簡易檢索 / 詳目顯示

研究生: 劉一平
Liu, I-Ping
論文名稱: 量子點敏化劑與碳黑相關對電極之製備及在染料敏化太陽能電池之應用
Preparation of Quantum Dot Sensitizers and Carbon Black Related Counter Electrodes for Dye-Sensitized Solar Cells
指導教授: 李玉郎
Lee, Yuh-Lang
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 186
中文關鍵詞: 染料敏化太陽能電池量子點連續式離子層吸附與反應法醋酸鈉對電極碳黑硫化銅
外文關鍵詞: Dye-sensitized solar cell, quantum dot, successive ionic layer adsorption and reaction, sodium acetate, counter electrode, carbon black, copper sulfide
相關次數: 點閱:116下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文的主要目的為改善量子點敏化劑的製備方式以及開發高效能碳黑相關對電極。
    由於製程簡易且效果佳,連續式離子層吸附與反應法(SILAR)經常用來製備量子點敏化太陽能電池;然而,量子點敏化劑通常在二氧化鈦薄膜中無法形成均勻的分佈,從而影響電解液在中孔洞結構內部的滲透行為,並且降低相關太陽能電池的光伏表現。在第三章裡,作者開發一個電位輔助法來製造硒化鎘敏化光電極。藉由施加一個負偏壓,可促使鎘離子直接滲透至二氧化鈦奈米顆粒結構中,並形成大量的硒化鎘量子點沉積。對比由SILAR法所製造的硒化鎘薄膜,以電位輔助法所得的薄膜具有顯著改善的量子點分佈狀況;更重要的是,相對應的量子點電池也較不易發生電荷再結合行為,並可得到更佳的元件表現。進一步結合電位輔助法與SILAR法來製備電池元件,透過此策略可將轉換效率提升至4.30%。另一方面,第四章中探討SILAR製程中,乙酸鈉添加劑於硫化鎘沉積之效應。研究發現,將乙酸鈉添加劑加入陽離子前驅液中可調控其表觀pH值,同時會加速硫化鎘量子點的沉積行為,因而可得到量子點沉積速率與pH值之間的相關性。當使用較快的硫化鎘沉積速率來製備光電極時,量子點於二氧化鈦薄膜中會形成更均勻的分佈;使用此硫化鎘電極所組裝的量子點電池,可獲得3.11%的轉換效率。若進一步執行離子交換反應來拓寬光譜中的光捕獲區域,可使轉換效率提高至4.51%。
    在第五章中,作者提出一個簡便的方式來製造適用於量子點電池的碳黑/硫化銅複合對電極。經由簡易地結合旋轉塗佈法與硫化反應,可得到具有硫化銅觸媒積累的中孔洞碳黑薄膜。本章節中詳細地探討硫化銅觸媒在硫化反應時的形成機制。經由一次塗佈所得到的複合薄膜,可呈現出和由化學浴沉積法所得的硫化銅相近的電催化活性,而複合薄膜的電催化活性也與所採取的塗佈次數有直接關聯。當經由三次塗佈所得到的複合薄膜作為硫化鎘/硒化鎘量子點電池的對電極時,其轉換效率可達到5.62%。另外,商品化的碳黑材料在第六章中被用來製備具有高電催化性且低成本的對電極;同時,此對電極將可使用於含有鈷錯合物電解液的染料敏化太陽能電池。研究發現,熱處理及碳黑沉積量多寡皆會影響碳黑薄膜的電化學特性。一個製備良好的碳黑薄膜比普遍使用之白金具有更佳的電催化活性。此碳黑材料也被採用於製備半透明催化薄膜,並可滿足染敏電池於雙面照射應用之需求。當使用Y123染料作為敏化劑時,配備有碳黑對電極的染敏電池可呈現出高達8.81%之轉換效率。本章節中清楚地示範此碳材在染敏電池中作為高效能對電極觸媒的可行性。

    In this dissertation, the main purposes are to improve the preparation method of quantum dot (QD) sensitizers, and to develop highly efficient carbon black (CB)-related counter electrodes.
    Quantum-dot-sensitized solar cells (QDSSCs) are often fabricated by the successive ionic layer adsorption and reaction (SILAR) process owing to this method’s simplicity and effectiveness; however, the distribution of QD sensitizers is usually inhomogeneous across the entire TiO2 film, thus affecting the penetration of electrolytes inside the mesoporous structure and the photovoltaic performance of relevant solar cells. In Chapter 3, a potential-assisted (PA) method is developed to fabricate CdSe-sensitized photoelectrodes. Applying a negative bias facilitates the penetration of cadmium ions directly into the TiO2 nanoparticulate structure, resulting in significant deposition of CdSe QDs. Compared to a CdSe thin film fabricated by the SILAR process, the PA-derived thin film exhibits strikingly improved QD distribution, and more importantly, the corresponding QDSSC reveals suppressed charge recombination and better cell performance. A strategy of combining the PA method and the SILAR process further increases the conversion efficiency, reaching 4.30%. In addition, the effect of sodium acetate (NaAc) additive in the SILAR process on the CdS deposition is carefully studied in Chapter 4. It is found that the CdS QD deposition is accelerated by introducing NaAc additives into the cationic precursors to adjust their apparent pH values; the dependence of the QD deposition rate on the pH value is therefore obtained. It is also observed that a more uniform QD distribution throughout the entire TiO2 film is attained for the CdS photoelectrode fabricated with fast QD deposition; the QDSSC assembled using this CdS electrode shows a conversion efficiency of 3.11%. By performing an ionic exchange to broaden the spectral region for light harvesting, the efficiency is further boosted to 4.51%.
    A facile method is proposed in Chapter 5 to fabricate carbon black/copper sulfide (CB/CuxS) composite counter electrodes for QDSSCs. A simple combination of spin-coating and sulfidation creates mesoporous CB thin films with an accumulation of CuxS catalysts. The formation mechanism of CuxS catalysts during the sulfidation is thoroughly investigated in this chapter. Regarding the electrocatalytic activity, the CB/CuxS thin film fabricated by a single coating is comparable to the common copper sulfide prepared by chemical bath deposition. The electrocatalytic activity of the CB/CuxS composite is found to be directly related to the coating times employed. A conversion efficiency of 5.62% is achieved for the CdS/CdSe QDSSC using a CB/CuxS counter electrode fabricated with three coating times. Moreover, in Chapter 6, a commercial CB material is utilized to fabricate highly electrocatalytic yet low-cost counter electrodes for dye-sensitized solar cells (DSSCs), based on the cobalt complex electrolyte. Both the heat treatment and the amount of CB deposition dominate the electrochemical properties of CB thin films. The electrocatalytic activity of a well-prepared CB thin film is superior to that of the commonly used Pt. This CB material is also introduced to the fabrication of semitransparent catalytic thin films, to meet the demand of bifacial DSSC applications. When the Y123 dye sensitizer is employed, the DSSC equipped with a CB counter electrode shows a conversion efficiency of 8.81%. The feasibility of this carbon material as a highly efficient counter electrode catalyst in DSSCs is clearly demonstrated.

    中文摘要 I Abstract III Table of contents V List of tables IX List of figures XI Nomenclatures XVIII Chapter 1: Introduction 1 1.1 Background 1 1.2 Operation principle of dye-sensitized solar cell 4 1.3 Short review on the progress of the dye-sensitized solar cell 6 1.3.1 Dye 7 1.3.2 Electrolyte 14 1.3.3 Counter electrode material 16 1.4 Quantum-dot-sensitized solar cell 23 1.4.1 Semiconductor quantum dot 23 1.4.2 Quantum dot sensitizer 27 1.4.3 Short review on the progress of the quantum-dot-sensitized solar cell 32 1.5 Motivation and research objectives 41 Chapter 2: Experimental 45 2.1 Chemicals 45 2.2 Characterization and measurements 46 2.3 Air mass and spectrum of solar irradiation 47 2.4 Photovoltaic characteristics 50 2.5 Preparation of TiO2 thin films on FTO substrates 51 2.6 Assembly of solar cells and symmetric dummy cells 52 Chapter 3: A Facile Potential-Assisted Method for Fabrication of CdSe Quantum Dot-Sensitized Solar Cells 53 3.1 Introduction 53 3.2 Experimental 56 3.2.1 Preparation of CdSe QDs by the potential-assisted method 56 3.2.2 Fabrication of CdSe-sensitized photoelectrodes by the SILAR process 56 3.2.3 Impedance Measurement 57 3.3 Results and discussion 57 3.3.1 CdSe-sensitized TiO2 films and solar cells fabricated by the potential-assisted method 57 3.3.2 Distribution of CdSe quantum dots in TiO2 films and charge recombination analysis 64 3.3.3 Combination of the potential-assisted method and the SILAR process 67 Chapter 4: Effect of Sodium Acetate Additive on the Deposition of CdS Quantum Dot Sensitizers 70 4.1 Introduction 70 4.2 Experimental 72 4.2.1 SILAR process for sensitization of CdS quantum dots and for the fabrication of ZnS passivation layers 72 4.2.2 Fabrication of ternary quantum dots by ionic exchange reaction 73 4.2.3 Measurements 74 4.3 Results and discussion 74 4.3.1 Effect of sodium acetate on photovoltaic performance 74 4.3.2 Charge transfer behavior analysis 79 4.3.3 Quantum dot distribution in TiO2 mesoporous films 81 4.3.4 Ternary quantum dots by ionic exchange reaction 84 Chapter 5: Fabrication of Carbon Black/Copper Sulfide Composite Catalysts as Counter Electrodes in Quantum-Dot-Sensitized Solar Cells 88 5.1 Introduction 89 5.2 Experimental 91 5.2.1 Fabrication of carbon black/copper sulfide composite catalytic thin films 91 5.2.2 Preparation of other catalysts 92 5.2.3 Synthesis of quantum dot sensitizers 92 5.2.4 Measurements 93 5.3 Results and discussion 93 5.3.1 Facile fabrication and characterizations of carbon black/copper sulfide composite thin film 93 5.3.2 Electrochemical properties of carbon black/copper sulfide composite thin film 101 5.3.3 Photovoltaic performance of QDSSCs using carbon black/copper sulfide composite counter electrodes 106 Chapter 6: Cost-Effective Carbon Black Rivals Noble Platinum as a Counter Electrode in Cobalt(III)/(II)-Mediated Dye-Sensitized Solar Cells 113 6.1 Introduction 113 6.2 Experimental 115 6.2.1 Preparation of carbon black and platinum thin film electrodes 115 6.2.2 Dye sensitization 116 6.2.3 Electrolytes employed in solar cells 116 6.2.4 Measurements 117 6.3 Results and discussion 117 6.3.1 Characteristics of carbon black thin film 117 6.3.2 Electrochemistry of carbon black thin film 121 6.3.3 Counter electrode prepared using carbon black in Z-907 DSSC 126 6.3.4 Semitransparent carbon black film for bifacial DSSC applications 129 6.3.5 Carbon black counter electrode in highly efficient Y123 DSSC 132 Chapter 7: Conclusions and suggestions 137 7.1 Conclusions 137 7.2 Suggestions and prospects 139 Chapter 8: References 142 Appendix A: Supplementary Information on Chapter 3 171 Appendix B: Supplementary Information on Chapter 4 172 Appendix C: Supplementary Information on Chapter 5 177 Appendix D: Supplementary Information on Chapter 6 178 Appendix E: Curriculum vitae 180

    [1] N. Armaroli and V. Balzani, “The Future of Energy Supply: Challenges and Opportunities,” Angewandte Chemie International Edition, 46, 52-66 (2007).
    [2] A. Cho, “Energy’s Tricky Tradeoffs,” Science, 329, 786-787 (2010).
    [3] M. Grätzel, “Photoelectrochemical Cells,” Nature, 414, 338-344 (2001).
    [4] M. A. Green, K. Emery, Y. Hishikawa, W. Warta, E. D. Dunlop, D. H. Levi and A. W. Y. Ho-Baillie, “Solar Cell Efficiency Tables (version 49),” Progress in Photovoltaics: Research and Applications, 25, 3-13 (2017).
    [5] A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo and H. Pettersson, “Dye-Sensitized Solar Cells,” Chemical Reviews, 110, 6595-6663 (2010).
    [6] M. Grätzel, “Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells,” Inorganic Chemistry, 44, 6841-6851 (2005).
    [7] H. Gerischer, M. E. Michel-Beyerle, F. Rebentrost and H. Tributsch, “Sensitization of Charge Injection into Semiconductors with Large Band Gap,” Electrochimica Acta, 13, 1509-1515 (1968).
    [8] M. Matsumura, Y. Nomura and H. Tsubomura, “Dye-sensitization on the Photocurrent at Zinc Oxide Electrode in Aqueous Electrolyte Solution,” Bulletin of the Chemical Society of Japan, 50, 2533-2537 (1977).
    [9] H. Tsubomura, M. Matsumura, Y. Nomura and T. Amamiya, “Dye Sensitised Zinc Oxide: Aqueous Electrolyte: Platinum Photocell,” Nature, 261, 402-403 (1976).
    [10] J. Desilvestro, M. Grätzel, L. Kavan, J. Moser and J. Augustynski, “Highly Efficient Sensitization of Titanium Dioxide,” Journal of the American Chemical Society, 107, 2988-2990 (1985).
