| 研究生: |
李政賢 Lee, Cheng-Hsien |
|---|---|
| 論文名稱: |
以永續觀點探討既存建築物改善更新可行性之研究—以台灣南部辦公建築為例— A Practical Study on the Sustainable Approaches for the Renovation of the Existing Building —A Case Study of an Existing Office-Building in Southern Taiwan— |
| 指導教授: |
江哲銘
Chiang, Che-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
規劃與設計學院 - 建築學系碩士在職專班 Department of Architecture (on the job class) |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | 永續 、健康 、關鍵影響項目 、既存建築物 、數值模擬 |
| 外文關鍵詞: | numerical simulation, Critical affected factors, existing building., sustainable, health |
| 相關次數: | 點閱:114 下載:21 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
從最近重要的永續建築相關之國際會議,皆積極尋求解決地球資源匱乏與人類生存環境之途徑,加強「舊建築再利用」,降低環境負荷,朝向地球永續發展與健康居住環境。因此本研究繫求「環境」、「能源」及「健康」議題之平衡點,探討既存建築物以永續的觀點改善更新之可行性,運用使用後改善評估方法(POEM),改善前透過問卷調查及實測方式,配合光環境之LIGHTSCAPE模擬,及溫熱環境CFD數值解析方式,改善前評估其效益與決定較佳之改善方案,改善後運用實測進行比對,確立操作模式之可行性,以建立本研究之改善更新之操作流程,提供設計者與使用者於既存建築物改善更新時之參考。
本研究主要可歸納以下結論:
1. 室內物理環境檢測之關鍵影響項目
透過現場實測及問卷調查結果,有光環境—均齊度及眩光、溫熱環境—平均溫度,與空氣環境—粉塵、CO2、甲醛與TVOC等「關鍵影響項目」。
2. 改善成效預測方面
「有遮陽」及「無遮陽」之室內溫熱環境之模擬與比較分析:以模擬夏至時中午12點(外氣溫最高)為例,“室內平均溫度”比較,「有遮陽」則可降低約2.5℃;模擬秋(冬)季之外氣溫最高時(接近中午) 為例,“室內平均溫度”比較,「有遮陽」則可降低約0.8℃。
室內光環境數值模擬:最佳化之外遮陽為「水平羽板45度之遮陽型式」裝設於東、西及南向立面;且無遮陽之數值模擬與現場實測值之相關係數R2≒0.9902,故可以預測四季之「有遮陽」時室內光環境,及室內光環境不受「有遮陽」影響。
3. 預測工具檢證方面
室內溫熱環境之比對分析:“室內溫度實測值”與“以窗邊外氣溫實測值「模擬」室內溫度值”比較,室內平均溫度之差值0.5℃。“以窗邊外氣溫為實測值「模擬」室內溫度值”與“以窗邊外氣溫為理論值之數值模擬「模擬」室內溫度值”之比較,室內平均溫度之差值0.2℃。故只需外氣溫度或窗邊外氣溫,即可以CFD數值解析模擬,預測改善前後之室內平均溫度,確立數值模擬對於事前評估之可行性。
室內光環境之比對分析:以「無遮陽」時“數值模擬” 與“現場實測值”之相關係數R2≒0.9902為依據,進行四季時“「有遮陽」之室內光環境模擬”,並將「模擬值」與外遮陽板改善後的「實測值」比對分析,相關係數R2值高達0.94,證實數值模擬可預測分析外遮陽改善前後之光環境的影響效果,確立數值模擬對於事前評估之可行性。
Sustainable Development is a worldwide trend that is analyzed from the lately international conference. It is in search of a system that can provide comprehensive performance on the environment-oriented, energy-saving and occupant-healthy approaches. This paper represents a demonstration project to renovate the existing building instead of the sustainable concepts. The renovation project adopts the POE (post-occupancy evaluation) method. These field-measurement results for the determination of the equipment capacities will be examined via the quantitative assessments that were LIGHTSCAPE for Illumination and CFD for Thermal Comfort. After renewal, it will demonstrate the quantitative assessment with the field-measurement results. Proposed a standard procedure harmonized with practical state for the designers and architects. Our major findings were as below:
1. Critical affected factors of interior physical environmental investigation
Through measurement and examination, the critical affected factors were“Illumination” that were average illuminance of the indoor ambience and glare ,“Thermal Comfort” that was indoor average temperature, and“Indoor Air Quality”(IAQ) that were PM10, CO2 , HCHO and TVOC.
