| 研究生: |
黃韻勳 Huang, Yun-Hsun |
|---|---|
| 論文名稱: |
考量發電風險之電力供給規劃研究—再生能源範例分析 Electricity Supply Planning Incorporating Risk Dimension—A Case Study of Renewable Energy |
| 指導教授: |
吳榮華
Wu, Jung-Hua |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 124 |
| 中文關鍵詞: | 電力供給規劃 、間歇性 、風險調整後的發電成本現值 、投資組合理論 |
| 外文關鍵詞: | Risk-weighted present value of total generation, Portfolio theory, Intermittent, Electricity supply planning |
| 相關次數: | 點閱:133 下載:11 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
傳統的電力供給規劃模型未考量發電成本之風險,在成本最小化目標下進行不同發電技術選擇,但近年來化石燃料的價格波動顯著,利用傳統方法可能使規劃結果偏好使用化石燃料的發電技術,而低估再生能源趨避化石燃料價格波動風險之效益,此對於高度仰賴進口能源的國家(如:台灣)並不合適;再者,近年再生能源技術進步顯著使其發電成本降低,因此當電力供給規劃引進再生能源時,其所面對之未來技術發展與成本變化的不確定性比僅考量傳統能源更高;然而再生能源具間歇性(intermittence)對電力系統可能之衝擊,亦須加以考量,因此發展一適合評估再生能源電力之供給規劃模型,實有其必要性。
目前國內應用於評估再生能源的模型,在發電技術的選擇上並未考量發電成本風險,而假定燃料成本穩定並透過折現的方法計算均化發電成本,以進行不同技術之選擇,對高度仰賴進口能源的台灣而言,此方法可能會使模擬結果產生偏誤。此外,缺乏對再生能源技術之詳細刻畫,由於再生能源種類多,各種再生能源利用方式亦不同,應分別考量其技術特性。在技術進步方面,一般假設成本下降率由外生給定,並未考慮因技術進步內生化而造成的成本下降。上述均係國內電力供給規劃模型須再深入研究者。
基此,本研究主要目的係以台灣電力部門為範例,建構考量再生能源特性之電力供給規劃模型。研究中應用數學規劃方法,設定「風險調整後的發電成本現值」最小化為目標,即同時考量發電成本現值最小化與風險(發電成本之變異數)最小化。模型中的發電成本風險主要考量化石燃料價格波動、發電技術進步及設備成本下降等三類風險;同時將再生能源之間歇性產出與減少溫室氣體排放等特性納入模型,並結合電力相關限制式(如:電力供需平衡關係、機組運轉限制、機組累積裝置容量關係、電力尖峰容量限制、發電容量限制、再生能源發電量限制、燃氣機組發電量限制、二氧化碳排放關係、發電技術潛力限制等),建構電力供給規劃模型。此外,利用此模型進行情境模擬分析,評估在考量發電成本風險、二氧化碳減量與再生能源間歇性情境下,再生能源裝置容量配比之變化及其對發電成本、二氧化碳排放量之影響,並提出政策建議,以供電力部門未來規劃之參考。
模擬結果顯示再生能源具有趨避風險及降低二氧化碳排放之效益,能取代化石燃料以降低發電成本之風險與二氧化碳排放量。因此當風險趨避程度越大或減量目標越高時,都會使再生能源裝置容量佔比提高,同時也會提前新增裝置容量以取代化石燃料技術。但因其開發潛力有侷限性,即使在高風險趨避程度下,模擬結果顯示再生能源之總裝置容量佔比亦不會超過15%。未來須能有效提高能源密度(如:增加風機單機容量、太陽光電板效率),才可提高發展上限,並進一步取代化石能源。
分析結果亦顯示核能發電具有燃料價格波動低與降低二氧化碳排放之特性,以減低發電風險的面向及二氧化碳排放而言,增加核能發電佔比允有助於減少化石燃料價格波動之風險及降低二氧化碳排放。此外,在再生能源間歇性方面,因台灣目前風力發電之發展上限僅為3,000 MW,在考量其間歇性後,對電力系統備載容量及總發電成本之影響並不顯著。
本研究建構之理論模型係將投資組合理論與傳統電力供給規劃模型整合,納入投資組合理論中風險之概念,亦結合傳統電力規劃模型之設定(如:機組運轉特性、電力負載區分、操作容量、發電量、燃料耗用量、二氧化碳排放量與發電技術潛力限制等)。模型除可考量發電成本風險外,因同時整合傳統電力供給規劃模型,故可使規劃結果兼顧發電技術之負載特性與操作限制。
The conventional approach to electricity planning uses the least-cost method to select from a range of alternative technologies without assessing cost-related risks. The results inherently are biased in favor of fossil fuel generating technology. Recent fossil fuel price volatility underlines the potential benefit of including renewable energy sources in the generating portfolio. Furthermore, rapid technological progress has significantly reduced the cost of renewable energy. When renewable energies are introduced into electricity supply planning, the uncertainties associated with the decline in cost and technological development increase. Additionally, the impact of the intermittent characteristics of renewable energy on a power system must be considered. Hence, it is desirable to formulate an adequate electricity supply planning model to evaluate the issue of renewable energy.