    [11] B. O’Regan and M. Grätzel, “A Low-Cost, High-Efficiency Solar Cell Based on Dye-Sensitized Colloidal TiO2 Films,” Nature, 353, 737-740 (1991).
    [12] S. Anderson, E. C. Constable, M. P. Dare-Edwards, J. B. Goodenough, A. Hamnett, K. R. Seddon and R. D. Wright, “Chemical Modification of a Titanium (IV) Oxide Electrode to Give Stable Dye Sensitisation without a Supersensitiser,” Nature, 280, 571-573 (1979).
    [13] M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Müller, P. Liska, N. Vlachopoulos and M. Grätzel, “Conversion of Light to Electricity by cis-X2Bis(2,2′-bipyridyl-4,4′-dicarboxylate)ruthenium(II) Charge-Transfer Sensitizers (X = Cl, Br, I, CN, and SCN) on Nanocrystalline TiO2 Electrodes,” Journal of the American Chemical Society, 115, 6382-6390 (1993).
    [14] M. Grätzel, “Conversion of Sunlight to Electric Power by Nanocrystalline Dye-Sensitized Solar Cells,” Journal of Photochemistry and Photobiology A: Chemistry, 164, 3-14 (2004).
    [15] Md. K. Nazeeruddin, P. Péchy and M. Grätzel, “Efficient Panchromatic Sensitization of Nanocrystalline TiO2 Films by a Black Dye Based on a Trithiocyanato-Ruthenium Complex,” Chemical Communications, 1705-1706 (1997).
    [16] L. Han, A. Islam, H. Chen, C. Malapaka, B. Chiranjeevi, S. Zhang, X. Yang and M. Yanagida, “High-Efficiency Dye-Sensitized Solar Cell with a Novel Co-Adsorbent,” Energy & Environmental Science, 5, 6057-6060 (2012).
    [17] M. K. Nazeeruddin, P. Péchy, T. Renouard, S. M. Zakeeruddin, R. Humphry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi and M. Grätzel, “Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO2-Based Solar Cells,” Journal of the American Chemical Society, 123, 1613-1624 (2001).
    [18] Md. K. Nazeeruddin, S. M. Zakeeruddin, R. Humphry-Baker, M. Jirousek, P. Liska, N. Vlachopoulos, V. Shklover, C.-H. Fischer and M. Grätzel, “Acid-Base Equilibria of (2,2′-Bipyridyl-4,4′-dicarboxylic acid)ruthenium(II) Complexes and the Effect of Protonation on Charge-Transfer Sensitization of Nanocrystalline Titania,” Inorganic Chemistry, 38, 6298-6305 (1999).
    [19] M. K. Nazeeruddin, F. D. Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru and M. Grätzel, “Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers,” Journal of the American Chemical Society, 127, 16835-16847 (2005).
    [20] P. Wang, S. M. Zakeeruddin, I. Exnar and M. Grätzel, “High Efficiency Dye-Sensitized Nanocrystalline Solar Cells Based on Ionic Liquid Polymer Gel Electrolyte,” Chemical Communications, 2972-2973 (2002).
    [21] P. Wang, S. M. Zakeeruddin, J. E. Moser, M. K. Nazeeruddin, T. Sekiguchi and M. Grätzel, “A Stable Quasi-Solid-State Dye-Sensitized Solar Cell With an Amphiphilic Ruthenium Sensitizer and Polymer Gel Electrolyte,” Nature Materials, 2, 402-407 (2003).
    [22] P. Wang, S. M. Zakeeruddin, R. Humphry-Baker, J. E. Moser and M. Grätzel, “Molecular-Scale Interface Engineering of TiO2 Nanocrystals: Improve the Efficiency and Stability of Dye-Sensitized Solar Cells,” Advanced Materials, 15, 2101-2104 (2003).
    [23] C.-Y. Chen, S.-J. Wu, C.-G. Wu, J.-G. Chen and K.-C. Ho, “A Ruthenium Complex with Superhigh Light-Harvesting Capacity for Dye-Sensitized Solar Cells,” Angewandte Chemie International Edition, 45, 5822-5825 (2006).
    [24] C.-Y. Chen, S.-J. Wu, J.-Y. Li, C.-G. Wu, J.-G. Chen and K.-C. Ho, “A New Route to Enhance the Light-Harvesting Capability of Ruthenium Complexes for Dye-Sensitized Solar Cells,” Advanced Materials, 19, 3888-3891 (2007).
    [25] C.-Y. Chen, H.-C. Lu, C.-G. Wu, J.-G. Chen and K.-C. Ho, “New Ruthenium Complexes Containing Oligoalkylthiophene-Substituted 1,10-Phenanthroline for Nanocrystalline Dye-Sensitized Solar Cells,” Advanced Functional Materials, 17, 29-36 (2007).
    [26] C.-Y. Chen, J.-G. Chen, S.-J. Wu, J.-Y. Li, C.-G. Wu and K.-C. Ho, “Multifunctionalized Ruthenium-Based Supersensitizers for Highly Efficient Dye-Sensitized Solar Cells,” Angewandte Chemie International Edition, 47, 7342-7345 (2008).
    [27] C.-Y. Chen, M. Wang, J.-Y. Li, N. Pootrakulchote, L. Alibabaei, C.-h. Ngoc-le, J.-D. Decoppet, J.-H. Tsai, C. Grätzel, C.-G. Wu, S. M. Zakeeruddin and M. Grätzel, “Highly Efficient Light-Harvesting Ruthenium Sensitizer for Thin-Film Dye-Sensitized Solar Cells,” ACS Nano, 3, 3103-3109 (2009).
    [28] F. Gao, Y. Wang, D. Shi, J. Zhang, M. Wang, X. Jing, R. Humphry-Baker, P. Wang, S. M. Zakeeruddin and M. Grätzel, “Enhance the Optical Absorptivity of Nanocrystalline TiO2 Film with High Molar Extinction Coefficient Ruthenium Sensitizers for High Performance Dye-Sensitized Solar Cells,” Journal of the American Chemical Society, 130, 10720-10728 (2008).
    [29] F. Gao, Y. Wang, J. Zhang, D. Shi, M. Wang, R. Humphry-Baker, P. Wang, S. M. Zakeeruddin and M. Grätzel, “A New Heteroleptic Ruthenium Sensitizer Enhances the Absorptivity of Mesoporous Titania Film for a High Efficiency Dye-Sensitized Solar Cell,” Chemical Communications, 2635-2637 (2008).
    [30] Y. Cao, Y. Bai, Q. Yu, Y. Cheng, S. Liu, D. Shi, F. Gao and P. Wang, “Dye-Sensitized Solar Cells with a High Absorptivity Ruthenium Sensitizer Featuring a 2-(Hexylthio)thiophene Conjugated Bipyridine,” The Journal of Physical Chemistry C, 113, 6290-6297 (2009).
    [31] Q. Yu, Y. Wang, Z. Yi, N. Zu, J. Zhang, M. Zhang and P. Wang, “High-Efficiency Dye-Sensitized Solar Cells: The Influence of Lithium Ions on Exciton Dissociation, Charge Recombination, and Surface States,” ACS Nano, 4, 6032-6038 (2010).
    [32] T. Bessho, E. Yoneda, J.-H. Yum, M. Guglielmi, I. Tavernelli, H. Imai, U. Rothlisberger, M. K. Nazeeruddin and M. Grätzel, “New Paradigm in Molecular Engineering of Sensitizers for Solar Cell Applications,” Journal of the American Chemical Society, 131, 5930-5934 (2009).
    [33] S. Ferrere and B. A. Gregg, “Photosensitization of TiO2 by [FeII(2,2′-bipyridine-4,4′-dicarboxylic acid)2(CN)2]:  Band Selective Electron Injection from Ultra-Short-Lived Excited States,” Journal of the American Chemical Society, 120, 843-844 (1998).
    [34] S. Ferrere, “New Photosensitizers Based upon [Fe(L)2(CN)2] and [Fe(L)3] (L = Substituted 2,2′-Bipyridine):  Yields for the Photosensitization of TiO2 and Effects on the Band Selectivity,” Chemistry of Materials, 12, 1083-1089 (2000).
    [35] S. Altobello, R. Argazzi, S. Caramori, C. Contado, S. D. Fré, P. Rubino, C. Choné, G. Larramona and C. A. Bignozzi, “Sensitization of Nanocrystalline TiO2 with Black Absorbers Based on Os and Ru Polypyridine Complexes,” Journal of the American Chemical Society, 127, 15342-15343 (2005).
    [36] T. Bessho, E. C. Constable, M. Grätzel, A. H. Redondo, C. E. Housecroft, W. Kylberg, Md. K. Nazeeruddin, M. Neuburger and S. Schaffner, “An Element of Surprise-Efficient Copper-Functionalized Dye-Sensitized Solar Cells,” Chemical Communications, 3717-3719 (2008).
    [37] A. Kay and M. Grätzel, “Artificial Photosynthesis. 1. Photosensitization of TiO2 Solar Cells with Chlorophyll Derivatives and Related Natural Porphyrins,” The Journal of Physical Chemistry, 97, 6272-6277 (1993).
    [38] W. M. Campbell, K. W. Jolley, P. Wagner, K. Wagner, P. J. Walsh, K. C. Gordon, L. Schmidt-Mende, M. K. Nazeeruddin, Q. Wang, M. Grätzel and D. L. Officer, “Highly Efficient Porphyrin Sensitizers for Dye-Sensitized Solar Cells,” The Journal of Physical Chemistry C, 111, 11760-11762 (2007).
    [39] L.-L. Li and E. W.-G. Diau, “Porphyrin-Sensitized Solar Cells,” Chemical Society Reviews, 42, 291-304 (2013).
    [40] M. Urbani, M. Grätzel, M. K. Nazeeruddin and T. Torres, “Meso-Substituted Porphyrins for Dye-Sensitized Solar Cells,” Chemical Reviews, 114, 12330-12396 (2014).
    [41] C.-L. Wang, C.-M. Lan, S.-H. Hong, Y.-F. Wang, T.-Y. Pan, C.-W. Chang, H.-H. Kuo, M.-Y. Kuo, E. W.-G. Diau and C.-Y. Lin, “Enveloping Porphyrins for Efficient Dye-Sensitized Solar Cells,” Energy & Environmental Science, 5, 6933-6940 (2012).
    [42] C.-L. Wang, J.-Y. Hu, C.-H. Wu, H.-H. Kuo, Y.-C. Chang, Z.-J. Lan, H.-P. Wu, E. W.-G. Diau and C.-Y. Lin, “Highly Efficient Porphyrin-Sensitized Solar Cells with Enhanced Light Harvesting Ability beyond 800 nm and Efficiency Exceeding 10%,” Energy & Environmental Science, 7, 1392-1396 (2014).
    [43] J. Luo, M. Xu, R. Li, K.-W. Huang, C. Jiang, Q. Qi, W. Zeng, J. Zhang, C. Chi, P. Wang and J. Wu, “N-Annulated Perylene as an Efficient Electron Donor for Porphyrin-Based Dyes: Enhanced Light-Harvesting Ability and High-Efficiency Co(II/III)-Based Dye-Sensitized Solar Cells,” Journal of the American Chemical Society, 136, 265-272 (2014).
    [44] Y. Xie, Y. Tang, W. Wu, Y. Wang, J. Liu, X. Li, H. Tian and W.-H. Zhu, “Porphyrin Cosensitization for a Photovoltaic Efficiency of 11.5%: A Record for Non-Ruthenium Solar Cells Based on Iodine Electrolyte,” Journal of the American Chemical Society, 137, 14055-14058 (2015).
    [45] C.-P. Hsieh, H.-P. Lu, C.-L. Chiu, C.-W. Lee, S.-H. Chuang, C.-L. Mai, W.-N. Yen, S.-J. Hsu, E. W.-G. Diau and C.-Y. Yeh, “Synthesis and Characterization of Porphyrin Sensitizers with Various Electron-Donating Substituents for Highly Efficient Dye-Sensitized Solar Cells,” Journal of Materials Chemistry, 20, 1127-1134 (2010).
    [46] S.-L. Wu, H.-P. Lu, H.-T. Yu, S.-H. Chuang, C.-L. Chiu, C.-W. Lee, E. W.-G. Diau and C.-Y. Yeh, “Design and Characterization of Porphyrin Sensitizers with a Push-Pull Framework for Highly Efficient Dye-Sensitized Solar Cells,” Energy & Environmental Science, 3, 949-955 (2010).
    [47] T. Bessho, S. M. Zakeeruddin, C.-Y. Yeh, E. W.-G. Diau and M. Grätzel, “Highly Efficient Mesoscopic Dye-Sensitized Solar Cells Based on Donor-Acceptor-Substituted Porphyrins,” Angewandte Chemie International Edition, 49, 6646-6649 (2010).
    [48] A. Yella, H.-W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, Md. K. Nazeeruddin, E. W.-G. Diau, C.-Y. Yeh, S. M. Zakeeruddin and M. Grätzel, “Porphyrin-Sensitized Solar Cells with Cobalt (II/III)-Based Redox Electrolyte Exceed 12 Percent Efficiency,” Science, 334, 629-634 (2011).
    [49] A. Yella, C.-L. Mai, S. M. Zakeeruddin, S.-N. Chang, C.-H. Hsieh, C.-Y. Yeh and M. Grätzel, “Molecular Engineering of Push-Pull Porphyrin Dyes for Highly Efficient Dye-Sensitized Solar Cells: The Role of Benzene Spacers,” Angewandte Chemie International Edition, 53, 2973-2977 (2014).
