| 研究生: |
張家源 Chang, Chia-Yuan |
|---|---|
| 論文名稱: |
熱處理製程對6069鋁合金微觀組織與拉伸機械性質之影響 Effects of Heat-Treatment Process on Microstructure and Tensile Mechanical Property of 6069 Aluminum Alloy |
| 指導教授: |
呂傳盛
Liu, Chuan-Sheng 洪飛義 Hung, Fei-Yi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 105 |
| 中文關鍵詞: | 6069鋁合金 、退火處理 、固溶化處理 、人工時效處理 、拉伸機械性質 |
| 外文關鍵詞: | AA6069, Annealing, Solution treatment, T6 treatment |
| 相關次數: | 點閱:99 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鋁合金在室溫下成型性不佳,故在塑性加工前常使用退火處理提升材料延性以利加工,而近年有文獻提出可用固溶處理取代退火處理。另外,本實驗使用經6069改質後的6042鋁合金,固溶量多寡與後續析出效應將影響合金機械性質。故本實驗第一部份探討退火與固溶熱處理對材料性質影響,第二部份探討合金不同固溶量效應,第三部份藉由預應變實驗綜合前兩部份實驗結果。
第一部份實驗結果顯示O處理保留了F材原始組織,W處理呈現粗大化晶粒,O材與W材拉伸曲線皆發生動態應變時效,拉伸性質上O材雖有較低強度,但W材有較高均勻延伸率與加工硬化率。以成型角度而言,W材較適合作為6042鋁合金管材加工前的熱處理。
第二部份固溶量效應方面,不論是空氣爐固溶溫度或是鹽浴爐固溶時間的改變,合金強度與硬度隨固溶量增加而提升,其中空氣爐製程之過高溫固溶583-T6材有最大拉伸強度,其破壞機制為沿晶破壞。另外,鹽浴爐salt(5)-T6材與空氣爐555-T6材有類似微觀組織、硬度與拉伸性質,表示鹽浴固溶5分鐘已具空氣爐固溶30分鐘效果。
預應變實驗方面,以鹽浴5分鐘作為固溶熱處理並進行預拉伸後,不論是直接施以190℃-6 hr時效或重新施以salt(5)-T6熱處理,材料強度均有良好表現,其中,salt(5)-20%-salt(5)T6材有較佳拉伸強度。
檢討各熱處理製程對6042合金微觀組織與機械性質之影響後可發現,W材適合應用於塑性加工的前處理,而固溶效應方面,鹽浴555℃-5 min固溶已可讓大部份Mg2Si固溶回基地並可作為管材成型前的W處理,且W材預應變後可直接施以人工時效處理,或是重新施以T6處理(固溶加人工時效)提升材料機械性質。
6042 tube aluminum alloy (modified from AA6069) was used in this study. This alloy was developed to be applied to high strength and low weight bicycle frame, so there are two objective in this study. First, we hope to obtain above 30 % uniform elongation and high work hardening rate of 6042 tube aluminum alloy before plastic process. In order to improve formability for 6042 tube aluminum alloy, annealing (O) and solution treatment (W) were conducted. Second, we expect to attain high strength (400 MPa) and 10 % total elongation after different heat treatments including T6 treatment and pre strain-post heat treatment after W. In T6 treatment, we studied the effect of different solution temperature. Besides, to reduce solution time, we also investigated the effect of different solution time in salt bath process.
In the first part, results showed that both O and W had above 30 % uniform elongation. However, the strain hardening exponent (n) and work hardening rate of W is higher. From the formability point of view, W is more proper before plastic process. In the second part, 583-T6 had the highest strength but accompanied severe intergranular fracture. It means over heated solution treatment (583-T6) cannot be applied to bike frame due to safety concern. In salt bath process, solution time could be reduced to 5 min compared to air furnace (30 min).And in the third part, strength of W after pre-strain could be improved by different post heat treatment, especially in salt(5)-20%-salt(5)T6.
