3 誌謝....................................................5 目錄....................................................6 圖目錄..................................................8 縮寫與符號..............................................9 緒論...................................................10 A. 自體免疫疾病 (autoimmune disease) ..................10 B. 類風濕性關節炎 .....................................10 1. 正常的關節..........................................10 2. RA的臨床特徵........................................11 3 流行病學............................................11 4. 致病機轉............................................12 5. 膠原蛋白誘導之關節炎 (collagen-induced arthritis, CIA)...................................................13 C. 基因治療 (gene therapy).............................14 1. 原理................................................14 2. 基因治療與RA........................................14 3 基因轉殖方法........................................15 4. 慢病毒載體 (lentiviral vector)......................16 D. 介白素19 (Interleukin-19, IL-19)....................18 1. 概論................................................18 2. IL-19與RA...........................................19 E. 研究動機與實驗設計..................................20 材料與方法.............................................22 材料:.................................................22 A. 質體 (Plasmid) .....................................22 B. 寡聚核苷酸 (oligodeoxynucleotides,ODN).............22 C. 細胞株 (cell line) .................................23 D. 動物................................................23 方法:.................................................24 A. 細胞株與細胞培養....................................24 B. 構築表現小鼠介白素19的慢病毒載體 (pWPXL-mIL19 construction)..........................................24 C. 慢病毒的生產和純化..................................25 C-1. 慢病毒的生產 (Production of lentivirus vector)....25 C-2. 慢病毒的純化 (Purification of lentivirus vector)..27 D. 定量慢病毒之效價 (Virus titration)..................27 D-1. 利用流式細胞儀偵測病毒之感染性顆粒 (infectious particles, IPs)........................................27 D-2. 利用p24 ELISA偵測病毒之物理性顆粒 (lentiviral particles, LPs)........................................28 E. 反轉錄酶-聚合酶連鎖反應(Reverse transcriptase-polymerase chain reaction, RT-PCR).....................29 E-1. 反轉錄作用........................................29 E-2. 聚合酶連鎖反應....................................30 F. 第二型膠原蛋白誘導之小鼠關節炎 (type II collagen-induced arthritis, CIA)................................30 F-1. 小鼠關節炎之誘導..................................30 F-2. 慢病毒的給予......................................31 F-3. 小鼠關節炎臨床症狀評估............................32 F-4. 組織切片病理學評估................................32 G. 酵素連結免疫吸附分析法 (Enzyme-linked immunosorbent assay, ELISA) .........................................32 H. 統計分析 (Statistical analysis) ....................34 結果...................................................35 1. 慢病毒載體pWPXL-mIL19之構築.........................35 2. 生產重組之慢病毒載體並定量其效價....................35 3. Lv.mIL19感染後在細胞內表現小鼠IL-19基因的能力.......36 4. 重組慢病毒Lv.mIL19的生物性功能......................37 5. 藉由皮下注射第二型膠原蛋白誘導小鼠產生關節炎........39 6. 利用不同的追加 (boost)方式比較C57BL/6和DBA/1J小鼠間誘導產生關節炎的發生率 (incidence)和疾病起始的時間 (onset) 39 7. DBA/1J小鼠CIA中Lv.mIL19的預防性治療效果.............40 8. Lv.mIL19有治療CIA DBA/1J小鼠關節炎的潛力............41 討論 ..................................................43 參考文獻...............................................50 圖.....................................................55

    Berlo, S.E., Guichelaar, T., Ten Brink, C.B., van Kooten, P.J., Hauet-Broeren, F., Ludanyi, K., van Eden, W., Broeren, C.P., and Glant, T.T. (2006). Increased arthritis susceptibility in cartilage proteoglycan-specific T cell receptor-transgenic mice. Arthritis Rheum 54, 2423-2433.
    Brand, D.D., Latham, K.A., and Rosloniec, E.F. (2007). Collagen-induced arthritis. Nat Protoc 2, 1269-1275.
    Brenner, S., and Malech, H.L. (2003). Current developments in the design of onco-retrovirus and lentivirus vector systems for hematopoietic cell gene therapy. Biochim Biophys Acta 1640, 1-24.

    Dolhain, R.J., van der Heiden, A.N., ter Haar, N.T., Breedveld, F.C., and Miltenburg, A.M. (1996). Shift toward T lymphocytes with a T helper 1 cytokine-secretion profile in the joints of patients with rheumatoid arthritis. Arthritis Rheum 39, 1961-1969.
    Dumoutier, L., Leemans, C., Lejeune, D., Kotenko, S.V., and Renauld, J.C. (2001). Cutting edge: STAT activation by IL-19, IL-20 and mda-7 through IL-20 receptor complexes of two types. J Immunol 167, 3545-3549.
    Evans, C.H., Ghivizzani, S.C., and Robbins, P.D. (2009). Gene therapy of the rheumatic diseases: 1998 to 2008. Arthritis Res Ther 11, 209.