Current models for evaluating renewable energy in Taiwan select from a range of generating technologies without assessing cost-related risks. These models do not enable renewable energy to be described in detail. Since the various forms of renewable energy are used in different ways, the model should consider each renewable energy technology separately. Cost reductions associated with technological progress are exogenous in these models. In summary, the current models in Taiwan are inaccurate in determining the selection of renewable power generation technologies.
This study applies portfolio theory in conventional electricity planning with Taiwan as a case study. The overall objective of the model is to minimize the “risk-weighted present value of total generation cost”. This work considers both the present value of generating cost and risk (variance of generating cost). The risk of the generating cost focuses on volatile fuel prices, uncertainty in technological changes and capital cost reduction, as the most important cost volatility determinants in the electricity sector. Some simulation scenarios are also examined to evaluate the impact on the portfolio of power generation technologies and generating cost. Finally, policy suggestions are proposed for Taiwan’s electricity sector based on the simulation results.
The simulation results obtained by applying the model to Taiwan’s electricity sector indicate that incorporating the risk concept and CO2 emission constraints in electricity supply planning model leads to the generation of a lower proportion of electricity from fossil fuel technology and a higher proportion from renewable energy sources. Higher risk-aversion and tighter CO2 emission restrictions are associated with a stronger effect. However, there is an upper bound of 15% on the maximum share of renewable energy in the generating portfolio due to limited renewable development potential in Taiwan. Renewable energy will only play a more important role in electricity generation should its energy density improve in terms of unit capacity and conversion efficiency.
Simulation results also reveal the low fuel price volatility and low CO2 emission associated with nuclear power reduce exposure to price fluctuations associated with fossil fuels and CO2 emissions. Regarding the intermittent nature of renewable energy, since an upper bound of 3000MW is set on wind power, the impact on the reserve margin and total generating cost is not remarkable.
Unlike the current portfolio theory that is applied to the energy market, the model herein integrates portfolio theory into a vintage electricity planning framework. Aside from risk, the model accommodates components of conventional electricity planning, including unit characteristics, load segments, capacity constraints, power output constraints, fuel consumption constraints, CO2 emission constraints and constraints on potential technologies development. The model considers explicitly many characteristics of power generation technologies and the risks that accrue investing in electricity generation.