1. Miller, W., L. Zhuang, J. Bottema, A.J. Wittebrood, P. De Smet, A. Haszler, and A. Vieregge, Recent development in aluminium alloys for the automotive industry. Materials Science and Engineering: A. 280(1), pp. 37-49, 2000.
2. George E. Totten, D.S.M., Handbook of Aluminum volume 1:Physical Metallurgy and Processes: Marcel Dekker. Vol. 1. pp. 81-210, pp. 894, 2003.
3. 黎寓庭,退火與固溶熱處理對7001鋁合金管材的微觀組織與拉伸性質之影響,國立成功大學材料科學及工程學系,碩士論文,第19-27頁,民國104年。
4. Tiryakioğlu, M., The effect of solution treatment and artificial aging on the work hardening characteristics of a cast Al–7% Si–0.6% Mg alloy. Materials Science and Engineering: A. 427(1), pp. 154-159, 2006.
5. Long, H., J. Chen, C. Liu, D. Li, and Y. Li, The negative effect of solution treatment on the age hardening of A356 alloy. Materials Science and Engineering: A. 566, pp. 112-118, 2013.
6. Zhang, J., Z. Fan, Y. Wang, and B. Zhou, Equilibrium pseudobinary Al–Mg2Si phase diagram. Materials science and technology. 17(5), pp. 494-496, 2001.
7. Camero, S., E. Puchi, and G. Gonzalez, Effect of 0.1% vanadium addition on precipitation behavior and mechanical properties of Al-6063 commercial alloy. Journal of materials science. 41(22), pp. 7361-7373, 2006.
8. Meng, Y., J. Cui, Z. Zhao, and Y. Zuo, Effect of vanadium on the microstructures and mechanical properties of an Al–Mg–Si–Cu–Cr–Ti alloy of 6XXX series. Journal of Alloys and Compounds. 573, pp. 102-111, 2013.
9. Zhu, F.-j., H.-y. Wu, S. Lee, M.-c. Lin, and D. Chen, Dynamic behavior of a 6069 Al alloy under hot compression. Materials Science and Engineering: A. 640, pp. 385-393, 2015.
10. MacMaster, F., K. Chan, S. Bergsma, and M. Kassner, Aluminum alloy 6069 part II: fracture toughness of 6061-T6 and 6069-T6. Materials Science and Engineering: A. 289(1), pp. 54-59, 2000.
11. Bergsma, S., M. Kassner, X. Li, and M. Wall, Strengthening in the new aluminum alloy AA 6069. Materials Science and Engineering: A. 254(1), pp. 112-118, 1998.
12. Zhen, L., W. D FEI, S. Kang, and H. Kim, Precipitation behaviour of Al-Mg-Si alloys with high silicon content. Journal of Materials Science. 32(7), pp. 1895-1902, 1997.
13. Murayama, M. and K. Hono, Pre-precipitate clusters and precipitation processes in Al–Mg–Si alloys. Acta materialia. 47(5), pp. 1537-1548, 1999.
14. Mrówka-Nowotnik, G. and J. Sieniawski, Influence of heat treatment on the microstructure and mechanical properties of 6005 and 6082 aluminium alloys. Journal of Materials Processing Technology. 162, pp. 367-372, 2005.
15. Hatch, J.E., Aluminum-Properties And Physical Metallurgy: American society for metals. pp.224-240, 1984.
16. Gupta, A., D. Lloyd, and S. Court, Precipitation hardening in Al–Mg–Si alloys with and without excess Si. Materials Science and Engineering: A. 316(1), pp. 11-17, 2001.
17. Dorward, R. and C. Bouvier, A rationalization of factors affecting strength, ductility and toughness of AA6061-type Al–Mg–Si–(Cu) alloys. Materials Science and Engineering: A. 254(1), pp. 33-44, 1998.