2. Expectation of an improvement efficient
Compared with the original in Thermal Comfort, Indoor average temperature of assembling the “outer shading devices” could lower 2.5℃ that simulated at the outdoor maximum temperature in the summer solstice, and lower 0.8℃ that simulated at the outdoor maximum temperature in the winter. The optimum state of Illumination simulation were the 45º shutters of the "outer shading devices" assembled on East, West and South walls. The original measured results compared with simulated-results amounted to a high-relation. The relation coefficient (R2) is 0.99, and a low incidence of assembling the “outer shading devices”.
3. Verification of the sustainable approaches
Compared with the renewal that had assembled the “outer shading devices” in Thermal Comfort, the Indoor average temperature difference was 0.5℃ between the indoor measured result and the simulated-result that simulated the Indoor average temperature by the outdoor measured temperature. Between the simulated-results that one was simulated the Indoor average temperature by the outdoor measured temperature; and the other was by a theory, the Indoor average temperature difference was only 0.2℃. Proved a practicable assessment procedure, demonstrated the numerical simulation, through CFD techniques only by the outdoor measured temperature, approximated to the field-measurement results.
The Illumination simulation of the renewal was in accordance with the original. The relation coefficient (R2) is 0.94 between the measured results with simulated-results. Verified a practical evaluation by the numerical simulation performed before the renovation.
參考文獻
中文部分
1. 江哲銘著,建築物理,三民書局,1997。
2. 江哲銘,室內環境品質診斷及改善研究,內政部建築研究所,2002~2003。
3. 江哲銘、陳清焰與周伯丞等,空氣流場預測在輔助建築設計之應用—採用CFD數值模擬技術 Prediction of Airflow Distribution as a Tool to assist the Architecture Design – Using CFD Numerical Simulation Technique,“中華民國建築學會第十二屆建築研究成果發表會論文集”,中華民國建築學會第十二屆建築研究成果發表會,pp. 561-564,2000,台北,台灣。
4. 周伯丞、江哲銘、賴啟銘與李彥頤等,微氣候氣象資料在建築生命週期中更新重建設計之應用 The Applications of Local Micro-Climate Data in Rehabilitation,“中華民國建築學會第十二屆建築研究成果發表會論文集”,中華民國建築學會第十二屆建築研究成果發表會,pp. 525-528,2000,台北,台灣。
5. 江哲銘、賴啟銘、周伯丞、李彥頤,綠建築室內環境指標之研究 A Study on the Indoor Environment Index (IEI) for labelling Green Building in Taiwan,”第十二屆建築研究成果發表會論文集”,中華民國建築學會,Ref. No. 256,台北,台灣,2000。
6. 周伯丞,建築軀殼開口部自然通風效果之研究,成大建築博論,2000。
7. 江哲銘等,辦公建築室內空氣品質與空調設備之診斷研究,內政部建築研究所,1998。
8. 江哲銘、李炳興、王文安、周伯丞,辦公建築室內空氣環境使用後評估,中華民國建築學會第六屆建築研究成果發表會論文集,1993.11。
9. 江哲銘等,辦公建築室內空氣品質(CO2、CO、PM10)之研究,內政部建築研究所籌備處,1993.06。
10. 江哲銘、林俊興等,居住空間物理環境基準之研究—室內環境品質量測法初探,中華民國建築學會第四屆建築學術研究發表會論文集,1991.11。
11. 江哲銘、張桂鳳、王文安與周伯丞,台灣地區公私立高齡者安養中心室內物理環境用後評估 Post-Occupancy Evaluation on the Indoor Physical Environment of Care Centers for Aged People in Taiwan,“中華民國住宅學會第四屆年會論文專集”,中華民國住宅學會第四屆年會暨論文發表會,pp. 165-186,1995,台北,台灣。
12. 江哲銘、李炳興、王文安與周伯丞,辦公建築室內空氣環境使用後評估 A Study on Post-Occupancy Evaluation of Indoor Air Quality in Office Buildings,“中華民國建築學會第六屆建築研究成果發表會論文集”,中華民國建築學會第六屆建築研究成果發表會,pp. 615-520,1993,台南,台灣。
13. 廖崇文,不同空調通風路徑對室內空氣與溫熱環境影響之研究,樹德科大設計碩論,2003。
14. 劉家銘,單邊採光教室設置導光遮陽板對室內光環境品質改善之研究,樹德科大設計碩論,2003。