    [50] S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B. F. E. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, Md. K. Nazeeruddin and M. Grätzel, “Dye-Sensitized Solar Cells with 13% Efficiency Achieved through the Molecular Engineering of Porphyrin Sensitizers,” Nature Chemistry, 6, 242-247 (2014).

    [51] T. Horiuchi, H. Miuraa and S. Uchida, “Highly-Efficient Metal-Free Organic Dyes for Dye-Sensitized Solar Cells,” Chemical Communications, 3036-3037 (2003).
    [52] T. Horiuchi, H. Miura, K. Sumioka and S. Uchida, “High Efficiency of Dye-Sensitized Solar Cells Based on Metal-Free Indoline Dyes,” Journal of the American Chemical Society, 126, 12218-12219 (2004).
    [53] S. Ito, S. M. Zakeeruddin, R. Humphry-Baker, P. Liska, R. Charvet, P. Comte, M. K. Nazeeruddin, P. Péchy, M. Takata, H. Miura, S. Uchida and M. Grätzel, “High-Efficiency Organic-Dye-Sensitized Solar Cells Controlled by Nanocrystalline-TiO2 Electrode Thickness,” Advanced Materials, 18, 1202-1205 (2006).
    [54] S. Ito, H. Miura, S. Uchida, M. Takata, K. Sumioka, P. Liska, P. Comte, P. Péchy and M. Grätzel, “High-Conversion-Efficiency Organic Dye-Sensitized Solar Cells with a Novel Indoline Dye,” Chemical Communications, 5194-5196 (2008).
    [55] G. Zhang, H. Bala, Y. Cheng, D. Shi, X. Lv, Q. Yu and P. Wang, “High Efficiency and Stable Dye-Sensitized Solar Cells with an Organic Chromophore Featuring a Binary π-Conjugated Spacer,” Chemical Communications, 2198-2200 (2009).
    [56] W. Zeng, Y. Cao, Y. Bai, Y. Wang, Y. Shi, M. Zhang, F. Wang, C. Pan and P. Wang, “Efficient Dye-Sensitized Solar Cells with an Organic Photosensitizer Featuring Orderly Conjugated Ethylenedioxythiophene and Dithienosilole Blocks,” Chemistry of Materials, 22, 1915-1925 (2010).
    [57] Y. Bai, J. Zhang, D. Zhou, Y. Wang, M. Zhang and P. Wang, “Engineering Organic Sensitizers for Iodine-Free Dye-Sensitized Solar Cells: Red-Shifted Current Response Concomitant with Attenuated Charge Recombination,” Journal of the American Chemical Society, 133, 11442-11445 (2011).
    [58] M. Xu, M. Zhang, M. Pastore, R. Li, F. D. Angelis and P. Wang, “Joint Electrical, Photophysical and Computational Studies on D-π-A Dye Sensitized Solar Cells: The Impacts of Dithiophene Rigidification,” Chemical Science, 3, 976-983 (2012).
    [59] H. N. Tsao, C. Yi, T. Moehl, J.-H. Yum, S. M. Zakeeruddin, M. K. Nazeeruddin and M. Grätzel, “Cyclopentadithiophene Bridged Donor-Acceptor Dyes Achieve High Power Conversion Efficiencies in Dye-Sensitized Solar Cells Based on the tris-Cobalt Bipyridine Redox Couple,” ChemSusChem, 4, 591-594 (2011).
    [60] E. Gabrielsson, H. Ellis, S. Feldt, H. Tian, G. Boschloo, A. Hagfeldt and L. Sun, “Convergent/Divergent Synthesis of a Linker-Varied Series of Dyes for Dye-Sensitized Solar Cells Based on the D35 Donor,” Advanced Energy Materials, 3, 1647-1656 (2013).
    [61] X. Zhang, Y. Xu, F. Giordano, M. Schreier, N. Pellet, Y. Hu, C. Yi, N. Robertson, J. Hua, S. M. Zakeeruddin, H. Tian and M. Grätzel, “Molecular Engineering of Potent Sensitizers for Very Efficient Light Harvesting in Thin-Film Solid-State Dye-Sensitized Solar Cells,” Journal of the American Chemical Society, 138, 10742-10745 (2016).
    [62] Z.-S. Wang, N. Koumura, Y. Cui, M. Takahashi, H. Sekiguchi, A. Mori, T. Kubo, A. Furube and K. Hara, “Hexylthiophene-Functionalized Carbazole Dyes for Efficient Molecular Photovoltaics: Tuning of Solar-Cell Performance by Structural Modification,” Chemistry of Materials, 20, 3993-4003 (2008).
    [63] K. Kakiage, Y. Aoyama, T. Yano, T. Otsuka, T. Kyomen, M. Unno and M. Hanaya, “An Achievement of over 12 Percent Efficiency in an Organic Dye-Sensitized Solar Cell,” Chemical Communications, 50, 6379-6381 (2014).
    [64] K. Kakiage, Y. Aoyama, T. Yano, K. Oya, T. Kyomen and M. Hanaya, “Fabrication of a High-Performance Dye-Sensitized Solar Cell with 12.8% Conversion Efficiency Using Organic Silyl-Anchor Dyes,” Chemical Communications, 51, 6315-6317 (2015).
    [65] K. Kakiage, Y. Aoyama, T. Yano, K. Oya, J.-i. Fujisawa and M. Hanaya, “Highly-Efficient Dye-Sensitized Solar Cells with Collaborative Sensitization by Silyl-Anchor and Carboxy-Anchor Dyes,” Chemical Communications, 51, 15894-15897 (2015).
    [66] J. Wu, Z. Lan, J. Lin, M. Huang, Y. Huang, L. Fan and G. Luo, “Electrolytes in Dye-Sensitized Solar Cells,” Chemical Reviews, 115, 2136-2173 (2015).
    [67] N. Papageorgiou, Y. Athanassov, M. Armand, P. Bonhôte, H. Pettersson, A. Azam and M. Grätzel, “The Performance and Stability of Ambient Temperature Molten Salts for Solar Cell Applications,” Journal of The Electrochemical Society, 143, 3099-3108 (1996).
    [68] M. Gorlova and L. Kloo, “Ionic Liquid Electrolytes for Dye-Sensitized Solar Cells,” Dalton Transactions, 2655-2666 (2008).
    [69] D. Shi, N. Pootrakulchote, R. Li, J. Guo, Y. Wang, S. M. Zakeeruddin, M. Grätzel and P. Wang, “New Efficiency Records for Stable Dye-Sensitized Solar Cells with Low-Volatility and Ionic Liquid Electrolytes,” The Journal of Physical Chemistry C, 112, 17046-17050 (2008).
    [70] S. M. Zakeeruddin and M. Grätzel, “Solvent-Free Ionic Liquid Electrolytes for Mesoscopic Dye-Sensitized Solar Cells,” Advanced Functional Materials, 19, 2187-2202 (2009).
    [71] Y. J. Kim, J. H. Kim, M.-S. Kang, M. J. Lee, J. Won, J. C. Lee and Y. S. Kang, “Supramolecular Electrolytes for Use in Highly Efficient Dye-Sensitized Solar Cells,” Advanced Materials, 16, 1753-1757 (2004).
    [72] Y. Shi, C. Zhan, L. Wang, B. Ma, R. Gao, Y. Zhu and Y. Qiu, “The Electrically Conductive Function of High-Molecular Weight Poly(ethylene oxide) in Polymer Gel Electrolytes Used for Dye-Sensitized Solar Cells,” Physical Chemistry Chemical Physics, 11, 4230-4235 (2009).
    [73] O. A. Ileperuma, G. R. A. Kumara, H.-S. Yang and K. Murakami, “Quasi-Solid Electrolyte Based on Polyacrylonitrile for Dye-Sensitized Solar Cells,” Journal of Photochemistry and Photobiology A: Chemistry, 217, 308-312 (2011).
    [74] M. G. Kang, K. M. Kim, K. S. Ryu, S. H. Chang, N.-G. Park, J. S. Hong and K.-J. Kim, “Dye-Sensitized TiO2 Solar Cells Using Polymer Gel Electrolytes Based on PVdF-HFP,” Journal of The Electrochemical Society, 151, E257-E260 (2004).
    [75] K.-M. Lee, V. Suryanarayanan and K.-C. Ho, “A Photo-Physical and Electrochemical Impedance Spectroscopy Study on the Quasi-Solid State Dye-Sensitized Solar Cells Based on Poly(vinylidene fluoride-co-hexafluoropropylene),” Journal of Power Sources, 185, 1605-1612 (2008).
    [76] C.-L. Chen, H. Teng and Y.-L. Lee, “In Situ Gelation of Electrolytes for Highly Efficient Gel-State Dye-Sensitized Solar Cells,” Advanced Materials, 23, 4199-4204 (2011).
    [77] Q. Yu, C. Yu, F. Guo, J. Wang, S. Jiao, S. Gao, H. Li and L. Zhao, “A Stable and Efficient Quasi-Solid-State Dye-Sensitized Solar Cell with a Low Molecular Weight Organic Gelator,” Energy & Environmental Science, 5, 6151-6155 (2012).
    [78] C. Wang, L. Wang, Y. Shi, H. Zhang and T. Ma, “Printable Electrolytes for Highly Efficient Quasi-Solid-State Dye-Sensitized Solar Cells,” Electrochimica Acta, 91, 302-306 (2013).
    [79] K. Murakoshi, R. Kogure, Y. Wada and S. Yanagida, “Fabrication of Solid-State Dye-Sensitized TiO2 Solar Cells Combined with Polypyrrole,” Solar Energy Materials and Solar Cells, 55, 113-125 (1998).
    [80] G. K. Mor, S. Kim, M. Paulose, O. K. Varghese, K. Shankar, J. Basham and C. A. Grimes, “Visible to Near-Infrared Light Harvesting in TiO2 Nanotube Array-P3HT Based Heterojunction Solar Cells,” Nano Letters, 9, 4250-4257 (2009).
    [81] J. Xia, N. Masaki, M. Lira-Cantu, Y. Kim, K. Jiang and S. Yanagida, “Influence of Doped Anions on Poly(3,4-ethylenedioxythiophene) as Hole Conductors for Iodine-Free Solid-State Dye-Sensitized Solar Cells,” Journal of the American Chemical Society, 130, 1258-1263 (2008).
    [82] J. Kim, J. K. Koh, B. Kim, S. H. Ahn, H. Ahn, D. Y. Ryu, J. H. Kim and E. Kim, “Enhanced Performance of I2-Free Solid-State Dye-Sensitized Solar Cells with Conductive Polymer up to 6.8%,” Advanced Functional Materials, 21, 4633-4639 (2011).
    [83] U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissörtel, J. Salbeck, H. Spreitzer and M. Grätzel, “Solid-State Dye-Sensitized Mesoporous TiO2 Solar Cells with High Photon-to-Electron Conversion Efficiencies,” Nature, 395, 583-585 (1998).
    [84] H. J. Snaith, A. J. Moule, C. Klein, K. Meerholz, R. H. Friend and M. Grätzel, “Efficiency Enhancements in Solid-State Hybrid Solar Cells via Reduced Charge Recombination and Increased Light Capture,” Nano Letters, 7, 3372-3376 (2007).
    [85] N. Cai, S.-J. Moon, L. Cevey-Ha, T. Moehl, R. Humphry-Baker, P. Wang, S. M. Zakeeruddin and M. Grätzel, “An Organic D-π-A Dye for Record Efficiency Solid-State Sensitized Heterojunction Solar Cells,” Nano Letters, 11, 1452-1456 (2011).
    [86] J. Burschka, A. Dualeh, F. Kessler, E. Baranoff, N.-L. Cevey-Ha, C. Yi, M. K. Nazeeruddin and M. Grätzel, “Tris(2-(1H-pyrazol-1-yl)pyridine)cobalt(III) as p-Type Dopant for Organic Semiconductors and Its Application in Highly Efficient Solid-State Dye-Sensitized Solar Cells,” Journal of the American Chemical Society, 133, 18042-18045 (2011).
    [87] M. Wang, N. Chamberland, L. Breau, J.-E. Moser, R. Humphry-Baker, B. Marsan, S. M. Zakeeruddin and M. Grätzel, “An Organic Redox Electrolyte to Rival Triiodide/Iodide in Dye-Sensitized Solar Cells,” Nature Chemistry, 2, 385-389 (2010).
    [88] J. Burschka, V. Brault, S. Ahmad, L. Breau, M. K. Nazeeruddin, B. Marsan, S. M. Zakeeruddin and M. Grätzel, “Influence of the Counter Electrode on the Photovoltaic Performance of Dye-Sensitized Solar Cells Using a Disulfide/Thiolate Redox Electrolyte,” Energy & Environmental Science, 5, 6089-6097 (2012).
    [89] T. Daeneke, T.-H. Kwon, A. B. Holmes, N. W. Duffy, U. Bach and L. Spiccia, “High-Efficiency Dye-Sensitized Solar Cells with Ferrocene-Based Electrolytes,” Nature Chemistry, 3, 211-215 (2011).
    [90] H. Nusbaumer, J.-E. Moser, S. M. Zakeeruddin, M. K. Nazeeruddin and M. Grätzel, “CoII(dbbip)22+ Complex Rivals Tri-iodide/Iodide Redox Mediator in Dye-Sensitized Photovoltaic Cells,” The Journal of Physical Chemistry B, 105, 10461-10464 (2001).
