簡易檢索 / 詳目顯示

研究生: 李至展
Lee, Chih-Jhan
論文名稱: 生物活性陶瓷塗層在骨腫瘤熱療法之研究
The study of bioactive ceramic coating on thermal therapy of bone tumor
指導教授: 李澤民
Lee, Tzer-Min
學位類別: 碩士
Master
系所名稱: 醫學院 - 口腔醫學研究所
Institute of Oral Medicine
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 122
中文關鍵詞: 熱治療磁性奈米粒子功能梯度材料鐵置換氫氧基磷灰石
外文關鍵詞: Hyperthermia, Mangetic nanoparticles, Iron-substituted hydroxyapatite, Functionally graded materials
相關次數: 點閱:116下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在臨床上,骨肉癌的病患在經過手術治療後,多半會進行人工關節的置換手術,在配合術後的化療來抑制腫瘤復發,然而化療帶來強烈的副作用對於病人來說是很痛苦的負擔;利用磁性奈米粒子(MNPs)來進行物理性高溫療法(Hyperthermia)是目前最受注目的癌症治療方法,許多文獻顯示,當MNPs溫度提升到42~45 oC並持續加熱30分鐘後,能夠有效的殺死癌細胞,且能夠避免正常組織被大量的破壞,是具有癌症治療潛能之物理性療法。
    氫氧基磷灰石(HA)為骨頭的主要成分,且具有良好的生物相容性與活性;此外,HA同時具備陽離子置換的特性,能夠使Ca2+與Fe2+離子進行置換形成具有磁性的magnetic-HA(mHA)奈米粒子,mHA粒子不僅具有HA的生物相容性與活性,同時也能夠與MNPs一樣被誘導加熱來進行熱治療;因此希望能夠將mHA奈米粒子被覆在植體表面,使人工植體不僅具備骨整合能力同時也能夠抑制骨腫瘤細胞再復發。
    本實驗將利用共沉積方法合成mHA奈米粒子,並利用功能梯度生醫材料(FGBM)設計概念來將mHA被覆於鈦的表面,並且進行不同溫度與環境的熱處理,來了解熱處理條件對mHA的物化性質影響,最後利用體外的細胞實驗來探討FGBM被覆層對細胞的影響。
    我們成功的利用共沉積的方法合成出具有生物磁性的HA奈米粒子,實驗結果證實,mHA不僅具有良好的細胞反應,同時也具備誘導加熱的特性;在真空熱處理實驗中,發現mHA燒結至900℃時擁有最佳之磁場強度,此外相較於未燒結之mHA,熱處理後的mHA在細胞的增生上也有較佳之反應;我們利用功能梯度生醫材料設計概念來將mHA被覆至鈦的表面,在抗壓實驗的結果顯示FGBM(383~402 MPa)相較於自然骨(~167 MPa)擁有更強的抗壓強度。
    本實驗成功的製備出具生物活性與熱治療能力之陶瓷被覆層,經誘導加熱的實驗證實本被覆層能夠加熱至45~69℃;在未來骨癌病患手術後進行人工關節置換,本被覆層不僅能夠提供良好的骨整合性,並提供在未來腫瘤復發時的癌症熱治療能力,來取代化療對病患造成的負擔。

    In clinical, the osteosarcoma patients would have artificial joint replacement after surgery and combined with chemotherapy to inhibit tumor recurrence. However, the side effect with the chemotherapy was too painful for patients. Hyperthermia by magnetic nanoparticles (MNPs) is one of many methods for cancer therapy. Previous studies indicated that when the MNPs temperature raised to 42-45oC and continued heating for 30 minutes, it could kill cancer cells and avoid disruption of normal bone tissue. Therefore, hyperthermia is a potential treatment of cancer therapy.

    Hydroxyapatite (HA) had excellent biocompatibility and bioactive property, and it’s the main component of the bone. HA owned the cation-exchange capacity and the Fe2+ was used to substitute Ca2+. Thus the particles would possess not only the hyperthermia, but also the biocompatibility of HA. So we coated the magnetic-HA on implant, and expect it had the ability to promote osseointegration and the function of hyperthermia.