    Firestein, F., Rozenszajn, L.A., Shemesh-Darvish, L., Elimelech, R., Radnay, J., and Rosenschein, U. (2003). Induction of apoptosis by ultrasound application in human malignant lymphoid cells: role of mitochondria-caspase pathway activation. Ann N Y Acad Sci 1010, 163-166.
    Firestein, G.S., Alvaro-Gracia, J.M., and Maki, R. (1990). Quantitative analysis of cytokine gene expression in rheumatoid arthritis. J Immunol 144, 3347-3353.
    Folkman, J. (1995). Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1, 27-31.
    Foster, D., Parrish-Novak, J., Fox, B., and Xu, W. (2004). Cytokine-receptor pairing: accelerating discovery of cytokine function. Nat Rev Drug Discov 3, 160-170.
    Gallagher, G., Dickensheets, H., Eskdale, J., Izotova, L.S., Mirochnitchenko, O.V., Peat, J.D., Vazquez, N., Pestka, S., Donnelly, R.P., and Kotenko, S.V. (2000). Cloning, expression and initial characterization of interleukin-19 (IL-19), a novel homologue of human interleukin-10 (IL-10). Genes Immun 1, 442-450.
    Gallagher, G., Eskdale, J., Jordan, W., Peat, J., Campbell, J., Boniotto, M., Lennon, G.P., Dickensheets, H., and Donnelly, R.P. (2004). Human interleukin-19 and its receptor: a potential role in the induction of Th2 responses. Int Immunopharmacol 4, 615-626.
    Ghoreschi, K., Thomas, P., Breit, S., Dugas, M., Mailhammer, R., van Eden, W., van der Zee, R., Biedermann, T., Prinz, J., Mack, M., et al. (2003). Interleukin-4 therapy of psoriasis induces Th2 responses and improves human autoimmune disease. Nat Med 9, 40-46.
    Gould, D.J., and Favorov, P. (2003). Vectors for the treatment of autoimmune disease. Gene Ther 10, 912-927.
    Guichelaar, T., ten Brink, C.B., van Kooten, P.J., Berlo, S.E., Broeren, C.P., van Eden, W., and Broere, F. (2008). Autoantigen-specific IL-10-transduced T cells suppress chronic arthritis by promoting the endogenous regulatory IL-10 response. J Immunol 180, 1373-1381.
    Inglis, J.J., Simelyte, E., McCann, F.E., Criado, G., and Williams, R.O. (2008). Protocol for the induction of arthritis in C57BL/6 mice. Nat Protoc 3, 612-618.
    Iwakuma, T., Cui, Y., and Chang, L.J. (1999). Self-inactivating lentiviral vectors with U3 and U5 modifications. Virology 261, 120-132.
    Jordan, W.J., Eskdale, J., Boniotto, M., Lennon, G.P., Peat, J., Campbell, J.D., and Gallagher, G. (2005). Human IL-19 regulates immunity through auto-induction of IL-19 and production of IL-10. Eur J Immunol 35, 1576-1582.
    Jou, I.M., Shiau, A.L., Chen, S.Y., Wang, C.R., Shieh, D.B., Tsai, C.S., and Wu, C.L. (2005). Thrombospondin 1 as an effective gene therapeutic strategy in collagen-induced arthritis. Arthritis Rheum 52, 339-344.
    Kinne, R.W., Brauer, R., Stuhlmuller, B., Palombo-Kinne, E., and Burmester, G.R. (2000). Macrophages in rheumatoid arthritis. Arthritis Res 2, 189-202.
    Liao, Y.C., Liang, W.G., Chen, F.W., Hsu, J.H., Yang, J.J., and Chang, M.S. (2002). IL-19 induces production of IL-6 and TNF-alpha and results in cell apoptosis through TNF-alpha. J Immunol 169, 4288-4297.
    Lin, J.D. (2007). Amelioration of murine colitis by attenuated Salmonella choleraesuis encoding interleukin-19. Master's Thesis, National Cheng Kung University, Tainan, Taiwan.
    McInnes, I.B., and Schett, G. (2007). Cytokines in the pathogenesis of rheumatoid arthritis. In Nat Rev Immunol, pp. 429-442.
    Miyoshi, H., Blomer, U., Takahashi, M., Gage, F.H., and Verma, I.M. (1998). Development of a self-inactivating lentivirus vector. J Virol 72, 8150-8157.
    Mosser, D.M., and Edwards, J.P. (2008). Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8, 958-969.
    Muller-Ladner, U., Pap, T., Gay, R.E., Neidhart, M., and Gay, S. (2005). Mechanisms of disease: the molecular and cellular basis of joint destruction in rheumatoid arthritis. Nat Clin Pract Rheumatol 1, 102-110.
    Nasu, K., Kohsaka, H., Nonomura, Y., Terada, Y., Ito, H., Hirokawa, K., and Miyasaka, N. (2000). Adenoviral transfer of cyclin-dependent kinase inhibitor genes suppresses collagen-induced arthritis in mice. J Immunol 165, 7246-7252.
    O'Dell, J.R. (2004). Therapeutic strategies for rheumatoid arthritis. N Engl J Med 350, 2591-2602.