    [91] S. A. Sapp, C. M. Elliott, C. Contado, S. Caramori and C. A. Bignozzi, “Substituted Polypyridine Complexes of Cobalt(II/III) as Efficient Electron-Transfer Mediators in Dye-Sensitized Solar Cells,” Journal of the American Chemical Society, 124, 11215-11222 (2002).
    [92] H. Nusbaumer, S. M. Zakeeruddin, J.-E. Moser and M. Grätzel, “An Alternative Efficient Redox Couple for the Dye-Sensitized Solar Cell System,” Chemistry - A European Journal, 9, 3756-3763 (2003).
    [93] J. J. Nelson, T. J. Amick and C. M. Elliott, “Mass Transport of Polypyridyl Cobalt Complexes in Dye-Sensitized Solar Cells with Mesoporous TiO2 Photoanodes,” The Journal of Physical Chemistry C, 112, 18255-18263 (2008).
    [94] S. M. Feldt, E. A. Gibson, E. Gabrielsson, L. Sun, G. Boschloo and A. Hagfeldt, “Design of Organic Dyes and Cobalt Polypyridine Redox Mediators for High-Efficiency Dye-Sensitized Solar Cells,” Journal of the American Chemical Society, 132, 16714-16724 (2010).
    [95] D. Zhou, Q. Yu, N. Cai, Y. Bai, Y. Wang and P. Wang, “Efficient Organic Dye-Sensitized Thin-Film Solar Cells Based on the Tris(1,10-phenanthroline)cobalt(II/III) Redox Shuttle,” Energy & Environmental Science, 4, 2030-2034 (2011).
    [96] J. Liu, J. Zhang, M. Xu, D. Zhou, X. Jing and P. Wang, “Mesoscopic Titania Solar Cells with the Tris(1,10-phenanthroline)cobalt Redox Shuttle: Uniped versus Biped Organic Dyes,” Energy & Environmental Science, 4, 3021-3029 (2011).
    [97] J.-H. Yum, E. Baranoff, F. Kessler, T. Moehl, S. Ahmad, T. Bessho, A. Marchioro, E. Ghadiri, J.-E. Moser, C. Yi, Md. K. Nazeeruddin and M. Grätzel, “A Cobalt Complex Redox Shuttle for Dye-Sensitized Solar Cells with High Open-Circuit Potentials,” Nature Communications, 3, 631 (2012).
    [98] H. Ellis, R. Jiang, S. Ye, A. Hagfeldt and G. Boschloo, “Development of High Efficiency 100% Aqueous Cobalt Electrolyte Dye-Sensitised Solar Cells,” Physical Chemistry Chemical Physics, 18, 8419-8427 (2016).
    [99] S. Hattori, Y. Wada, S. Yanagida and S. Fukuzumi, “Blue Copper Model Complexes with Distorted Tetragonal Geometry Acting as Effective Electron-Transfer Mediators in Dye-Sensitized Solar Cells,” Journal of the American Chemical Society, 127, 9648-9654 (2005).
    [100] M. Freitag, Q. Daniel, M. Pazoki, K. Sveinbjörnsson, J. Zhang, L. Sun, A. Hagfeldt and G. Boschloo, “High-Efficiency Dye-Sensitized Solar Cells with Molecular Copper Phenanthroline as Solid Hole Conductor,” Energy & Environmental Science, 8, 2634-2637 (2015).

    [101] Y. Saygili, M. Söderberg, N. Pellet, F. Giordano, Y. Cao, A. B. Muñoz-García, S. M. Zakeeruddin, N. Vlachopoulos, M. Pavone, G. Boschloo, L. Kavan, J.-E. Moser, M. Grätzel, A. Hagfeldt and M. Freitag, “Copper Bipyridyl Redox Mediators for Dye-Sensitized Solar Cells with High Photovoltage,” Journal of the American Chemical Society, 138, 15087-15096 (2016).
    [102] M. Freitag, J. Teuscher, Y. Saygili, X. Zhang, F. Giordano, P. Liska, J. Hua, S. M. Zakeeruddin, J.-E. Moser, M. Grätzel and A. Hagfeldt, “Dye-Sensitized Solar Cells for Efficient Power Generation under Ambient Lighting,” Nature Photonics, 11, 372-378 (2017).
    [103] N. Papageorgiou, W. F. Maier and M. Grätzel, “An Iodine/Triiodide Reduction Electrocatalyst for Aqueous and Organic Media,” Journal of The Electrochemical Society, 144, 876-884 (1997).
    [104] G. Wang, R. Lin, Y. Lin, X. Li, X. Zhou and X. Xiao, “A Novel High-Performance Counter Electrode for Dye-Sensitized Solar Cells,” Electrochimica Acta, 50, 5546-5552 (2005).
    [105] P. Li, J. Wu, J. Lin, M. Huang, Z. Lan and Q Li, “Improvement of Performance of Dye-Sensitized Solar Cells Based on Electrodeposited-Platinum Counter Electrode,” Electrochimica Acta, 53, 4161-4166 (2008).
    [106] Y.-L. Lee, C.-L. Chen, L.-W. Chong, C.-H. Chen, Y.-F. Liu and C.-F. Chi, “A Platinum Counter Electrode with High Electrochemical Activity and High Transparency for Dye-Sensitized Solar Cells,” Electrochemistry Communications, 12, 1662-1665 (2010).
    [107] X. Fang, T. Ma, G. Guan, M. Akiyama, T. Kida and E. Abe, “Effect of the Thickness of the Pt Film Coated on a Counter Electrode on the Performance of a Dye-Sensitized Solar Cell,” Journal of Electroanalytical Chemistry, 570, 257-263 (2004).
    [108] E. Olsen, G. Hagen and S. E. Lindquist, “Dissolution of Platinum in Methoxy Propionitrile Containing LiI/I2,” Solar Energy Materials and Solar Cells, 63, 267-273 (2000).
    [109] G. Syrrokostas, A. Siokou, G. Leftheriotis and P. Yianoulis, “Degradation Mechanisms of Pt Counter Electrodes for Dye Sensitized Solar Cells,” Solar Energy Materials and Solar Cells, 103, 119-127 (2012).
    [110] X. Mei, S. J. Cho, B. Fan and J. Ouyang, “High-Performance Dye-Sensitized Solar Cells with Gel-Coated Binder-Free Carbon Nanotube Films as Counter Electrode,” Nanotechnology, 21, 395202 (2010).
    [111] M. Wu and T. Ma, “Recent Progress of Counter Electrode Catalysts in Dye-Sensitized Solar Cells,” The Journal of Physical Chemistry C, 118, 16727-16742 (2014).
    [112] S. Yun, A. Hagfeldt and T. Ma, “Pt-Free Counter Electrode for Dye-Sensitized Solar Cells with High Efficiency,” Advanced Materials, 26, 6210-6237 (2014).
    [113] A. Kay and M. Grätzel, “Low Cost Photovoltaic Modules Based on Dye Sensitized Nanocrystalline Titanium Dioxide and Carbon Powder,” Solar Energy Materials and Solar Cells, 44, 99-117 (1996).
    [114] T. N. Murakami, S. Ito, Q. Wang, Md. K. Nazeeruddin, T. Bessho, I. Cesar, P. Liska, R. Humphry-Baker, P. Comte, P. Péchy and M. Grätzel, “Highly Efficient Dye-Sensitized Solar Cells Based on Carbon Black Counter Electrodes,” Journal of The Electrochemical Society, 153, A2255-A2261 (2006).
    [115] S. Ahmad, J.-H. Yum, H.-J. Butt, M. K. Nazeeruddin and M. Grätzel, “Efficient Platinum-Free Counter Electrodes for Dye-Sensitized Solar Cell Applications,” ChemPhysChem, 11, 2814-2819 (2010).
    [116] R. Trevisan, M. Döbbelin, P. P. Boix, E. M. Barea, R. Tena-Zaera, I. Mora-Seró and J. Bisquert, “PEDOT Nanotube Arrays as High Performing Counter Electrodes for Dye Sensitized Solar Cells. Study of the Interactions Among Electrolytes and Counter Electrodes,” Advanced Energy Materials, 1, 781-784 (2011).
    [117] T. H. Lee, K. Do, Y. W. Lee, S. S. Jeon, C. Kim, J. Ko and S. S. Im, “High-Performance Dye-Sensitized Solar Cells based on PEDOT Nanofibers as an Efficient Catalytic Counter Electrode,” Journal of Materials Chemistry, 22, 21624-21629 (2012).
    [118] B. Lee, D. B. Buchholza and R. P. H. Chang, “An All Carbon Counter Electrode for Dye Sensitized Solar Cells,” Energy & Environmental Science, 5, 6941-6952 (2012).
    [119] M. Wu, X. Lin, Y. Wang, L. Wang, W. Guo, D. Qi, X. Peng, A. Hagfeldt, M. Grätzel and T. Ma, “Economical Pt-Free Catalysts for Counter Electrodes of Dye-Sensitized Solar Cells,” Journal of the American Chemical Society, 134, 3419-3428 (2012).
    [120] F. Gong, H. Wang, X. Xu, G. Zhou and Z.-S. Wang, “In Situ Growth of Co0.85Se and Ni0.85Se on Conductive Substrates as High-Performance Counter Electrodes for Dye-Sensitized Solar Cells,” Journal of the American Chemical Society, 134, 10953-10958 (2012).
    [121] F. Gong, X. Xu, Z. Li, G. Zhou and Z.-S. Wang, “NiSe2 as an Efficient Electrocatalyst for a Pt-Free Counter Electrode of Dye-Sensitized Solar Cells,” Chemical Communications, 49, 1437-1439 (2013).
    [122] F. Hao, P. Dong, Q. Luo, J. Li, J. Lou and H. Lin, “Recent Advances in Alternative Cathode Materials for Iodine-Free Dye-Sensitized Solar Cells,” Energy & Environmental Science, 6, 2003-2019 (2013).
    [123] E. Ramasamy, C. Jo, A. Anthonysamy, I. Jeong, J. K. Kim and J. Lee, “Soft-Template Simple Synthesis of Ordered Mesoporous Titanium Nitride-Carbon Nanocomposite for High Performance Dye-Sensitized Solar Cell Counter Electrodes,” Chemistry of Materials, 24, 1575-1582 (2012).
    [124] G. Liu, X. Li, H. Wang, Y. Rong, Z. Ku, M. Xu, L. Liu, M. Hu, Y. Yang, H. Han, “An Efficient Thiolate/Disulfide Redox Couple Based Dye-Sensitized Solar Cell with a Graphene Modified Mesoscopic Carbon Counter Electrode,” Carbon, 53, 11-18 (2013).
    [125] S. Pan, Z. Yang, H. Li, L. Qiu, H. Sun and H. Peng, “Efficient Dye-Sensitized Photovoltaic Wires Based on an Organic Redox Electrolyte,” Journal of the American Chemical Society, 135, 10622-10625(2013).
    [126] S. Yun, Y. Liu, T. Zhang and S. Ahmad, “Recent Advances in Alternative Counter Electrode Materials for Co-Mediated Dye-Sensitized Solar Cells,” Nanoscale, 7, 11877-11893 (2015).
    [127] S. Ahmad, T. Bessho, F. Kessler, E. Baranoff, J. Frey, C. Yi, M. Grätzel and M. K. Nazeeruddin, “A New Generation of Platinum and Iodine Free Efficient Dye-Sensitized Solar Cells,” Physical Chemistry Chemical Physics, 14, 10631-10639 (2012).
    [128] H. N. Tsao, J. Burschka, C. Yi, F. Kessler, M. K. Nazeeruddin and M. Grätzel, “Influence of the Interfacial Charge-Transfer Resistance at the Counter Electrode in Dye-Sensitized Solar Cells Employing Cobalt Redox Shuttles,” Energy & Environmental Science, 4, 4921-4924 (2011).
    [129] L. Kavan, J.-H. Yum, M. K. Nazeeruddin and M. Grätzel, “Graphene Nanoplatelet Cathode for Co(III)/(II) Mediated Dye-Sensitized Solar Cells,” ACS Nano, 5, 9171-9178 (2011).
    [130] L. Kavan, J.-H. Yum and M. Grätzel, “Graphene Nanoplatelets Outperforming Platinum as the Electrocatalyst in Co-Bipyridine-Mediated Dye-Sensitized Solar Cells,” Nano Letters, 11, 5501-5506 (2011).
    [131] L. Kavan, J.-H. Yum and M. Grätzel, “Optically Transparent Cathode for Co(III/II) Mediated Dye-Sensitized Solar Cells Based on Graphene Oxide,” ACS Applied Materials & Interfaces, 4, 6999-7006 (2012).
    [132] M. Stefik, J.-H. Yum, Y. Hu and M. Grätzel, “Carbon-Graphene Nanocomposite Cathodes for Improved Co(II/III) Mediated Dye-Sensitized Solar Cells,” Journal of Materials Chemistry A, 1, 4982-4987 (2013).
    [133] Y. Li, H. Wang, Q. Feng, G. Zhou and Z.-S. Wang, “Reduced Graphene Oxide-TaON Composite As a High-Performance Counter Electrode for Co(bpy)33+/2+-Mediated Dye-Sensitized Solar Cells,” ACS Applied Materials & Interfaces, 5, 8217-8224 (2013).