    In this study, we synthesized mHA powders by the co-deposition method, and coated the mHA on the implant by using cold-pressed and sintered treatment, and let it become a FGBM(Functionally graded biomaterials), we also inverstigated the physical-chemical properties that underwent in different sintered temperature and environment. We also did the in vitro test to realize the cell responses to our FGMB.

    We successfully prepared the biomagnetic-HA and the results show that mHA not only had a good cellular response, but also had the function of hyperthermia. After the vacuum heat treatment in 900 oC, the magnetic properties of mHA will be promoted and would have better cellular response than as-prepared mHA. The mHA coated prepare by the FGBM method, and the compression test results show that the compressive strength of all the specimens (383-402 MPa) were higher than natural bone (~167 MPa).

    The coated mHA layer owned the good biocompatibility and the ability to hyperthermia. The induced heating experiment confirmed that mHA coated can heat up to 45-69 oC. In future, the patients after surgery could replace the mHA implant, which could promote osseointegration and owned the function of hyperthermia.

    中文摘要 I Abstract III 誌謝 V 目錄 VI 表目錄 IX 圖目錄 X 第一章 緒論 1 1.1 骨肉癌(Osteosarcoma) 1 1.2 骨肉癌治療的發展 1 1.3 熱療法 (Thermal therapy) 2 1.3.1 熱治療歷史 3 1.3.2 熱治療機制 3 1.3.3 熱治療技術 5 1.4 人工關節與表面處理 8 1.4.1 生物活性被覆層-氫氧基磷灰石 8 1.4.2 鐵基氫氧基磷灰石(Fe-HA) 9 1.4.3 HA的表面被覆技術 9 1.5 功能梯度材料 (Functionally graded materials) 10 1.5.1 氫氧基磷灰石與鈦之功能梯度生物材料[35-36] 10 1.6 研究動機與目的 11 第二章 理論基礎與文獻回顧 13 2.1 奈米材料 13 2.1.1 量子尺寸效應 13 2.1.2 小尺寸效應 14 2.1.3 表面效應 14 2.1.4 量子穿遂效應 14 2.2 磁學理論 14 2.2.1 氧化鐵磁性物質 14 2.2.2 磁性的種類 16 2.3 磁性奈米粒子 (Magnetic nano-particles,MNP) 19 2.3.1 磁性奈米粒子之簡介 19 2.3.2 超順磁氧化鐵奈米粒子(SPION) 19 2.3.3 SPION在生物醫學的應用 20 2.3.4 SPION熱治療加熱理論 20 2.3.5 SPION的基因毒性 (Genotoxicity) 21 2.3.6 SPION表面修飾 22 2.4 氫氧基磷灰石(Hydroxyapatite, HA) 23 2.5 HA的陽離子置換 24 2.5.1 磷酸鹽類磷灰石 24 2.5.2 鈣基磷灰石 24 2.5.3 生物磁性氫氧基磷灰石-FeHA 26 2.5.4 氫氧基磷灰石的合成 26 2.6 共沉積法(Co-precipitation) 28 第三章 實驗方法與步驟 30 3.1 實驗器材與藥品 30 3.1.1 實驗器材 30 3.1.2 實驗藥品 30 3.2 實驗流程 32 3.2.1 粉末製備 32 3.2.2 高溫熱處理 33 3.2.3 功能梯度生物被覆層 33 3.3 材料性質分析 33 3.3.1 EDS成分分析 33 3.3.2 ICP-MS粉末成分分析 34 3.3.3 XRD相組成分析 34 3.3.3 粉末粒徑大小觀察 35 3.3.4 傅立葉轉換紅外線吸收光譜分析(FT-IR) 35 3.3.5 磁性分析 36 3.3.6 高週波電感應加熱機 (High Frequency Induction Heating Machine ) 36 3.3.7 微硬度測試 37 3.3.8 抗壓強度與彈性係數 38 3.4 體外細胞實驗 38 3.4.1 細胞種類 38 3.4.2 細胞培養 39 3.4.3 免疫螢光染色 (Immunofluorescent images) 39 3.4.4 細胞增生 39 第四章 實驗結果 41 4.1 mHA粉末之製備 41 4.1.1 粉末製備 41 4.1.2 粉末之XRD分析 42 4.1.2.1 XRD相鑑定 42 4.1.2.2 (211)繞射角度之變化 43 4.1.2.3 結晶粒徑(Crystallite size) 43 4.1.3 粉末成分分析 43 4.1.4 粉末粒徑大小 44 4.1.5 傅立葉轉換紅外線吸收光譜(FT-IR) 44 4.1.6 超導量子干涉儀(SQUID) 45 4.1.7 誘導加熱(Induced heating) 45 4.2 mHA的熱處理 45 4.2.1 熱處理後之粉末型態(TEM) 46 4.2.2 大氣熱處理之XRD相分析 46 4.2.3 大氣熱處理粉末之SQUID分析 47 4.2.4 真空熱處理之XRD相分析 47 4.2.5 真空熱處理粉末之SQUID分析 48 4.2.6 真空熱處理粉末之高週波誘導加熱 49 4.3 功能梯度材料的製備 49 4.3.1 橫截面 (Cross-section) 50 4.3.2 機械性質 50 4.4 細胞活性實驗 50 4.4.1 細胞增生 50 4.4.2 免疫螢光染色 51 第五章 討論 53 5.1 生物磁性HA(mHA)的製備 53 5.2 mHA的熱處理 56 5.3 功能梯度生醫被覆材 57 5.4 細胞活性測試 58 第六章 結論 61 參考文獻 63