18. Hirth, S., G. Marshall, S. Court, and D. Lloyd, Effects of Si on the aging behaviour and formability of aluminium alloys based on AA6016. Materials Science and Engineering: A. 319, pp. 452-456, 2001.
19. Han, Y., K. Ma, L. Li, W. Chen, and H. Nagaumi, Study on microstructure and mechanical properties of Al–Mg–Si–Cu alloy with high manganese content. Materials & Design. 39, pp. 418-424, 2012.
20. Nagaumi, H., S. Suzuki, T. Okane, and T. Umeda, Effect of iron content on hot tearing of high-strength Al-Mg-Si alloy. Materials transactions. 47(11), pp. 2821-2827, 2006.
21. Mrówka-Nowotnik, G., J. Sieniawski, and M. Wierzbińska, Analysis of intermetallic particles in AlSi1MgMn aluminium alloy. ISSUES. 1, p. 2, 2007.
22. Mrówka-Nowotnik, G., The effect of intermetallics on the fracture mechanism in AlSi1MgMn alloy. Journal of Achievements in Materials and Manufacturing Engineering. 30(1), pp. 35-42, 2008.
23. Jeniski, R., Effects of Cr addition on the microstructure and mechanical behavior of 6061-T6 continuously cast and rolled redraw rod. Materials Science and Engineering: A. 237(1), pp. 52-64, 1997.
24. Man, J., L. Jing, and S.G. Jie, The effects of Cu addition on the microstructure and thermal stability of an Al–Mg–Si alloy. Journal of alloys and Compounds. 437(1), pp. 146-150, 2007.
25. Samuel, F., Incipient melting of Al5Mg8Si6Cu2 and Al2Cu intermetallics in unmodified and strontium-modified Al–Si–Cu–Mg (319) alloys during solution heat treatment. Journal of materials science. 33(9), pp. 2283-2297, 1998.
26. Belov, N.A., A. Koltsov, and D.G. Eskin. The Al-Cu-Fe-Mg-Si Phase Diagram in the Range of Al-Cu Alloys. in Materials Science Forum. 2002.
27. Yuan, W. and Z. Liang, Effect of Zr addition on properties of Al–Mg–Si aluminum alloy used for all aluminum alloy conductor. Materials & Design. 32(8), pp. 4195-4200, 2011.
28. Sepehrband, P., R. Mahmudi, and F. Khomamizadeh, Effect of Zr addition on the aging behavior of A319 aluminum cast alloy. Scripta materialia. 52(4), pp. 253-257, 2005.
29. Meng, Y., J. Cui, Z. Zhao, and L. He, Effect of Zr on microstructures and mechanical properties of an Al Mg Si Cu Cr alloy prepared by low frequency electromagnetic casting. Materials Characterization. 92, pp. 138-148, 2014.
30. Abdulstaar, M.A., E.A. El-Danaf, N.S. Waluyo, and L. Wagner, Severe plastic deformation of commercial purity aluminum by rotary swaging: Microstructure evolution and mechanical properties. Materials Science and Engineering: A. 565, pp. 351-358, 2013.
31. Yi, H.K., J.H. Lee, Y.S. Lee, and Y.H. Moon. Warm Hydroformability and Mechanical Properties of Pre-and Post-Heat Treated Al6061 Tubes. in Advanced Materials Research. 2007.
32. Li, H., Q. Mao, Z. Wang, F. Miao, B. Fang, and Z. Zheng, Enhancing mechanical properties of Al–Mg–Si–Cu sheets by solution treatment substituting for recrystallization annealing before the final cold-rolling. Materials Science and Engineering: A. 620, pp. 204-212, 2015.
33. Zhang, B. and T. Baker, Effect of the heat treatment on the hot deformation behaviour of AA6082 alloy. Journal of materials processing technology. 153, pp. 881-885, 2004.
34. Bergsma, S., M. Kassner, X. Li, U. Delos-Reyes, and T. Hayes, The optimized mechanical properties of the new aluminum alloy AA 6069. Journal of materials engineering and performance. 5(1), pp. 111-116, 1996.