    Ozdemir, C., Akdis, M., and Akdis, C.A. (2009). T regulatory cells and their counterparts: masters of immune regulation. Clin Exp Allergy 39, 626-639.
    Pestka, S., Krause, C.D., Sarkar, D., Walter, M.R., Shi, Y., and Fisher, P.B. (2004). Interleukin-10 and related cytokines and receptors. Annu Rev Immunol 22, 929-979.
    Romagnani, S. (1994). Lymphokine production by human T cells in disease states. Annu Rev Immunol 12, 227-257.
    Romer, J., Hasselager, E., Norby, P.L., Steiniche, T., Thorn Clausen, J., and Kragballe, K. (2003). Epidermal overexpression of interleukin-19 and -20 mRNA in psoriatic skin disappears after short-term treatment with cyclosporine a or calcipotriol. J Invest Dermatol 121, 1306-1311.
    Sakurai, N., Kuroiwa, T., Ikeuchi, H., Hiramatsu, N., Maeshima, A., Kaneko, Y., Hiromura, K., and Nojima, Y. (2008). Expression of IL-19 and its receptors in RA: potential role for synovial hyperplasia formation. Rheumatology (Oxford) 47, 815-820.
    Salmon, P., and Trono, D. (2007). Production and titration of lentiviral vectors. Curr Protoc Hum Genet Chapter 12, Unit 12 10.
    Segal, B., Rhodus, N.L., and Patel, K. (2008). Tumor necrosis factor (TNF) inhibitor therapy for rheumatoid arthritis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 106, 778-787.
    Steiner, G., Tohidast-Akrad, M., Witzmann, G., Vesely, M., Studnicka-Benke, A., Gal, A., Kunaver, M., Zenz, P., and Smolen, J.S. (1999). Cytokine production by synovial T cells in rheumatoid arthritis. Rheumatology (Oxford) 38, 202-213.
    Thomas, C.E., Ehrhardt, A., and Kay, M.A. (2003). Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet 4, 346-358.

    Tian, Y., Sommerville, L.J., Cuneo, A., Kelemen, S.E., and Autieri, M.V. (2008). Expression and suppressive effects of interleukin-19 on vascular smooth muscle cell pathophysiology and development of intimal hyperplasia. Am J Pathol 173, 901-909.
    Tiscornia, G., Singer, O., and Verma, I.M. (2006). Production and purification of lentiviral vectors. Nat Protoc 1, 241-245.
    Trentham, D.E., Townes, A.S., and Kang, A.H. (1977). Autoimmunity to type II collagen an experimental model of arthritis. J Exp Med 146, 857-868.
    Tsai, C.Y., Shiau, A.L., Chen, S.Y., Chen, Y.H., Cheng, P.C., Chang, M.Y., Chen, D.H., Chou, C.H., Wang, C.R., and Wu, C.L. (2007). Amelioration of collagen-induced arthritis in rats by nanogold. Arthritis Rheum 56, 544-554.
    Vandooren, B., Noordenbos, T., Ambarus, C., Krausz, S., Cantaert, T., Yeremenko, N., Boumans, M., Lutter, R., Tak, P.P., and Baeten, D. (2009). Absence of a classically activated macrophage cytokine signature in peripheral spondylarthritis, including psoriatic arthritis. Arthritis Rheum 60, 966-975.
    Vignali, D.A., Collison, L.W., and Workman, C.J. (2008). How regulatory T cells work. Nat Rev Immunol 8, 523-532.
    Wahl, C., Muller, W., Leithauser, F., Adler, G., Oswald, F., Reimann, J., Schirmbeck, R., Seier, A., Weiss, J.M., Prochnow, B., et al. (2009). IL-20 receptor 2 signaling down-regulates antigen-specific T cell responses. J Immunol 182, 802-810.
    Wang, C.R., Chen, S.Y., Wu, C.L., Liu, M.F., Jin, Y.T., Chao, L., and Chao, J. (2005). Prophylactic adenovirus-mediated human kallistatin gene therapy suppresses rat arthritis by inhibiting angiogenesis and inflammation. Arthritis Rheum 52, 1319-1324.
    Wang, C.R., Shiau, A.L., Chen, S.Y., Lin, L.L., Tai, M.H., Shieh, G.S., Lin, P.R., Yo, Y.T., Lee, C.H., Kuo, S.M., et al. (2008). Amelioration of collagen-induced arthritis in rats by adenovirus-mediated PTEN gene transfer. Arthritis Rheum 58, 1650-1656.
    Wang, Y., Wang, Y.P., Zheng, G., Lee, V.W., Ouyang, L., Chang, D.H., Mahajan, D., Coombs, J., Wang, Y.M., Alexander, S.I., et al. (2007). Ex vivo programmed macrophages ameliorate experimental chronic inflammatory renal disease. Kidney Int 72, 290-299.
    Wolk, K., Kunz, S., Asadullah, K., and Sabat, R. (2002). Cutting edge: immune cells as sources and targets of the IL-10 family members? J Immunol 168, 5397-5402.

    下載圖示 校內:2014-07-28公開
    校外:2014-07-28公開
    QR CODE