    [1] G. M. Jeffree, C. H. G. Price, and H. A. Sissons, The metastatic patterns of osteosarcoma. Cancer, 32:87-107 (1975)
    [2] G. E. Garrington, H. H. Scofield, J. Cornyn, and S. P. Hooker, Osteosarcoma of the jaws. Cancer March, 20(3):377-391 (1967)
    [3] S. S. Bielack, B. K. Bielack, F. Silke, H. Knut, R. Kotz, M. S. Kuntschik, and M. Werner. W. Winkelmann, A. Zoubek, and H. Jürgens, Prognostic Factors in High-Grade Osteosarcoma of the Extremities or Trunk: An Analysis of 1,702 Patients Treated on Neoadjuvant Cooperative Osteosarcoma Study Group Protocols. Journal of Clinical Oncology, 20(3): 776-790 (2002)
    [4] William S. F. and Allen M. G., Current treatment of osteosarcoma. Cancer Investigation, 19(3):292-315 (2001)
    [5] R. L. Souhami, A. W. Craft, J. W. Vander Eijken, M. Nooij, D. Spooner, V. H. C. Bramwell, R. Eierzbicki, A. J. Malcolm, A. Kirkpatrick, B. M. Uscinska, M. V. Glabbeke, and D. Machin, Randomised trial of two regimens of chemotherapy in operable osteosarcoma: a study of the European Osteosarcoma Intergroup. The Lancet, 350:911-917 (1997)
    [6] N. Marina, M.Gebhardt, L. Teot, and R. Gorlick, Biology and therapeutic advances for pediatric osteosarcoma. The Oncologist, 9:422-441 (2004)
    [7] J. H. Breasted, Therapeutic heat and cold, 2nd ed., Waverly Press, The Edwin Smith surgical payrus, Licht, S., editor, p.196 (1965)
    [8] P. Gas, Essential facts on the history of hyperthermia and their connections with electromedicine. Przeglad elektrotechniczny , 87(12b): 37-40 (2011)
    [9] N. H. Coley, G. A. Fowler, and F. H. Bogatko, A review of the influence of bacterial infection and bacterial products (Coley’s toxins) on malignant tumors in man. Acta Medica Scandinavica., 274:29-97 (1953)
    [10] W. C. Dewey, L. A. L. Sapareto, and E. Gerweck, Cellular responses to combinations of hyperthermia and radiation. Radiology, 123:463-474 (1977)
    [11] E. J. Hall, Hyperthermia, Radiobiology for the radiologist, 5th ed., Philadelphia, Lippincott Williams & Wilkins, p.504 (2000)
    [12] A. Ito, M. Shinkai, H Honda, K. Yoshikawa, S. Saga, T. Wakabayashi, J. Yoshida, and T. Kobayashi, Heat shock protein 70 expression induces antitumor immunity during intracellular hyperthermia using magnetite nanoparticles. Cancer Immunol Immunother, 52: 80-88 (2003)
    [13] A. Ito, H Honda, and T. Kobayashi, Cancer immunotherapy based on intracellular hyperthermia using magnetite nanoparticles: a novel concept of ‘‘heat-controlled necrosis’’ with heat shock protein expression. Cancer Immunol Immunother, 55: 320-328 (2006)
    [14] S. Fujimoto, R. D. Shrestha, M. Kokubun, M. Ohta, M. Takahashi, K. Kobayashi, S. Kiuchi, K. Okui, T. Miyoshi, and N. Arimizu. Intraperitoneal hyperthermic perfusion combined with surgery effective for gastric cancer patients with peritoneal seeding. Annals of Surgery, 208: 36-41 (1988)
    [15] C. J. Simon, D. E. Dupuy, and W. W. Mayo-Smith, Microwave Ablation : Principles and Applications. RadioGraphics, 25:70-83 (2005)