1.工業技術研究院 (2003),非核家園願景下我國能源結構調整與因應策略之研究,經濟部能源局委辦計畫。
2.工業技術研究院 (2006),我國能源供需規劃與分析研究(1/3),經濟部能源局委辦計畫。
3.工研院能資所再生能源推廣室 (2005),風力發電技術與應用,簡報資料。
4.台灣電力公司 (2005),我國長期負載預測及長期電源開發規劃,經濟部能源局委辦計畫。
5.台灣電力公司 (2006),台灣電力公司94年統計年報。
6.行政院核定 (2003),非核家園具體行動方案。
7.行政院環保署 (2006),民國94年環境保護年報。
8.李永全 (2004),現代投資學理論與實務(第二版),新文京開發出版股份有限公司。
9.吳再益、陳玫如、黃釋緯 (2006),“因應CO2減量政策我國經濟衝擊及產業結構轉型之研究”,中華民國能源經濟學會民國95年年會,台北。
10.吳煌、吳振中 (2002),“我國再生能源發展策略及推動現況”,台電工程月刊,第651期,1-17頁。
11.吳榮華、黃韻勳 (2004),“國際再生能源發展政策趨勢研析”,能源季刊,第34卷,第4期,34-49頁。
12.孫一菱 (2005),不同政策工具對再生能源發展潛力之經濟分析,碩士論文,國立台北大學資源管理研究所。
13.許志義、陳澤義 (2003),電力經濟學理論與應用(第五版),華泰書局。
14.張四立、陳彥尹,(2005),“台灣再生能源發展與能源供應安全之策略評估”,兩岸永續發展研討會,台北。
15.梁啟源、吳再益、郭博堯、劉致峻 (2003),“再生能源發展方案之社會成本效益分析”,中華民國能源經濟學會民國92年年會,台北。
16.陳玟如 (2003),整合溫室氣體減量與經濟發展之電力供給規劃模型研究,碩士論文,國立台北大學資源管理研究所。
17.陳家榮、賴正文 (1998),發電業因應二氧化碳排放抑制策略之研究,行政院環保署委辦計畫。
18.馮志豪 (2005),兼顧溫室氣體減量與經濟發展之再生能源電力供給規劃研究,碩士論文,國立台北大學資源管理研究所。
19.黃仁德、羅時萬 (2000),現代經濟成長理論(第二版),華泰文化事業公司。
20.經濟部能源局(1999-a),新能源及潔淨能源研究開發規劃總報告。
21.經濟部能源局(1999-b),電業法修正(草案)。
22.經濟部能源局(2002),再生能源發展條例(草案)。
23.經濟部能源局(2005-a),第二次全國能源會議結論。
24.經濟部能源局(2005-b),能源政策白皮書。
25.經濟部能源局(2006-a),民國94年台灣能源統計手冊。
26.經濟部能源局(2006-b),台灣能源平衡表(94年)。
27.Arrow, K. J. (1962), “The Economic Implications of Learning by Doing”, Review of Economic Studies, Vol.29, pp.155-173.
28.Awerbuch, S. and Berger, M. (2003), Applying Portfolio Theory to EU Electricity Planning and Policy-Making, IEA.
29.Awerbuch, S. (2004), “Portfolio-Based Electricity Generation Planning: Policy Implications for Renewables and Energy Security”, Paper Prepared to The Renewable Energy & Energy Efficiency Partnership (REEEP), and UNEP.
30.Barreto, L. and Kypreos, S. (2004), “Endogenizing R&D and Market Experience in the “Bottom-up” Energy-Systems ERIS Model”, Technovation, Vol.24, Iss.8, pp.615-629.
31.Barreto, L. (2001), Technological Learning in Energy Optimisation Models and Deployment of Emerging Technologies, Ph. D. dissertation, Swiss Federal Institute of Technology Zurich.
32.Berglund, C. and Söderholm, P. (2006), “Modeling Technical Change in Energy System Analysis: Analyzing the Introduction of Learning-by-Doing in Bottom-up Energy Models”, Energy Policy, Vol.34, Iss.12, pp.1344-1356.
33.Bodie, Z., Kane, A., and Marcus, A. J. (2005), Investments (sixth edition), McGraw-Hill Irwin.