    [134] Y. Li, Q. Feng, H. Wang, G. Zhou and Z.-S. Wang, “Reduced Graphene Oxide-Ta3N5 Composite: A Potential Cathode for Efficient Co(bpy)33+/2+ Mediated Dye-Sensitized Solar Cells,” Journal of Materials Chemistry A, 1, 6342-6349 (2013).
    [135] J. He, J. M. Pringle and Y.-B. Cheng, “Titanium Carbide and Titanium Nitride-Based Nanocomposites as Efficient Catalysts for the Co2+/Co3+ Redox Couple in Dye-Sensitized Solar Cells,” The Journal of Physical Chemistry C, 118, 16818-16824 (2014).
    [136] J. Cong, D. Kinschel, Q. Daniel, M. Safdari, E. Gabrielsson, H. Chen, P. H. Svensson, L. Sun and L. Kloo, “Bis(1,1-bis(2-pyridyl)ethane)copper(I/II) as an Efficient Redox Couple for Liquid Dye-Sensitized Solar Cells,” Journal of Materials Chemistry A, 4, 14550-14554 (2016).
    [137] A. J. Nozik and O. I. Mićić, “Colloidal Quantum Dots of III-V Semiconductors,” MRS Bulletin, 23, 24-30 (1998).
    [138] Q. Zhang, E. Uchaker, S. L. Candelaria and G. Cao, “Nanomaterials for Energy Conversion and Storage,” Chemical Society Reviews, 42, 3127-3171 (2013).
    [139] X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir and S. Weiss, “Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics,” Science, 307, 538-544 (2005).
    [140] W. W. Yu and X. Peng, “Formation of High-Quality CdS and Other II-VI Semiconductor Nanocrystals in Noncoordinating Solvents: Tunable Reactivity of Monomers,” Angewandte Chemie International Edition, 41, 2368-2371 (2002).
    [141] O. I. Mićić, H. M. Cheong, H. Fu, A. Zunger, J. R. Sprague, A. Mascarenhas and A. J. Nozik, “Size-Dependent Spectroscopy of InP Quantum Dots,” The Journal of Physical Chemistry B, 101, 4904-4912 (1997).
    [142] W. W. Yu, L. Qu, W. Guo and X. Peng, “Experimental Determination of the Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals,” Chemistry of Materials, 15, 2854-2860 (2003).
    [143] A. J. Nozik, “Multiple Exciton Generation in Semiconductor Quantum Dots,” Chemical Physics Letters, 457, 3-11 (2008).
    [144] A. J. Nozik, “Nanophotonics: Making the Most of Photons,” Nature Nanotechnology, 4, 548-549 (2009).
    [145] A. J. Nozik, “Nanoscience and Nanostructures for Photovoltaics and Solar Fuels,” Nano Letters, 10, 2735-2741 (2010).
    [146] R. D. Schaller and V. I. Klimov, “High Efficiency Carrier Multiplication in PbSe Nanocrystals: Implications for Solar Energy Conversion,” Physical Review Letters, 92, 186601 (2004).
    [147] R. J. Ellingson, M. C. Beard, J. C. Johnson, P. Yu, O. I. Micic, A. J. Nozik, A. Shabaev and A. L. Efros, “Highly Efficient Multiple Exciton Generation in Colloidal PbSe and PbS Quantum Dots,” Nano Letters, 5, 865-871 (2005).
    [148] J. E. Murphy, M. C. Beard, A. G. Norman, S. P. Ahrenkiel, J. C. Johnson, P. Yu, O. I. Mićić, R. J. Ellingson and A. J. Nozik, “PbTe Colloidal Nanocrystals:  Synthesis, Characterization, and Multiple Exciton Generation,” Journal of the American Chemical Society, 128, 3241-3247 (2006).
    [149] W. Shockley and H. J. Queisser, “Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells,” Journal of Applied Physics, 32, 510-519 (1961).
    [150] R. T. Ross and A. J. Nozik, “Efficiency of Hot‐Carrier Solar Energy Converters,” Journal of Applied Physics, 53, 3813-3818 (1982).

    [151] V. I. Klimov, “Detailed-Balance Power Conversion Limits of Nanocrystal-Quantum-Dot Solar Cells in the Presence of Carrier Multiplication,” Applied Physics Letters, 89, 123118 (2006).
    [152] M. C. Beard, A. G. Midgett, M. C. Hanna, J. M. Luther, B. K. Hughes and A. J. Nozik, “Comparing Multiple Exciton Generation in Quantum Dots To Impact Ionization in Bulk Semiconductors: Implications for Enhancement of Solar Energy Conversion,” Nano Letters, 10, 3019-3027 (2010).
    [153] A. J. Nozik, “Quantum Dot Solar Cells,” Physica E: Low-dimensional Systems and Nanostructures, 14, 115-120 (2002).
    [154] S. Rühle, M. Shalom and A. Zaban, “Quantum-Dot-Sensitized Solar Cells,” ChemPhysChem, 11, 2290-2304 (2010).
    [155] D. Sharma, R. Jha and S. Kumar, “Quantum Dot Sensitized Solar Cell: Recent Advances and Future Perspectives in Photoanode,” Solar Energy Materials and Solar Cells, 155, 294-322 (2016).
    [156] S. Kumar, M. Nehra, A. Deep, D. Kedia, N. Dilbaghi and K.-H. Kim, “Quantum-Sized Nanomaterials for Solar Cell Applications,” Renewable and Sustainable Energy Reviews, 73, 821-839 (2017).
    [157] O. Niitsoo, S. K. Sarkar, C. Pejoux, S. Rühle, D. Cahen and G. Hodes, “Chemical Bath Deposited CdS/CdSe-Sensitized Porous TiO2 Solar Cells,” Journal of Photochemistry and Photobiology A: Chemistry, 181, 306-313 (2006).
    [158] Y. Choi, M. Seol, W. Kim and K. Yong, “Chemical Bath Deposition of Stoichiometric CdSe Quantum Dots for Efficient Quantum-Dot-Sensitized Solar Cell Application,” The Journal of Physical Chemistry C, 118, 5664-5670 (2014).
    [159] H. Lee, M. Wang, P. Chen, D. R. Gamelin, S. M. Zakeeruddin, M. Grätzel and Md. K. Nazeeruddin, “Efficient CdSe Quantum Dot-Sensitized Solar Cells Prepared by an Improved Successive Ionic Layer Adsorption and Reaction Process,” Nano Letters, 9, 4221-4227 (2009).
    [160] H. J. Lee, J. Bang, J. Park, S. Kim and S.-M. Park, “Multilayered Semiconductor (CdS/CdSe/ZnS)-Sensitized TiO2 Mesoporous Solar Cells: All Prepared by Successive Ionic Layer Adsorption and Reaction Processes,” Chemistry of Materials, 22, 5636-5643 (2010).
    [161] X.-Y. Yu, J.-Y. Liao, K.-Q. Qiu, D.-B. Kuang and C.-Y. Su, “Dynamic Study of Highly Efficient CdS/CdSe Quantum Dot-Sensitized Solar Cells Fabricated by Electrodeposition,” ACS Nano, 5, 9494-9500 (2011).
    [162] H.-S. Rao, W.-Q. Wu, Y. Liu, Y.-F. Xu, B.-X. Chen, H.-Y. Chen, D.-B. Kuang and C.-Y. Su, “CdS/CdSe Co-Sensitized Vertically Aligned Anatase TiO2 Nanowire Arrays for Efficient Solar Cells,” Nano Energy, 8, 1-8 (2014).
    [163] A. Zaban, O. I. Mićić, B. A. Gregg and A. J. Nozik, “Photosensitization of Nanoporous TiO2 Electrodes with InP Quantum Dots,” Langmuir, 14, 3153-3156 (1998).
    [164] A. Salant, M. Shalom, I. Hod, A. Faust, A. Zaban and U. Banin, “Quantum Dot Sensitized Solar Cells with Improved Efficiency Prepared Using Electrophoretic Deposition,” ACS Nano, 4, 5962-5968 (2010).
    [165] P. K. Santra, P. V. Nair, K. G. Thomas and P. V. Kamat, “CuInS2-Sensitized Quantum Dot Solar Cell. Electrophoretic Deposition, Excited-State Dynamics, and Photovoltaic Performance,” The Journal of Physical Chemistry Letters, 4, 722-729 (2013).
    [166] H. Zhang, K. Cheng, Y. M. Hou, Z. Fang, Z. X. Pan, W. J. Wu, J. L. Hua and X. H. Zhong, “Efficient CdSe Quantum Dot-Sensitized Solar Cells Prepared by a Postsynthesis Assembly Approach,” Chemical Communications, 48, 11235-11237 (2012).
    [167] J. Yang, T. Oshima, W. Yindeesuk, Z. Pan, X. Zhong and Q. Shen, “Influence of Linker Molecules on Interfacial Electron Transfer and Photovoltaic Performance of Quantum Dot Sensitized Solar Cells,” Journal of Materials Chemistry A, 2, 20882-20888 (2014).
    [168] W. Li and X. Zhong, “Capping Ligand-Induced Self-Assembly for Quantum Dot Sensitized Solar Cells,” The Journal of Physical Chemistry Letters, 6, 796-806 (2015).
    [169] Z. Pan, K. Zhao, J. Wang, H. Zhang, Y. Feng and X. Zhong, “Near Infrared Absorption of CdSexTe1–x Alloyed Quantum Dot Sensitized Solar Cells with More than 6% Efficiency and High Stability,” ACS Nano, 7, 5215-5222 (2013).
    [170] J. Wang, I. Mora-Seró, Z. Pan, K. Zhao, H. Zhang, Y. Feng, G. Yang, X. Zhong and J. Bisquert, “Core/Shell Colloidal Quantum Dot Exciplex States for the Development of Highly Efficient Quantum-Dot-Sensitized Solar Cells,” Journal of the American Chemical Society, 135, 15913-15922 (2013).
    [171] Z. Pan, I. Mora-Seró, Q. Shen, H. Zhang, Y. Li, K. Zhao, J. Wang, X. Zhong and J. Bisquert, “High-Efficiency “Green” Quantum Dot Solar Cells,” Journal of the American Chemical Society, 136, 9203-9210 (2014).
    [172] S. Jiao, Q. Shen, I. Mora-Seró, J. Wang, Z. Pan, K. Zhao, Y. Kuga, X. Zhong and J. Bisquert, “Band Engineering in Core/Shell ZnTe/CdSe for Photovoltage and Efficiency Enhancement in Exciplex Quantum Dot Sensitized Solar Cells,” ACS Nano, 9, 908-915 (2015).
    [173] W. Li, Z. Pan and X. Zhong, “CuInSe2 and CuInSe2-ZnS Based High Efficiency “Green” Quantum Dot Sensitized Solar Cells,” Journal of Materials Chemistry A, 3, 1649-1655 (2015).
    [174] J. Du, Z. Du, J.-S. Hu, Z. Pan, Q. Shen, J. Sun, D. Long, H. Dong, L. Sun, X. Zhong and L.-J. Wan, “Zn-Cu-In-Se Quantum Dot Solar Cells with a Certified Power Conversion Efficiency of 11.6%,” Journal of the American Chemical Society, 138, 4201-4209 (2016).
    [175] W. Peng, J. Du, Z. Pan, N. Nakazawa, J. Sun, Z. Du, G. Shen, J. Yu, J.-S. Hu, Q. Shen and X. Zhong, “Alloying Strategy in Cu-In-Ga-Se Quantum Dots for High Efficiency Quantum Dot Sensitized Solar Cells,” ACS Applied Materials & Interfaces, 9, 5328-5336 (2017).
    [176] G. Hodes, “Comparison of Dye- and Semiconductor-Sensitized Porous Nanocrystalline Liquid Junction Solar Cells,” The Journal of Physical Chemistry C, 112, 17778-17787 (2008).
    [177] I. Mora-Seró, S. Giménez, F. Fabregat-Santiago, R. Gómez, Q. Shen, T. Toyoda and J. Bisquert, “Recombination in Quantum Dot Sensitized Solar Cells,” Accounts of Chemical Research, 42, 1848-1857 (2009).
    [178] I. Mora-Seró and J. Bisquert, “Breakthroughs in the Development of Semiconductor-Sensitized Solar Cells,” The Journal of Physical Chemistry Letters, 1, 3046-3052 (2010).
    [179] I. Hod, V. González-Pedro, Z. Tachan, F. Fabregat-Santiago, I. Mora-Seró, J. Bisquert and A. Zaban, “Dye versus Quantum Dots in Sensitized Solar Cells: Participation of Quantum Dot Absorber in the Recombination Process,” The Journal of Physical Chemistry Letters, 2, 3032-3035 (2011).
    [180] N. Serpone, E. Borgarello and M. Grätzel, “Visible Light Induced Generation of Hydrogen from H2S in Mixed Semiconductor Dispersions; Improved Efficiency through Inter-Particle Electron Transfer,” Journal of the Chemical Society, Chemical Communications, 342-344 (1984).
    [181] R. Vogel, P. Hoyer and H. Weller, “Quantum-Sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 Particles as Sensitizers for Various Nanoporous Wide-Bandgap Semiconductors,” The Journal of Physical Chemistry, 98, 3183-3188 (1994).
    [182] P. Yu, K. Zhu, A. G. Norman, S. Ferrere, A. J. Frank and A. J. Nozik, “Nanocrystalline TiO2 Solar Cells Sensitized with InAs Quantum Dots,” The Journal of Physical Chemistry B, 110, 25451-25454 (2006).