    [16] C. J. Diederich and K. Hynynen, Ultrasound technology for hyperthermia. Ultrasound in Medicine and Biology, 25:871-887 (1999)
    [17] T. J. Dubinsky, C. Cuevas, M. K.Dighe, O. Kolokythas, and J. H. Hwang, High-intensity focused ultrasound: current potential and oncologic applications. American Journal of Roentgenology, 190:191-199 (2008)
    [18] L. M. Veenendaal, A. Jager, G. Stapper, I. H. M. Borel Rinkes, and R. Hillegersberg, Multiple fiber laser-induced thermotherapy for ablation of large intrahepatic tumors. Photomedicine and Laser Surgery, 24(1): 3-9 (2006)
    [19] G. Baronzio, A. Gramaglia, and G. Fiorentini, Current Role and Future Perspectives of Hyperthermia for Prostate Cancer Treatment. In vivo, 23: 143-146 (2009)
    [20] D. T. Tompkins, R. Vanderby, S. A. Klein, W. A. Beckman, R. A. Steeves, and B. R. Paliwal, Effect of interseed spacing, tissue perfusion, thermoseed temperatures and catheters in ferromagnetic hyperthermia : results from simulations using finite element models of thermoseeds and catheters, IEEE Transactions on Biomedical Engineering, 41(10):975-985 (1994)
    [21] R. Hergt, S. Dutz, R. Müller, and M. Zeisberger, Magnetic particle hyperthermia : nanoparticle magnetism and materials development for cancer therapy. Journal of Physics : Condensed Matter, 18:2919-2934 (2006)
    [22] Q. A. Pankhurst, J. Connolly, S. K. Jones, and J. Dobson, Applications of magnetic nanoparticles in biomedicine. Journal of Physics D : Applied Physics, 36:167-181 (2003)
    [23] J. L. Corchero and A. Villaverde, Biomedical applications of distally controlled magnetic nanoparticles. Trends in Biotechnology, 27(8): 468-476 (2009)
    [24] E. Boanini, M. Gazzano, and A. Bigi, Ionic substitutions in calcium phosphates synthesized at low temperature. Acta Biomaterialia, 6:1882-1894 (2010)
    [25] R. McPherson, and N. Gane, Structural characterization of plasma- sprayed hydroxylapatite coatings. Journal of Materials Science: Materials in Medicine, 6:327-334 (1995)
    [26] H. Ji, C.B. Ponton, and P.M. Marquis, Microstructural characterization of hydroxyapatite coating on titanium, Journal of Materials Science: Materials in Medicine, 3:283-287 (1992)
    [27] M. Yoshinari, Y. Ohtsuka, and T. Derand, Thin hydroxyapatite coating produced by the ion beam dynamic mixing method, Biomaterials, 15:529-535 (1994)
    [28] P. Li, and K. de Groot, Calcium phosphate formation within sol-gel prepared titania in vitro and in vivo, Journal of Biomedical Materials Research, 27:1495-1500 (1993)
    [29] F. Li, Q.L. Feng, F.Z. Cui, H.D. Li, and H. Schubert, A simple biomimetic method for calcium phosphate coating, Surface and Coatings Technology, 154:88-93 (2005)
    [30] M. Yousefpour, A. Afshar, X.D. Yang, X.D. Li, B.C. Yang, Y. Wu, J.Y. Chen, and X.D. Zhang, Nano-crystalline growth of electrochemically deposited apatite coating on pure titanium, Journal of Electroanalytical Chemistry, 589:96-105 (2006)
    [31] J. K. Wessel, The handbook of advanced materials: enabling new designs. John Wiley & Sons, p465-675 (2004)
    [32] 鄭慧雯,茹克也木•沙吾提,章嫻君, 功能梯度材料的研究進展。Journal of Southwest China Normal University, 27(5):788-806 (2002)