34.Bolinger, M., Wiser, R., and Golove, W. (2006), “Accounting for Fuel Price Risk when Comparing Renewable to Gas-Fired Generation: The Role of Forward Natural Gas Prices”, Energy Policy, Vol.34, Iss.6, pp.706-720.
35.Boston Consulting Group (1968), Perspectives on Experience, Boston Consulting Group Inc.
36.Brooke, A., Kendrick, D., Meeraus, A., and Raman, R. (2005), GAMS - A Users Guide, GAMS Development Corporation.
37.Chaton, C. and Doucet, J. A. (2003), “Uncertainty and Investment in Electricity Generation with an Application to the Case of Hydro-Québec”, Annals of Operations Research, Vol.120, Iss.1, pp.59-80.
38.Energy Information Administration (EIA) (1999), Annual Energy Outlook 2000, DOE/EIA.
39.Energy Information Administration (EIA) (2006), Model Documentation: Renewable Fuels Module of the National Energy Modeling System.
40.Fischer, C. and Newell, R. (2004), “Environmental and Technology Policies for Climate Change and Renewable Energy”, Resources for the Future Discussion Paper, No. 04-05.
41.Graham, P. W. and Williams, D. J. (2003), “Optimal Technological Choices in Meeting Australian Energy Policy Goals”, Energy Economics, Vol.25, Iss.6, pp.585-569.
42.Grubb, M. (1997), “Technologies, Energy Systems and the Timing of CO2 Emissions Abatement”, Energy Policy, Vol.25, Iss.2, pp.159–172.
43.Hirschhausen, C. V. and Neumann, A. (2003), “Security of (Gas) Supply: Conceptual Issues, Contractual Arrangements, and the Current EU Situation.”, INDES Workshop, Amsterdam.
44.Hoff, T. E. (1997), “Integrating Renewable Energy Technologies in the Electric Supply Industries: a Risk Management Approach”, National Renewable Energy Laboratory Report, NREL/SR-520-23089.
45.Humphreys, H. B. and McClain, K. T. (1998), “Reducing the Impact of Energy Price Volatility through Dynamic Portfolio Selection”, The Energy Journal, Vol. 19, pp 107-131.
46.IEA (2000), Experience Curves for Energy Technology Policy, OECD/IEA, Paris.
47.IPCC/OECD (1996), Revised 1996 IPCC Guidelines for Greenhouse Gas Inventories.
48.Junginger, M., Faaij, A., and Turkenburg, W. C. (2005), “Global Experience Curves for Wind Farms”, Energy Policy, Vol.33, Iss.2, pp.133-150.
49.Kallberg, J.G. and Ziemba, W.T. (1983): “Comparison of Alternative Utility Functionsin Portfolio Selection Problems”, Management Science, Vol.29, pp. 1257-76.
50.Kumbaroglu, G., Madlener, R., and Demirel, M. (2004), “A Real Options Evaluation Model for the Diffusion Prospects of New Renewable Power Generation Technologies”, CEPE Working Paper, No. 35.
51.Langniss, O. and Neij, L. (2003), “National and International Learning with Wind Power”, Energy Forum 5: Technological Change, Market Reform and Climate Policies, Bucharest, Romania.
52.Lesbirel, S. H. (2004), “Diversification and Energy Security Risks: The Japanese Case”, Japanese Journal of Political Science, Vol. 5, pp. 1-22.
53.Löschel, A. (2002), “Technological Change in Economic Models of Environmental Policy: a Survey”, Ecological Economics, Vol.43, Iss.2-3, pp.105-126.
54.Madlener, R., Kumbaroglu, G., and Ediger, V. S. (2005), “Modeling Technology Adoption as an Irreversible Investment under Uncertainty: The Case of the Turkish Electricity Supply Industry”, Energy Economics, Vol.27, Iss.1, pp.139-163
55.Markowitz, H. M. (1952), “Portfolio Selection”, Journal of Finance, Vol. 7, No. 1, pp.77-91.