    [183] L. J. Diguna, Q. Shen, J. Kobayashi and T. Toyoda, “High Efficiency of CdSe Quantum-Dot-Sensitized TiO2 Inverse Opal Solar Cells,” Applied Physics Letters, 91, 023116 (2007).
    [184] S.-m. Yang, C.-h. Huang, J. Zhai, Z.-s. Wang and L. Jiang, “High Photostability and Quantum Yield of Nanoporous TiO2 Thin Film Electrodes Co-Sensitized with Capped Sulfides,” Journal of Materials Chemistry, 12, 1459-1464 (2002).
    [185] N. Guijarro, J. M. Campiña, Q. Shen, T. Toyoda, T. Lana-Villarreal and R. Gómez, “Uncovering the Role of the ZnS Treatment in the Performance of Quantum Dot Sensitized Solar Cells,” Physical Chemistry Chemical Physics, 13, 12024-12032 (2011).
    [186] C.-H. Chang and Y.-L. Lee, “Chemical Bath Deposition of CdS Quantum Dots onto Mesoscopic TiO2 Films for Application in Quantum-Dot-Sensitized Solar Cells,” Applied Physics Letters, 91, 053503 (2007).
    [187] Y.-L. Lee and C.-H. Chang, “Efficient Polysulfide Electrolyte for CdS Quantum Dot-Sensitized Solar Cells,” Journal of Power Sources, 185, 584-588 (2008).
    [188] Y.-L. Lee, B.-M. Huang and H.-T. Chien, “Highly Efficient CdSe-Sensitized TiO2 Photoelectrode for Quantum-Dot-Sensitized Solar Cell Applications,” Chemistry of Materials, 20, 6903-6905 (2008).
    [189] Y.-L. Lee and Y.-S. Lo, “Highly Efficient Quantum-Dot-Sensitized Solar Cell Based on Co-Sensitization of CdS/CdSe,” Advanced Functional Materials, 19, 604-609 (2009).
    [190] I.-P. Liu, C.-W. Chang, H. Teng and Y.-L. Lee, “Performance Enhancement of Quantum-Dot-Sensitized Solar Cells by Potential-Induced Ionic Layer Adsorption and Reaction,” ACS Applied Materials & Interfaces, 6, 19378-19384 (2014).
    [191] I.-P. Liu, L.-Y. Chen and Y.-L. Lee, “Effect of Sodium Acetate Additive in Successive Ionic Layer Adsorption and Reaction on the Performance of CdS Quantum-Dot-Sensitized Solar Cells,” Journal of Power Sources, 325, 706-713 (2016).
    [192] V. González-Pedro, X. Xu, I. Mora-Seró and J. Bisquert, “Modeling High-Efficiency Quantum Dot Sensitized Solar Cells,” ACS Nano, 4, 5783-5790 (2010).
    [193] S.-J. Moon, Y. Itzhaik, J.-H. Yum, S. M. Zakeeruddin, G. Hodes and M. Grätzel, “Sb2S3-Based Mesoscopic Solar Cell Using an Organic Hole Conductor,” The Journal of Physical Chemistry Letters, 1, 1524-1527 (2010).
    [194] J. A. Chang, J. H. Rhee, S. H. Im, Y. H. Lee, H.-j. Kim, S. I. Seok, Md. K. Nazeeruddin and M. Grätzel, “High-Performance Nanostructured Inorganic-Organic Heterojunction Solar Cells,” Nano Letters, 10, 2609-2612 (2010).
    [195] P. K. Santra and P. V. Kamat, “Mn-Doped Quantum Dot Sensitized Solar Cells: A Strategy to Boost Efficiency over 5%,” Journal of the American Chemical Society, 134, 2508-2511 (2012).
    [196] T.-L. Li, Y.-L. Lee and H. Teng, “High-Performance Quantum Dot-Sensitized Solar Cells Based on Sensitization with CuInS2 Quantum Dots/CdS Heterostructure,” Energy & Environmental Science, 5, 5315-5324 (2012).
    [197] J. Luo, H. Wei, Q. Huang, X. Hu, H. Zhao, R. Yu, D. Li, Y. Luo and Q. Meng, “Highly Efficient Core-Shell CuInS2-Mn Doped CdS Quantum Dot Sensitized Solar Cells,” Chemical Communications, 49, 3881-3883 (2013).
    [198] G. Wang, H. Wei, J. Shi, Y. Xu, H. Wu, Y. Luo, D. Li and Q. Meng, “Significantly Enhanced Energy Conversion Efficiency of CuInS2 Quantum Dot Sensitized Solar Cells by Controlling Surface Defects,” Nano Energy, 35, 17-25 (2017).
    [199] J.-Y. Chang, S. C. Chang, S.-H. Tzing and C.-H. Li, “Development of Nonstoichiometric CuInS2 as a Light-Harvesting Photoanode and Catalytic Photocathode in a Sensitized Solar Cell,” ACS Applied Materials & Interfaces, 6, 22272-22281 (2014).
    [200] J.-Y. Chang, C.-H. Li, Y.-H. Chiang, C.-H. Chen and P.-N. Li, “Toward the Facile and Ecofriendly Fabrication of Quantum Dot-Sensitized Solar Cells via Thiol Coadsorbent Assistance,” ACS Applied Materials & Interfaces, 8, 18878-18890 (2016).

    [201] J.-Y. Kim, J. Yang, J. H. Yu, W. Baek, C.-H. Lee, H. J. Son, T. Hyeon and M. J. Ko, “Highly Efficient Copper-Indium-Selenide Quantum Dot Solar Cells: Suppression of Carrier Recombination by Controlled ZnS Overlayers,” ACS Nano, 9, 11286-11295 (2015).
    [202] J.-W. Lee, D.-Y. Son, T. K. Ahn, H.-W. Shin, I. Y. Kim, S.-J. Hwang, M. J. Ko, S. Sul, H. Han and N.-G. Park, “Quantum-Dot-Sensitized Solar Cell with Unprecedentedly High Photocurrent,” Scientific Reports, 3, 1050 (2013).
    [203] A. Sahasrabudhe and S. Bhattacharyya, “Dual Sensitization Strategy for High-Performance Core/Shell/Quasi-shell Quantum Dot Solar Cells,” Chemistry of Materials, 27, 4848-4859 (2015).
    [204] F. Huang, L. Zhang, Q. Zhang, J. Hou, H. Wang, H. Wang, S. Peng, J. Liu and G. Cao, “High Efficiency CdS/CdSe Quantum Dot Sensitized Solar Cells with Two ZnSe Layers,” ACS Applied Materials & Interfaces, 8, 34482-34489 (2016).
    [205] F. Huang, Q. Zhang, B. Xu, J. Hou, Y. Wang, R. C. Massé, S. Peng, J. Liu and G. Cao, “A Comparison of ZnS and ZnSe Passivation Layers on CdS/CdSe Co-Sensitized Quantum Dot Solar Cells,” Journal of Materials Chemistry A, 4, 14773-14780 (2016).
    [206] F. Huang, J. Hou, Q. Zhang, Y. Wang, R. C. Massé, S. Peng, H. Wang, J. Liu and G. Cao, “Doubling the Power Conversion Efficiency in CdS/CdSe Quantum Dot Sensitized Solar Cells with a ZnSe Passivation Layer,” Nano Energy, 26, 114-122 (2016).
    [207] K. Yan, L. Zhang, J. Qiu, Y. Qiu, Z. Zhu, J. Wang and S. Yang, “A Quasi-Quantum Well Sensitized Solar Cell with Accelerated Charge Separation and Collection,” Journal of the American Chemical Society, 135, 9531-9539 (2013).
    [208] J. G. Radich, N. R. Peeples, P. K. Santra and P. V. Kamat, “Charge Transfer Mediation Through CuxS. The Hole Story of CdSe in Polysulfide,” The Journal of Physical Chemistry C, 118, 16463-16471 (2014).
    [209] G. Wang, H. Wei, Y. Luo, H. Wu, D. Li, X. Zhong and Q. Meng, “A Strategy to Boost the Cell Performance of CdSexTe1−x Quantum Dot Sensitized Solar Cells over 8% by Introducing Mn Modified CdSe Coating Layer,” Journal of Power Sources, 302, 266-273 (2016).
    [210] H. Wei, G. Wang, J. Shi, H. Wu, Y. Luo, D. Li and Q. Meng, “Fumed SiO2 Modified Electrolytes for Quantum Dot Sensitized Solar Cells with Efficiency Exceeding 11% and Better Stability,” Journal of Materials Chemistry A, 4, 14194-14203 (2016).
    [211] Z. Pan, H. Zhang, K. Cheng, Y. Hou, J. Hua and X. Zhong, “Highly Efficient Inverted Type-I CdS/CdSe Core/Shell Structure QD-Sensitized Solar Cells,” ACS Nano, 6, 3982-3991 (2012).
    [212] J. Yang, J. Wang, K. Zhao, T. Izuishi, Y. Li, Q. Shen and X. Zhong, “CdSeTe/CdS Type-I Core/Shell Quantum Dot Sensitized Solar Cells with Efficiency over 9%,” The Journal of Physical Chemistry C, 119, 28800-28808 (2015).
    [213] J. Wang, Y. Li, Q. Shen, T. Izuishi, Z. Pan, K. Zhao and X. Zhong, “Mn Doped Quantum Dot Sensitized Solar Cells with Power Conversion Efficiency Exceeding 9%,” Journal of Materials Chemistry A, 4, 877-886 (2016).
    [214] K. Zhao, Z. Pan, I. Mora-Seró, E. Cánovas, H. Wang, Y. Song, X. Gong, J. Wang, M. Bonn, J. Bisquert and X. Zhong, “Boosting Power Conversion Efficiencies of Quantum-Dot-Sensitized Solar Cells Beyond 8% by Recombination Control,” Journal of the American Chemical Society, 137, 5602-5609 (2015).
    [215] Z. Ren, J. Wang, Z. Pan, K. Zhao, H. Zhang, Y. Li, Y. Zhao, I. Mora-Sero, J. Bisquert and X. Zhong, “Amorphous TiO2 Buffer Layer Boosts Efficiency of Quantum Dot Sensitized Solar Cells to over 9%,” Chemistry of Materials, 27, 8398-8405 (2015).
    [216] Z. Ren, Z. Wang, R. Wang, Z. Pan, X. Gong and X. Zhong, “Effects of Metal Oxyhydroxide Coatings on Photoanode in Quantum Dot Sensitized Solar Cells,” Chemistry of Materials, 28, 2323-2330 (2016).
    [217] K. Zhao, H. Yu, H. Zhang and X. Zhong, “Electroplating Cuprous Sulfide Counter Electrode for High-Efficiency Long-Term Stability Quantum Dot Sensitized Solar Cells,” The Journal of Physical Chemistry C, 118, 5683-5690 (2014).
    [218] H. Zhang, H. Bao and X. Zhong, “Highly Efficient, Stable and Reproducible CdSe-Sensitized Solar Cells Using Copper Sulfide as Counter Electrodes,” Journal of Materials Chemistry A, 3, 6557-6564 (2015).
    [219] W. Guo, Z. Du, Q. Zhao, H. Zhang and X. Zhong, “Controlled Sulfidation Approach for Copper Sulfide-Carbon Hybrid as an Effective Counter Electrode in Quantum-Dot-Sensitized Solar Cells,” The Journal of Physical Chemistry C, 120, 16500-16506 (2016).
    [220] H. Zhang, C. Wang, W. Peng, C. Yang and X. Zhong, “Quantum Dot Sensitized Solar Cells with Efficiency up to 8.7% Based on Heavily Copper-Deficient Copper Selenide Counter Electrode,” Nano Energy, 23, 60-69 (2016).
    [221] Z. Du, Z. Pan, F. Fabregat-Santiago, K. Zhao, D. Long, H. Zhang, Y. Zhao, X. Zhong, J.-S. Yu and J. Bisquert, “Carbon Counter-Electrode-Based Quantum-Dot-Sensitized Solar Cells with Certified Efficiency Exceeding 11%,” The Journal of Physical Chemistry Letters, 7, 3103-3111 (2016).
    [222] S. Jiao, J. Du, Z. Du, D. Long, W. Jiang, Z. Pan, Y. Li and X. Zhong, “Nitrogen-Doped Mesoporous Carbons as Counter Electrodes in Quantum Dot Sensitized Solar Cells with a Conversion Efficiency Exceeding 12%,” The Journal of Physical Chemistry Letters, 8, 559-564 (2017).
    [223] T. Loučka, “Adsorption and Oxidation of Organic Compounds on a Platinum Electrode Partly Covered by Adsorbed Sulphur,” Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 36, 355-367 (1972).
    [224] I. Mora-Seró, S. Giménez, T. Moehl, F. Fabregat-Santiago, T. Lana-Villareal, R. Gómez and J. Bisquert, “Factors Determining the Photovoltaic Performance of a CdSe Quantum Dot Sensitized Solar Cell: The Role of the Linker Molecule and of the Counter Electrode,” Nanotechnology, 19, 424007 (2008).
    [225] G. Hodes, J. Manassen and D. Cahen. “Photo-Electrochemical Energy Conversion: Electrocatalytic Sulphur Electrodes,” Journal of Applied Electrochemistry, 7, 181-182 (1977).