    [33] A. J. Markworth, K. S. Ramesh, and W. P. Parks, Modelling studies applied to functionally graded materials. Journal of materials science, 30:1283-2193 (1995)
    [34] R. M. Mahamood, E. T. Akinlabi, M. Shukla and S. Pityana, Functionally Graded Material: An Overview. WCE 3:1593-1597 (2012)
    [35] W. Pompe, H. Worch, M. Epple , W. Friess, M. Gelinsky, P. Greil, U. Hempel, D. Scharnweber, and K. Schulte, Functionally graded materials for biomedical applications. Materials Science and Engineering, A362:40-60 (2003)
    [36] K. S. Katti, Biomaterials in total joint replacement. Colloids and Surfaces B: Biointerfaces, 39:33-142 (2004)
    [37] 楊永欽, 殘留應力對電漿熔射氫氧基磷灰石塗層與鈦鋁釩合金基材間結合強度之影響研究, 國立成功大學材料科學及工程學系碩博士班論文 (2003)
    [38] F. Watari, A. Yokoyama, M. Omori, T. Hirai, M. Uo, and T. Kawasaki, Fabrication and roperties of functionally graded dental implant. Composites Part B, 28B:5-11 (1997)
    [39] F. Watari, A. Yokoyama, M. Omori, T. Hirai, H. Kondo, M. Uo, and T. Kawasaki, Biocompatibility of materials and development to functionally graded implant for bio-medical application. Composites Science and Technology, 64:893–908 (2004)
    [40] C. L. Chu, X. Y. Xue, J. C. Zhu, and Z. D. Yin, In vivo study on biocompatibility and bonding strength of Ti/Ti–20 vol.% HA/Ti–40 vol.% HA functionally graded biomaterial with bone tissues in the rabbit. Materials Science and Engineering A, 429: 18–24 (2006)
    [41] R. R. Kumar and S. Maruno, Functionally graded coatings of HA–G–Ti composites and theirin vivo studies. Materials Science and Engineering, A334:156–162 (2002)
    [42] H. C. Wu, T. W. Wang, J. S. Sun, W. H. Wang and F. H. Lin, A novel biomagnetic nanoparticle based on hydroxyapatite, Nanotechnology, 18:1-9 (2007)
    [43] C. H. Hou, S. M. Hou, Y. S. Hsueh, J. Lin, H. C Wu, and F. H Lin, The in vivo performance of biomagnetic hydroxyapatite nanoparticles in cancer hyperthermia therapy. Biomaterials, 30:3956-3960 (2009)
    [44] Y. Li, J. Widodo, and S. Lim, C. P. Ooi, Synthesis and cytocompatibility of manganese (II) and iron (III) substituted hydroxyapatite nanoparticles. Journal of Materials Science, 47:754-763 (2012)
    [45] S. Panseri, C. C, T. D’Alessandro, M. Sandri, G. Giavaresi, M. Marcacci, C. T. Hung and A. Tampieri, Intrinsically superparamagnetic Fe-hydroxyapatite nanoparticles positively influence osteoblast-like cell behavior. Journal of Nanobiotechnology, 10:32-42 (2012)
    [46] A. Tampieri, T. D’Alessandro, M. Sandri, S. Sprio, E. Landi, L. Bertinetti, S. Panseri, G. Pepponi, J. Goettlicher, M. Banobre-Lopez, and J. Rivas, Intrinsic magnetism and hyperthermia in bioactive Fe-doped hydroxyapatite. Acta Biomaterialia, 8:843-851 (2012)
    [47] K. A. Gross, R. Jackson, J. D. Cashion, and L. M. Rodriguez-Lorenzo, Iron substituted apatites: a resorbable biomaterial with potential magnetic properties. European Cells and Materials, 3(2):114-117 (2002)
    [48] J. Wang, T. Nonami, and K. Yubata, Syntheses, structures and photophysical properties of iron containing hydroxyapatite prepared by a modified pseudo-body solution. Journal of Materials Science: Materials in Medicine, 19:2663-2667 (2008)