15. 張桂鳳,高齡者住居室內物理環境用後評估檢討—以台灣地區公私立安養中心為例,中原大學建築碩論,1994。
16. 江哲銘、王文安,台灣地區集合住宅室內空氣環境使用後評估,住宅學報,1994。
17. 涂玉峰,室內空氣環境綜合評估指標之探討—以台灣南部工業區辦公大樓為例,成大建築碩論。
18. 陳念祖,高架地板置換式自然通風之數值模擬,成大建築碩論,2001.6。
19. 蘇慧貞等,都會區辦公大樓之室內空氣品質調查與建立室內空氣品質標準之可行性,1998.06。
20. 連憶菁,水平導風百葉對室內自然通風效果之影響,成大建築碩論,2003。
21. 彭定吉,集合住宅室內空氣品質(CO2,CO,粉塵)現場量測方法之探討,成大建築碩論,1992。
22. 李炳興,辦公建築室內空氣品質(CO,CO2,PM10)現場測定與評估檢討,成大建築碩論,1993。
23. 江哲銘、周伯丞與林芳銘等,從生態氣候物理環境探討台灣佛寺之震害與永續發展 A Study on the Sustainable Development of the Buddhist Temples after the reviews of 921 Earthquake Calamity in Taiwan based on the Eco-Climate Modifications,“佛寺建築震害調查報告”,中華佛寺協會寺院建築研討會,pp. 61-70,2000,苗栗,台灣。
24. 陳致和,水平遮陽板與導光板之採光效能之研究,淡大建築碩論,1995。
25. 黃俊程,居室空間格柵遮陽板暨導光板在直射光環境下之採光效能評估,淡江大學建築碩論,1999。
26. 石宏杰,直射光環境下水平與格柵遮陽板之採光效能評估,淡大建築碩論,1999。
27. 陳乾隆,自然光環境下垂直遮陽板之採光效能評估,淡大建築碩論,1999。
28. 陳逸倫,電腦模擬建築物自然採光與外部遮陽節約能源綜合評估之研究,淡大建築碩論,2001。
英文部分
29. Chiang CM, Chang KF, Chou PC, Chen NT, Lee CH, Sustainable Approaches for the Renovation of the Existing Building: taking Kaohsiung City Hall as a demonstration project on the Energy-saving and Occupant-healthy Benefits, 2003 International Conference on Planning and Design, Tainan, Taiwan.
30. Turner, Fred, 1998. Achieving IAQ and Efficiency, ASHRAE Journal, Vol. 40, No. 12, pp. 8-16.
31. Chen Q, Yuan XX, et al. 1998. Detailed experimental data of room airflow with displacement ventilation. Proceedings of 6th International Conference on Air Distribution in Rooms. Vol. 1, pp 133-140. Stockholm: ROOMVENT ’98.
32. Chiang CM, Chou PC, et al. 1996. A Study of the Impacts of Outdoor Air and Living Behavior Patterns on Indoor Air Quality – Case Studies of Apartments in Taiwan, Proceedings of the 7th International Conference on Indoor Air Quality and Climate, Vol. 3, pp 735-740, Nagoya: Indoor Air ‘96.
33. Chiang CM, Lai CM, 2002. A study on the comprehensive indicator of indoor environment assessment for occupants’ health in Taiwan. Building and Environment. Vol. 37, pp 387-392.
34. Satty TL, Erdener E, 1979. A new approach to performance measurement the analytic hierarchy process. Design Methods and Theories. Vol. 13(2), pp 735-740.
35. Anderson EL, Albert RE, 1999. Risk assessment and indoor air quality. Lewis Publishers, Inc., Florida, USA.
36. Hult M. 1998. Assessment of indoor environment in existing buildings, Proceedings of Green Building Challenge ’98. Vol. 2, pp 139-146. Vancouver: GBC ‘98.
37. ASHRAE Standard 55a, Thermal environmental conditions for human occupancy, 1995.
38. ASHRAE Indoor air quality standard 62r-The inside story, 1998.
39. ASHRAE Standard 62, Ventilation for acceptable air quality, 1989.
40. European Prestandard prENV 1752 Draft, Ventilation for building: Design criteria for the indoor environment, 1996.
41. Hatch, T.H. Changing objectives in occupational health, AIHA J.23:1, 1962.
42. ISO 7730, Moderate thermal environments-Determination of the PMV and PPD indices and specification of the conditions for thermal comfort, 1994.
43. Kruger U., et al., Field studies of the indoor air quality by photo-acoustic spectroscopy, Eviron. Int., Vol.21, No. 6,pp.791-801, 1996.