35. Birol, Y., Effect of cooling rate on precipitation during homogenization cooling in an excess silicon AlMgSi alloy. Materials Characterization. 73, pp. 37-42, 2012.
36. Pedersen, L. and L. Arnberg, The effect of solution heat treatment and quenching rates on mechanical properties and microstructures in AlSiMg foundry alloys. Metallurgical and Materials Transactions A. 32(3), pp. 525-532, 2001.
37. Zhang, D., L. Zheng, and D. StJohn, Effect of a short solution treatment time on microstructure and mechanical properties of modified Al–7wt.% Si–0.3 wt.% Mg alloy. Journal of Light Metals. 2(1), pp. 27-36, 2002.
38. Birol, Y., DSC Analysis of the precipitation reactions in the alloy AA6082: Effect of sample preparation. Journal of thermal analysis and calorimetry. 83(1), pp. 219-222, 2005.
39. William D. Callister, D.G.R., Material Science and Engineering: John Wiley and Sons,Inc. pp. 170-171, 2011.
40. 陳思達,純鋁及鋁銅合金拉伸性質之摩擦攪拌效應及Hollomon方程式適用性檢討,國立成功大學材料科學及工程學系,博士論文,第5-29頁,民國100年7月。
41. 林春億,摩擦攪拌製程對5083鋁合金等軸晶鑄造材顯微組織與拉伸性質之影響,國立成功大學材料科學及工程學系,碩士論文,第5-7頁,民國95年。
42. Kuijpers, N., W. Kool, P. Koenis, K. Nilsen, I. Todd, and S. Van der Zwaag, Assessment of different techniques for quantification of α-Al (FeMn) Si and β-AlFeSi intermetallics in AA 6xxx alloys. Materials Characterization. 49(5), pp. 409-420, 2002.
43. 林春億,摩擦攪拌製程及後續加熱對Al-5Mg-0.6Mn合金微觀組織與常溫拉伸性質之影響,國立成功大學材料科學及工程學系,博士論文,第17-24頁, 民國103年。
44. Roven, H.J., M. Liu, and J.C. Werenskiold, Dynamic precipitation during severe plastic deformation of an Al–Mg–Si aluminium alloy. Materials Science and Engineering: A. 483, pp. 54-58, 2008.
45. Deschamps, A., M. Niewczas, F. Bley, Y. Brechet, J. Embury, L.L. Sinq, F. Livet, and J. Simon, Low-temperature dynamic precipitation in a supersaturated AI-Zn-Mg alloy and related strain hardening. Philosophical Magazine A. 79(10), pp. 2485-2504, 1999.
46. Mohamed, A., A. Samuel, F. Samuel, and H. Doty, Influence of additives on the microstructure and tensile properties of near-eutectic Al–10.8% Si cast alloy. Materials & Design. 30(10), pp. 3943-3957, 2009.
47. Toda, H., T. Nishimura, K. Uesugi, Y. Suzuki, and M. Kobayashi, Influence of high-temperature solution treatments on mechanical properties of an Al–Si–Cu aluminum alloy. Acta Materialia. 58(6), pp. 2014-2025, 2010.
48. 阿部武治;劉松柏編譯,材料強度破壞學,成璟文化,第48-63頁,民國89年。
49. Standard Test Method for Linear-Elastic Plane-Strain Fracture Toughness KIc of Metallic Materials. ASTM. E399-09, 2009.
50. Alaneme, K. and A. Aluko, Fracture toughness (K1C) and tensile properties of as-cast and age-hardened aluminium (6063)–silicon carbide particulate composites. Scientia Iranica. 19(4), pp. 992-996, 2012.
51. Mrówka-Nowotnik, G., J. Sieniawski, and A. Nowotnik, Tensile properties and fracture toughness of heat treated 6082 alloy. Journal of Achievements in Materials and Manufacturing Engineering. 17(1-2), pp. 1-2, 2006.