56.Mattsson, N. and Wene, C. O. (1997), “Assessing New Energy Technologies Using an Energy System Model with Endogenized Experience Curves”, International Journal of Energy Research, Vol.21, Iss.4, pp.385-393.
57.McDonald, A. and Schrattenholzer, L. (2001), “Learning Rates for Energy Technologies”, Energy Policy, Vol.29, Iss.4, pp.255-261.
58.Messner, S. (1997), “Endogenized Technological Learning in an Energy Systems Model”, Journal of Evolutionary Economics, Vol.7, Iss.3, pp.291-313.
59.Miketa, A. and Schrattenholzer, L. (2004), “Experiments with a Methodology to Model the Role of R&D Expenditures in Energy Technology Learning Processes; First Results”, Energy Policy, Vol.32, Iss.15, pp. 1679-1692.
60.Nanda, G., Yamgar, S., Srivastava, S. C., Singh, S. N., Gupta, P., Paul, D. and Shrestha, R. M. (2005), “Implications of Carbon Tax on Generation Expansion Plan & GHG Emission: A Case Study on Indian Power Sector”, International Journal of Emerging Electric Power Systems, Vol.3, Iss.1, Article 1045.
61.Neij, L., Dannemand, A. P., Durstewitz, M., Hoppe-Kilpper, M. and Morthorst, P. E. (2003), Experience Curves: a Tool for Energy Policy Assessment, Final Report of EXTOOL.
62.Nishio, K. and Asano, H. (2004), “Future Prospects of Renewable Electricity Supply under the Renewables Portfolio Standard in Japan”, International Energy Workshop 2004, Paris, France.
63.Olsina, F., Garcés, F. and Haubrich, H.J. (2006), “Modeling Long-Term Dynamics of Electricity Markets”, Energy Policy, Vol. 34, Iss.12, pp. 1411-1433.
64.Rao, S., Keppo, I. and Riahi, K. (2006), “Importance of Technological Change and Spillovers in Long-Term Climate Policy”, The Energy Journal, Special Issue, pp.123-140.
65.Rasmussen, T. N. (2001), “CO2 Abatement Policy with Learning-by- Doing in Renewable Energy”, Resource and Energy Economics, Vol.23, Iss.4, pp.297-325.
66.REN21 (2005), Renewables 2005 Global Status Report.
67.Sadeghi, M. and Hosseini, H. M. (2006), “Energy Supply Planning in Iran by Using Fuzzy Linear Programming Approach (Regarding Uncertainties of Investment Costs)”, Energy Policy, Vol. 34, Iss.9, pp. 993-1003
68.Söderholm, P., and Sundqvist, T. (2004), “Learning Curve Analysis for Energy Technologies: Theoretical and Econometric Issues”, International Energy Workshop 2003, Laxenburg, Austria.
69.Turvey, R. (1977), Electricity economics: essays and case studies, Published by Johns Hopkins University Press.
70.Voorspools, K. R. and D’haeseleer, W. D. (2006), “An Analytical Formula for the Capacity Credit of Wind Power”, Renewable Energy, Vol.31, Iss.1, pp.45-54.
71.Wörlen, C. M. (2003), Economic and Technological Aspect of the Market Introduction of Renewable Power Technologies, Ph. D. dissertation, Center Energy and Environmental Studies and Department of Geography, Boston University.
72.Wright, T. P. (1936), “Factors Affecting the Costs of Airplanes”, Journal of the Aeronautical Sciences, Vol.3, pp.122-128.
73.Wu, J. H. and Huang, Y. H. (2006), “Renewable Energy Perspectives and Support Mechanisms in Taiwan”, Renewable Energy, Vol.31, Iss.11, pp1718-1732.
74.Zon, A. van, Fuss, S. (2006), “Optimum Portfolio Investment in the Electricity Sector and Climate Change Policy in the UK”, International Energy Workshop 2006, Cape Town, South Africa.