    [49] 蕭義鴻, 以電化學方法製備鐵奈米粒子之研究,國立中山大學電機工程學系碩士論文(2005)
    [50] 吳千惠, 磁性奈米粒子之製備及其應用於磁性生物探針, 國立清華大學化學系碩士論文 (2007)
    [51] S. J. Park, S. Kim, S. Lee, Z. G. Khim, K. Char, and T. Hyeon, Synthesis and Magnetic Studies of Uniform Iron Nanorods and Nanospheres. Journal of the American Chemical Society, 122:8581-8582 (2000)
    [52] 溫明鏡, 氧化鐵磁性奈米粒子之合成與特性研究, 國立中正大學物理研究所碩士論文 (2003)
    [53] Andrä, W., Magnetism in Medicine: A Handbook, Andrä , W., Nowak, H., editors, Wiley-VCH, Berlin, p.455 (1998)
    [54] 王思婷, 具核殼結構的磁性微脂粒之熱效應研究, 國立成功大學化學工程學系碩士論文 (2008)
    [55] S. Mornet, S. Vasseur, F. Grasset, and E. Duguet, Magnetic nanoparticle design for medical diagnosis and therapy. Journal of Materials Chemistry, 14:2161-2175 (2004)
    [56] F. Y. Cheng, C. H. Su, Y. S. Yang, C. S. Yeh, C. Y. Tsai, C. L. Wu, M. T. Wu and D. B. Shieh, Characterization of aqueous dispersions of Fe3O4 nanoparticles and their biomedical applications. Biomaterials, 26:729-738 (2005)
    [57] L. Shen, P. E. Laibinis and T. A. Hatton, Bilayer surfactant stabilized magnetic fluids: synthesis and interactions at interface. Langmuir, 15:47-53 (1999)
    [58] A. Ito, M. Shinkai, H Honda, K. Yoshikawa, and T. Kobayashi, Review : Medical application of functionalized magnetic nanoparticles. Journal of Bioscience and Bioengineering, 100(1):1-11 (2005)
    [59] Liu Y, Chen Z, and Wang J. Systematic evaluation of biocompatibility of magnetic Fe3O4 nanoparticles with six different mammalian cell lines. Journal of Nanoparticle Research. 13(1):199-212 ( 2010)
    [60] K. Müller K, J.N. Skepper, M. Posfai, R. Trivedi, S. Howarth, C.Corot, E. Lancelot, P. W. Thompson, A. P. Vrown, and J. H. Gillard, Effect of ultrasmall superparamagnetic iron oxide nanoparticles (Ferumoxtran-10) on human monocyte-macrophages in vitro. Biomaterials, 28(9):1629-1642 (2007)
    [61] S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. Vander Elst, and R. N. Muller, Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chemical Reviews, 108(6): 2064-2110 (2008)
    [62] N. Singh, G. J. S. Jenkins, B. C. Nelson, B. J. Marquis, T. G. G. Maffeis, A. P. Brown, P. M. Williams, C. J. Wright, and S. H. Doak, The role of iron redox state in the genotoxicity of ultrafine superparamagnetic iron oxide nanoparticles. Biomaterials, 33:163-170 (2012)
    [63] 潘守謙, EDTA官能基化磁性奈米粒子之合成及其應用,國立高雄大學應用化學研究所碩士論文 (2008)
    [64] F. H. Albee, Studies in bone growth: Triple calcium phosphate as a stimulus to osteogenesis, Ann Surg, 71:32-39 (1920)
    [65] J. G. C. Wolke, K. Vandijk, H. G. Schaeken, K. Degroot, and J. A. Jansen, Study of the surface characteristics of magnetron-sputter calcium- phosphate coatings, Journal of Biomedical Materials Research, 28: 1477-1484 (1994)
    [66] D. Shi, Biomaterials and tissue engineering, Springer-Verlag Berlin Heidelberg, p.40-55 (2004)
    [67] L. Sun, C. C. Berndt, K. A. Gross, and A. Kucuk, Material fundamentals and clinical performance of plasma-sprayed hydroxyapatite coatings: a review. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 58:570-592 (2001)