    [226] G. Hodes, J. Manassen and D. Cahen, “Electrocatalytic Electrodes for the Polysulfide Redox System,” Journal of The Electrochemical Society, 127, 544-549 (1980).
    [227] S. Giménez, I. Mora-Seró, L. Macor, N. Guijarro, T. Lana-Villarreal, R. Gómez, L. J. Diguna, Q. Shen, T. Toyoda and J. Bisquert, “Improving the Performance of Colloidal Quantum-Dot-Sensitized solar cells,” Nanotechnology, 20, 295204 (2009).
    [228] Q. Shen, A. Yamada, S. Tamura and T. Toyoda, “CdSe Quantum Dot-Sensitized Solar Cell Employing TiO2 Nanotube Working-Electrode and Cu2S Counter-Electrode,” Applied Physics Letters, 97, 123107 (2010).
    [229] Z. Yang, C.-Y. Chen, C. W. Liu and H.-T. Chang, “Electrocatalytic Sulfur Electrodes for CdS/CdSe Quantum Dot-Sensitized Solar Cells,” Chemical Communications, 46, 5485-5487 (2010).
    [230] Z. Yang, C.-Y. Chen, C.-W. Liu, C.-L. Li and H.-T. Chang, “Quantum Dot-Sensitized Solar Cells Featuring CuS/CoS Electrodes Provide 4.1% Efficiency,” Advanced Energy Materials, 1, 259-264 (2011).
    [231] C. S. Kim, S. H. Choi and J. H. Bang, “New Insight into Copper Sulfide Electrocatalysts for Quantum Dot-Sensitized Solar Cells: Composition-Dependent Electrocatalytic Activity and Stability,” ACS Applied Materials & Interfaces, 6, 22078-22087 (2014).
    [232] F. Wang, H. Dong, J. Pan, J. Li, Q. Li and D. Xu, “One-Step Electrochemical Deposition of Hierarchical CuS Nanostructures on Conductive Substrates as Robust, High-Performance Counter Electrodes for Quantum-Dot-Sensitized Solar Cells,” The Journal of Physical Chemistry C, 118, 19589-19598 (2014).
    [233] C. Shen, L. Sun, Z. Y. Koh and Q. Wang, “Cuprous Sulfide Counter Electrodes Prepared by Ion Exchange for High-Efficiency Quantum Dot-Sensitized Solar Cells,” Journal of Materials Chemistry A, 2, 2807-2813 (2014).
    [234] G. S. Selopal, I. Concina, R. Milan, M. M. Natile, G. Sberveglieri and A. Vomiero, “Hierarchical Self-Assembled Cu2S Nanostructures: Fast and Reproducible Spray Deposition of Effective Counter Electrodes for High Efficiency Quantum Dot Solar Cells,” Nano Energy, 6, 200-210 (2014).
    [235] Y. Jiang, X. Zhang, Q.-Q. Ge, B.-B. Yu, Y.-G. Zou, W.-J. Jiang, W.-G. Song, L.-J. Wan and J.-S. Hu, “ITO@Cu2S Tunnel Junction Nanowire Arrays as Efficient Counter Electrode for Quantum-Dot-Sensitized Solar Cells,” Nano Letters, 14, 365-372 (2014).
    [236] Y. Jiang, B.-B. Yu, J. Liu, Z.-H. Li, J.-K. Sun, X.-H. Zhong, J.-S. Hu, W.-G. Song and L.-J. Wan, “Boosting the Open Circuit Voltage and Fill Factor of QDSSCs Using Hierarchically Assembled ITO@Cu2S Nanowire Array Counter Electrodes,” Nano Letters, 15, 3088-3095 (2015).
    [237] V. H. V. Quy, J.-H. Kim, S.-H. Kang, C.-J. Choi, J. A. Rajesh and K.-S. Ahn, “Enhanced Electrocatalytic Activity of Electrodeposited F-Doped SnO2/Cu2S Electrodes for Quantum Dot-Sensitized Solar Cells,” Journal of Power Sources, 316, 53-59 (2016).
    [238] S. Peng, T. Zhang, L. Li, C. Shen, F. Cheng, M. Srinivasan, Q. Yan, S. Ramakrishna and J. Chen, “3D Cu-Doped CoS Porous Nanosheet Films as Superior Counterelectrodes for Quantum Dot-Sensitized Solar Cells,” Nano Energy, 16, 163-172 (2015).
    [239] Z. Tachan, M. Shalom, I. Hod, S. Rühle, S. Tirosh and A. Zaban, “PbS as a Highly Catalytic Counter Electrode for Polysulfide-Based Quantum Dot Solar Cells,” The Journal of Physical Chemistry C, 115, 6162-6166 (2011).
    [240] C.-Y. Lin, C.-Y. Teng, T.-L. Li, Y.-L. Lee and H. Teng, “Photoactive p-Type PbS as a Counter Electrode for Quantum Dot-Sensitized Solar Cells,” Journal of Materials Chemistry A, 1, 1155-1162 (2013).
    [241] H. M. Choi, I. A. Ji and J. H. Bang, “Metal Selenides as a New Class of Electrocatalysts for Quantum Dot-Sensitized Solar Cells: A Tale of Cu1.8Se and PbSe,” ACS Applied Materials & Interfaces, 6, 2335-2343 (2014).
    [242] F. Liu, J. Zhu, L. Hu, B. Zhang, J. Yao, Md. K. Nazeeruddin, M. Grätzel and S. Dai, “Low-Temperature, Solution-Deposited Metal Chalcogenide Films as Highly Efficient Counter Electrodes for Sensitized Solar Cells,” Journal of Materials Chemistry A, 3, 6315-6323 (2015).
    [243] X. Q. Chen, Z. Li, Y. Bai, Q. Sun, L. Z. Wang and S. X. Dou, “Room-Temperature Synthesis of Cu2−xE (E=S, Se) Nanotubes with Hierarchical Architecture as High-Performance Counter Electrodes of Quantum-Dot-Sensitized Solar Cells,” Chemistry - A European Journal, 21, 1055-1063 (2015).
    [244] F. Liu, J. Zhu, Y. Li, J. Wei, M. Lv, Y. Xu, L. Zhou, L. Hu and S. Dai, “Earth-Abundant Cu2SnSe3 Thin Film Counter Electrode for High-Efficiency Quantum Dot-Sensitized Solar Cells,” Journal of Power Sources, 292, 7-14 (2015).
    [245] Y. Bai, C. Han, X. Chen, H. Yu, X. Zong, Z. Li and L. Wang, “Boosting the Efficiency of Quantum Dot Sensitized Solar Cells up to 7.11% through Simultaneous Engineering of Photocathode and Photoanode,” Nano Energy, 13, 609-619 (2015).
    [246] M. Wang, J. Zai, B. Li, Y. Wang, S. Huang, Q. He and X. Qian, “Hierarchical Cu2−XSe Nanotubes Constructed by Two-Unit-Cell-Thick Nanosheets: Room-Temperature Synthesis and Promoted Electrocatalytic Activity towards Polysulfides,” Journal of Materials Chemistry A, 4, 4790-4796 (2016).
    [247] X. Zeng, D. Xiong, W. Zhang, L. Ming, Z. Xu, Z. Huang, M. Wang, W. Chen and Y.-B. Cheng, “Spray Deposition of Water-Soluble Multiwall Carbon Nanotube and Cu2ZnSnSe4 Nanoparticle Composites as Highly Efficient Counter Electrodes in a Quantum Dot-Sensitized Solar Cell System,” Nanoscale, 5, 6992-6998 (2013).
    [248] M. Venkata-Haritha, C. V. V. M. Gopi, Y.-S. Lee and H.-J Kim, “Phase Transformations of Novel CuxS Nanostructures as Highly Efficient Counter Electrodes for Stable and Reproducible Quantum Dot-Sensitized Solar Cells,” RSC Advances, 6, 101185-101197 (2016).
    [249] C. V. V. M. Gopi, S. Ravi, S. S. Rao, A. E. Reddy and H.-J. Kim, “Carbon Nanotube/Metal-Sulfide Composite Flexible Electrodes for High-Performance Quantum Dot-Sensitized Solar Cells and Supercapacitors,” Scientific Reports, 7, 46519 (2017).
    [250] M. Que, W. Guo, X. Zhang, X. Li, Q. Hua, L. Dong and C. Pan, “Flexible Quantum Dot-Sensitized Solar Cells Employing CoS Nanorod Arrays/Graphite Paper as Effective Counter Electrodes,” Journal of Materials Chemistry A, 2, 13661-13666 (2014).

    [251] W. Guo, X. Zhang, R. Yu, M. Que, Z. Zhang, Z. Wang, Q. Hua, C. Wang, Z. L. Wang and C. Pan, “CoS NWs/Au Hybridized Networks as Efficient Counter Electrodes for Flexible Sensitized Solar Cells,” Advanced Energy Materials, 5, 1500141 (2015).
    [252] Z. Xu, T. Li, F. Zhang, X. Hong, S. Xie, M. Ye, W. Guo and X. Liu, “Highly Flexible, Transparent and Conducting CuS-Nanosheet Networks for Flexible Quantum-Dot Solar Cells,” Nanoscale, 9, 3826-3833 (2017).
    [253] Q. Zhang, Y. Zhang, S. Huang, X. Huang, Y. Luo, Q. Meng and D. Li, “Application of Carbon Counterelectrode on CdS Quantum Dot-Sensitized Solar Cells (QDSSCs),” Electrochemistry Communications, 12, 327-330 (2010).
    [254] S. Q. Fan, B. Fang, J. H. Kim, B. Jeong, C. Kim, J.-S. Yu and J. Ko, “Ordered Multimodal Porous Carbon as Highly Efficient Counter Electrodes in Dye-Sensitized and Quantum-Dot Solar Cells,” Langmuir, 26, 13644-13649 (2010).
    [255] C. V. V. M. Gopi, M. Venkata-Haritha, S.-K. Kim and H.-J. Kim, “Facile Fabrication of Highly Efficient Carbon Nanotube Thin Film Replacing CuS Counter Electrode with Enhanced Photovoltaic Performance in Quantum Dot-Sensitized Solar Cells,” Journal of Power Sources, 311, 111-120 (2016).
    [256] M. Deng, Q. Zhang, S. Huang, D. Li, Y. Luo, Q. Shen, T. Toyoda and Q. Meng, “Low-Cost Flexible Nano-Sulfide/Carbon Composite Counter Electrode for Quantum-Dot-Sensitized Solar Cell,” Nanoscale Research Letters, 5, 986-990 (2010).
    [257] Y. Yang, L. Zhu, H. Sun, X. Huang, Y. Luo, D. Li and Q. Meng, “Composite Counter Electrode Based on Nanoparticulate PbS and Carbon Black: Towards Quantum Dot-Sensitized Solar Cells with Both High Efficiency and Stability,” ACS Applied Materials & Interfaces, 4, 6162-6168 (2012).
    [258] X. Zhang, X. Huang, Y. Yang, S. Wang, Y. Gong, Y. Luo, D. Li and Q. Meng, “Investigation on New CuInS2/Carbon Composite Counter Electrodes for CdS/CdSe Cosensitized Solar Cells,” ACS Applied Materials & Interfaces, 5, 5954-5960 (2013).
    [259] D.-M. Li, L.-Y. Cheng, Y.-D. Zhang, Q.-X. Zhang, X.-M. Huang, Y.-H. Luo and Q.-B. Meng, “Development of Cu2S/Carbon Composite Electrode for CdS/CdSe Quantum Dot Sensitized Solar Cell Modules,” Solar Energy Materials and Solar Cells, 120, 454-461 (2014).
    [260] J. G. Radich, R. Dwyer and P. V. Kamat, “Cu2S Reduced Graphene Oxide Composite for High-Efficiency Quantum Dot Solar Cells. Overcoming the Redox Limitations of S2–/Sn2– at the Counter Electrode,” The Journal of Physical Chemistry Letters, 2, 2453-2460 (2011).
    [261] M. Seol, D. H. Youn, J. Y. Kim, J.-W. Jang, M. Choi, J. S. Lee and K. Yong, “Mo-Compound/CNT-Graphene Composites as Efficient Catalytic Electrodes for Quantum-Dot-Sensitized Solar Cells,” Advanced Energy Materials, 4, 1300775 (2014).
    [262] M. Ye, C. Chen, N. Zhang, X. Wen, W. Guo and C. Lin, “Quantum-Dot Sensitized Solar Cells Employing Hierarchical Cu2S Microspheres Wrapped by Reduced Graphene Oxide Nanosheets as Effective Counter Electrodes,” Advanced Energy Materials, 4, 1301564 (2014).
    [263] D. Ghosh, G. Halder, A. Sahasrabudhe and S. Bhattacharyya, “A Microwave Synthesized CuxS and Graphene Oxide Nanoribbon Composite as a Highly Efficient Counter Electrode for Quantum Dot Sensitized Solar Cells,” Nanoscale, 8, 10632-10641 (2016).
    [264] Y. Zhu, H. Cui, S. Jia, J. Zheng, P. Yang, Z. Wang and Z. Zhu, “3D Graphene Frameworks with Uniformly Dispersed CuS as an Efficient Catalytic Electrode for Quantum Dot-Sensitized Solar Cells,” Electrochimica Acta, 208, 288-295 (2016).
    [265] M. Seol, M. Choi, Y. Choi and K. Yong, “Nano-Design of 3D Electrodes for Highly Efficient Quantum Dot-Sensitized Solar Energy Conversion,” Journal of The Electrochemical Society, 161, H809-H815 (2014).
    [266] R. Zhou, Q. Zhang, J. Tian, D. Myers, M. Yin and G. Cao, “Influence of Cationic Precursors on CdS Quantum-Dot-Sensitized Solar Cell Prepared by Successive Ionic Layer Adsorption and Reaction,” The Journal of Physical Chemistry C, 117, 26948-26956 (2013).
    [267] S. Sfaelou, L. Sygellou, V. Dracopoulos, A. Travlos and P. Lianos, “Effect of the Nature of Cadmium Salts on the Effectiveness of CdS SILAR Deposition and Its Consequences on the Performance of Sensitized Solar Cells,” The Journal of Physical Chemistry C, 118, 22873-22880 (2014).
    [268] E. Rabinovich and G. Hodes, “Effective Bandgap Lowering of CdS Deposited by Successive Ionic Layer Adsorption and Reaction,” The Journal of Physical Chemistry C, 117, 1611-1620 (2013).
    [269] M. A. Becker, J. G. Radich, B. A. Bunker and P. V. Kamat, “How Does a SILAR CdSe Film Grow? Tuning the Deposition Steps to Suppress Interfacial Charge Recombination in Solar Cells,” The Journal of Physical Chemistry Letters, 5, 1575-1582 (2014).
    [270] L.-W Chong, H.-T. Chien and Y.-L. Lee, “Assembly of CdSe onto Mesoporous TiO2 Films Induced by a Self-Assembled Monolayer for Quantum Dot-Sensitized Solar Cell Applications,” Journal of Power Sources, 195, 5009-5113 (2010).
    [271] K.-H. Lin, C.-Y. Chuang, Y.-Y. Lee, F.-C. Li, Y.-M. Chang, I.-P. Liu, S.-C. Chou and Y.-L. Lee, “Charge Transfer in the Heterointerfaces of CdS/CdSe Cosensitized TiO2 Photoelectrode,” The Journal of Physical Chemistry C, 116, 1550-1555 (2012).
    [272] V. Chakrapani, D. Baker and P. V. Kamat, “Understanding the Role of the Sulfide Redox Couple (S2−/Sn2−) in Quantum Dot-Sensitized Solar Cells,” Journal of the American Chemical Society, 133, 9607-9615 (2011).
    [273] V. González-Pedro, C. Sima, G. Marzari, P. P. Boix, S. Giménez, Q. Shen, T. Dittrich and I. Mora-Seró, “High Performance PbS Quantum Dot Sensitized Solar Cells Exceeding 4% Efficiency: The Role of Metal Precursors in the Electron Injection and Charge Separation,” Physical Chemistry Chemical Physics, 15, 13835-13843 (2013).
    [274] M. Kosmulski, “The Significance of the Difference in the Point of Zero Charge between Rutile and Anatase,” Advances in Colloid and Interface Science, 99, 255-264 (2002).
    [275] J. C. Liu and C. P. Huang, “Electrokinetic Characteristics of Some Metal Sulfide-Water Interfaces,” Langmuir, 8, 1851-1856 (1992).
    [276] P.-T. Hsiao, Y.-L. Tung and H. Teng, “Electron Transport Patterns in TiO2 Nanocrystalline Films of Dye-Sensitized Solar Cells,” The Journal of Physical Chemistry C, 114, 6762-6769 (2010).
    [277] J. Xu, X. Yang, H. Wang, X. Chen, C. Luan, Z. Xu, Z. Lu, V. A. L. Roy, W. Zhang and C.-S. Lee, “Arrays of ZnO/ZnxCd1–xSe Nanocables: Band Gap Engineering and Photovoltaic Applications,” Nano Letters, 11, 4138-4143 (2011).
    [278] Z. Chen, W. Peng, K. Zhang, J. Zhang, M. Yanagida and L. Han, “Surface Ion Transfer Growth of Ternary CdS1–xSex Quantum Dots and Their Electron Transport Modulation,” Nanoscale, 4, 7690-7697 (2012).
    [279] M. Venkata-Haritha, C. V. V. M. Gopi, L. Young-Seok and H.-J. Kim, “Controlled Growth of a Nanoplatelet-Structured Copper Sulfide Thin Film as a Highly Efficient Counter Electrode for Quantum Dot-Sensitized Solar Cells,” RSC Advances, 6, 45809-45818 (2016).
    [280] I.-P. Liu, Y.-C. Hou, C.-W. Li, and Y.-L. Lee, “Highly Electrocatalytic Counter Electrodes Based on Carbon Black for Cobalt(III)/(II)-Mediated Dye-Sensitized Solar Cells,” Journal of Materials Chemistry A, 5, 240-249 (2017).
    [281] Z. R. Yue, W. Jiang, L. Wang, S. D. Gardner and C. U. Pittman Jr., “Surface Characterization of Electrochemically Oxidized Carbon Fibers,” Carbon, 37, 1785-1796 (1999).
    [282] J.-H. Zhou, Z.-J. Sui, J. Zhu, P. Li, D. Chen, Y.-C. Dai and W.-K. Yuan, “Characterization of Surface Oxygen Complexes on Carbon Nanofibers by TPD, XPS and FT-IR,” Carbon, 45, 785-796 (2007).
    [283] T. L. Barr, “An ESCA Study of the Termination of the Passivation of Elemental Metals,” The Journal of Physical Chemistry, 82, 1801-1810 (1978).
    [284] G. Deroubaix and P. Marcus, “X-Ray Photoelectron Spectroscopy Analysis of Copper and Zinc Oxides and Sulphides,” Surface and Interface Analysis, 18, 39-46 (1992).
    [285] M. C. Biesinger, L. W. M. Lau, A. R. Gerson and R. St. C. Smart, “Resolving Surface Chemical States in XPS Analysis of First Row Transition Metals, Oxides and Hydroxides: Sc, Ti, V, Cu and Zn,” Applied Surface Science, 257, 887-898 (2010).
    [286] J. C. W. Folmer and F. Jellinek, “The Valence of Copper in Sulphides and Selenides: An X-Ray Photoelectron Spectroscopy Study,” Journal of the Less-Common Metals, 76, 153-162 (1980).
    [287] D. L. Perry and J. A. Taylor, “X-Ray Photoelectron and Auger Spectroscopic Studies of Cu2S and CuS,” Journal of Materials Science Letters, 5, 384-386 (1986).
    [288] G. Contini, K. Laajalehto, E. Suoninen and A. M. Marabini, “5-Methyl-2-mercaptobenzoxazole Adsorbed onto Chalcocite (Cu2S): An XPS and X-AES Study,” Journal of Colloid and Interface Science, 171, 234-239 (1995).
    [289] S. W. Goh, A. N. Buckley, R. N. Lamb, R. A. Rosenberg and D. Moran, “The Oxidation States of Copper and Iron in Mineral Sulfides, and the Oxides Formed on Initial Exposure of Chalcopyrite and Bornite to Air,” Geochimica et Cosmochimica Acta, 70, 2210-2228 (2006).
    [290] M. Kundu, T. Hasegawa, K. Terabe, K. Yamamoto and M. Aono, “Structural Studies of Copper Sulfide Films: Effect of Ambient Atmosphere,” Science and Technology of Advanced Materials, 9, 035011 (2008).
    [291] Y. Xie, A. Riedinger, M. Prato, A. Casu, A. Genovese, P. Guardia, S. Sottini, C. Sangregorio, K. Miszta, S. Ghosh, T. Pellegrino and L. Manna, “Copper Sulfide Nanocrystals with Tunable Composition by Reduction of Covellite Nanocrystals with Cu+ Ions,” Journal of the American Chemical Society, 135, 17630-17637 (2013).
    [292] K. Laajalehto, I. Kartio and P. Nowak, “XPS Study of Clean Metal Sulfide Surfaces,” Applied Surface Science, 81, 11-15 (1994).
    [293] R. A. D. Pattrick, J. F. W. Mosselmans, J. M. Charnock, K. E. R. England, G. R. Helz, C. D. Garner and D. J. Vaughan, “The Structure of Amorphous Copper Sulfide Precipitates: An X-Ray Absorption Study,” Geochimica et Cosmochimica Acta, 61, 2023-2036 (1997).
    [294] J. T. Rubino and K. J. Franz, “Coordination Chemistry of Copper Proteins: How Nature Handles a Toxic Cargo for Essential Function,” Journal of Inorganic Biochemistry, 107, 129-143 (2012).
    [295] A. Sadezky, H. Muckenhuber, H. Grothe, R. Niessner and U. Pöschl, “Raman Microspectroscopy of Soot and Related Carbonaceous Materials: Spectral Analysis and Structural Information,” Carbon, 43, 1731-1742 (2005).
    [296] C. H. A. Wong, A. Ambrosi and M. Pumera, “Thermally Reduced Graphenes Exhibiting a Close Relationship to Amorphous Carbon,” Nanoscale, 4, 4972-4977 (2012).
    [297] P. Kumar and R. Nagarajan, “An Elegant Room Temperature Procedure for the Precise Control of Composition in the Cu–S System,” Inorganic Chemistry, 50, 9204-9206 (2011).
    [298] C.-P. Lee, C.-A. Lin, T.-C. Wei, M.-L.Tsai, Y. Meng, C.-T. Li, K.-C. Ho, C.-I. Wu, S.-P. Lau and J.-H. He, “Economical Low-Light Photovoltaics by Using the Pt-Free Dye-Sensitized Solar Cell with Graphene Dot/PEDOT:PSS Counter Electrodes,” Nano Energy, 18, 109-117 (2015).
    [299] M. Shalom, Z. Tachan, Y. Bouhadana, H.-N. Barad and A. Zaban, “Illumination Intensity-Dependent Electronic Properties in Quantum Dot Sensitized Solar Cells,” The Journal of Physical Chemistry Letters, 2, 1998-2003 (2011).
    [300] L. Wang, E. W.-G. Diau, M. Wu, H.-P. Lu and T. Ma, “Highly Efficient Catalysts for Co(II/III) Redox Couples in Dye-Sensitized Solar Cells,” Chemical Communications, 48, 2600-2602 (2012).

    [301] B.-W. Park, M. Pazoki, K. Aitola, S. Jeong, E. M. J. Johansson, A. Hagfeldt and G. Boschloo, “Understanding Interfacial Charge Transfer between Metallic PEDOT Counter Electrodes and a Cobalt Redox Shuttle in Dye-Sensitized Solar Cells,” ACS Applied Materials & Interfaces, 6, 2074-2079 (2014).
    [302] B. Zhao, H. Huang, P. Jiang, H. Zhao, X. Huang, P. Shen, D. Wu, R. Fu and S. Tan, “Flexible Counter Electrodes Based on Mesoporous Carbon Aerogel for High-Performance Dye-Sensitized Solar Cells,” The Journal of Physical Chemistry C, 115, 22615-22621 (2011).
    [303] C.-T. Li, C.-T. Lee, S.-R. Li, C.-P. Lee, I.-T. Chiu, R. Vittal, N.-L. Wu, S.-S. Sun and K.-C. Ho, “Composite Films of Carbon Black Nanoparticles and Sulfonated-polythiophene as Flexible Counter Electrodes for Dye-Sensitized Solar Cells,” Journal of Power Sources, 302, 155-163 (2016).
    [304] S. H. Seo, M. H. Kim, E. J. Jeong, S. H. Yoon, H. C. Kang, S. I. Cha and D. Y. Lee, “High Electrocatalytic Activity of Low-Loaded Transparent Carbon Nanotube Assemblies for CoII/III-Mediated Dye-Sensitized Solar Cells,” Journal of Materials Chemistry A, 2, 2592-2598 (2014).
    [305] S. H. Seo, E. J. Jeong, J. T. Han, H. C. Kang, S. I. Cha, D. Y. Lee and G.-W. Lee, “Efficient Low-Temperature Transparent Electrocatalytic Layers Based on Graphene Oxide Nanosheets for Dye-Sensitized Solar Cells,” ACS Applied Materials & Interfaces, 7, 10863-10871 (2015).
    [306] J. D. Roy-Mayhew, G. Boschloo, A. Hagfeldt and I. A. Aksay, “Functionalized Graphene Sheets as a Versatile Replacement for Platinum in Dye-Sensitized Solar Cells,” ACS Applied Materials & Interfaces, 4, 2794-2800 (2012).
    [307] S. Peng, J. Liang, S. G. Mhaisalkar and S. Ramakrishna, “In Situ Synthesis of Platinum/Polyaniline Composite Counter Electrodes for Flexible Dye-Sensitized Solar Cells,” Journal of Materials Chemistry, 22, 5308-5311 (2012).
    [308] Q. Tai, B. Chen, F. Guo, S. Xu, H. Hu, B. Sebo and X.-Z. Zhao, “In Situ Prepared Transparent Polyaniline Electrode and Its Application in Bifacial Dye-Sensitized Solar Cells,” ACS Nano, 5, 3795-3799 (2011).
    [309] S. Ito, S. M. Zakeeruddin, P. Comte, P. Liska, D. Kuang and M. Grätzel, “Bifacial Dye-Sensitized Solar Cells Based on an Ionic Liquid Electrolyte,” Nature Photonics, 2, 693-698 (2008).

    下載圖示 校內:2020-09-01公開
    校外:2020-09-01公開
    QR CODE