    [68] T. J. Webster, E. A. Massa-Schlueter, Je. L. Smith, and E. B. Slamovich. Osteoblast response to hydroxyapatite doped with divalent and trivalent cations. Biomaterials, 25(11):2111-2121 (2004)
    [69] M. Jiang, J. Terra, A. M. Rossi, M. A. Morales, E. M. Baggio Saitovitch, and D. E. Ellis, Fe2+/Fe3+ substitution in hydroxyapatite: Theory and experiment. Physical Review B, 66:224107 (2002)
    [70] 楊崇煒, 水熱法與高溫後處理對電漿熔射氫氧基磷灰石塗層微觀組織及結合強度之效應, 國立成功大學材料科學及工程學博士論文 (1995)
    [71] S. H. Rhee, Synthesis of hydroxyapatite via mechanochemical treatment. Biomaterials 23(4):1147-1152 (2002)
    [72] R. N. Correia, M. C. F. Magalhães, P. A. A. P. Marques , and A. M. R. Senos, Wet synthesis and characterization of modified hydroxyapatite powders. Journal of Materials Science: Materials in Medicine 7(8):501-505 (1996)
    [73] M. R. Saeri , A. Afshar, M. Ghorbani, N. Ehsani, and C. C. Sorrell, The wet precipitation process of hydroxyapatite. Materials Letters 57(24): 4064-4069 (2003)
    [74] H. C. Wu, T. W. Wang, M. C. Bohn, F. H. Lin, and M. Spector, Novel magnetic hydroxyapatite nanoparticles as non-viral vectors for the glial cell line-derived neurotrophic factor gene. Advanced Functional Materials, 20:67-77 (2010)
    [75] M. Wakamura, K. Kandori, and T. Ishikawa, Surface structure and composition of calcium Hydroxyapatites substituted with Al(III), La(III) and Fe(III) ions, Colloids and Surfaces A, 164:297-305 (2000)
    [76] M. Khachani, M. Kacimi, A. Ensuque, J. Y. Piquemal, C. Connan, F﹐ B. Verduraz, and M. Ziyad, Iron-calcium-hydroxyapatite catalysts: Iron speciation and comparative performances in butan-2-ol conversion and propane oxidative dehydrogenation. Applied Catalysis A: General, 388:113-123 (2010)
    [77] B. I. Lazoryak, A. A. Belik, R. N. Kotov, I. A. Leonidov, E. B. Mitberg, V. V. Karelina, D. G. Kellerman, S. Yu. Stefanovich, and A. K. Avetisov, Reduction and re-oxidation behavior of calcium iron phosphate, Ca9Fe(PO4)7. Chemistry of Materials, 15: 625-631 (2003)
    [78] K. Yamashita, N. Oikawa, and T. Umegaki, Acceleration and deceleration of bone-like crystal growth on ceramic hydroxyapatite by electric poling. Chemistry of Materials, 8:2697-2700 (1996)
    [79] M. Ohgaki, T. Kizuki, M. Katsura, and K. Yamashita, Manipulation of selective cell adhesion and growth by surface charges of electrically polarized hydroxyapatit. Journal of Biomedical Materials Research Part A, 57:366-373 (2001)
    [80] S. Itoh, S. Nakamura, T. Kobayashi, K. Shinomiya, and K. Yamashita, Effect of electrical polarization of hydroxyapatite ceramics on new bone formation. Calcified Tissue International, 78:133-142 (2006)
    [81] H. Y. Yasuda, M. Aoki, Y. Fujita, W. Fujitani, Y. Umakoshi and A. Takaoka, Effect of β-TCP Size on Bone-Like Layer Growth and Adhesion of Osteoblast-Like Cells in Hydroxyapatite/β-TCP Composites, Materials Transactions, 47(9):2368-2372 (2006)

    無法下載圖示 校內:2023-01-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE