簡易檢索 / 詳目顯示

研究生: 林宏霖
Lin, Hung-Lin
論文名稱: 探討生物分解光電產業 製程廢水之反應動力特性研究
Study on reaction kinetics characteristics of Thin-film transistor liquid crystal display wastewater by SBR bioreactor
指導教授: 黃良銘
Whang, Liang-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 95
中文關鍵詞: MEADMSOSBRTMAH
外文關鍵詞: TMAH, DMSO, SBR, MEA
相關次數: 點閱:91下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著光電半導體業產量的增加,可預期高強度且不易處理的TFT-LCD製程廢棄物量也隨之增加,2003年科學園區TFT-LCD製程事業廢棄物產生量已達25,725.5公噸/年(科學工業園區管理局,2003) ,因此預計未來高科技產業每日所生產之廢水量將達200,000噸以上。其中在TFT-LCD製程廢水中,有機廢水約佔總廢水量三分之一以上,這些有機物質的來源主要是製程中使用大量之二甲基亞楓(dimethyl sulphoxide, DMSO )、乙醇胺(monoethanolamine, MEA )、氫氧化四甲基銨(tetra-methyl ammonium hydroxide, TMAH)。
    本研究分別以無氧/好氧程序(Anoxic-Oxic, AO Process)與好氧(Aerobic process)程序之循序批分式反應槽(SBR)針對TFT-LCD製程廢水處理做探討,無氧/好氧程序之SBR對於DMSO、MEA和TMAH有極佳之處理效率,在Run 1與Run 2去除上述三種有機化合物之去除率均超過98%。好氧程序之批分式反應槽其對於MEA與TMAH之去除率達100%,但於好氧程序之SBR啟動初期對於DMSO之去除效果並不佳,直至反應槽啟動71天之後,DMSO去除率才達到100%,由上述可知無氧/好氧與好氧程序之SBR皆能有效率處理TFT-LCD製程之廢水。
    另一方面,以批次實驗針對TFT-LCD製程廢水進行機制之探討,實驗主軸為在好氧、缺氧和厭氧狀態下,針對混合不同濃度之DMSO、MEA與TMAH做一討論。
    在DMSO方面,在好氧與缺氧狀態下,其比DMSO利用率皆低於5 mg DMSO/g VSS-hr;在厭氧狀態下,混合基質濃度為250 mg/L DMSO、150 mg/L MEA 和70 mg/L TMAH時,其比DMSO利用率為24.54 mg DMSO/g VSS-hr;混合基質濃度為400 mg/L DMSO、250 mg/L MEA 和100 mg/L TMAH,其比DMSO利用率為14.06 mg DMSO/g VSS-hr。
    因此,在厭氧狀態下之比DMSO降解率高於好氧與缺氧狀態,且由實驗中發現,厭氧狀態下欲達到較佳之比DMSO利用率,仍需添加不同於DMSO之碳源。
    在MEA方面,在厭氧狀態下,其比MEA利用率在5.6 mg MEA/g VSS-hr以下;混合基質濃度為50 mg/L DMSO、130 mg/L MEA 和30 mg/L TMAH且為缺氧狀態下,其比MEA利用率達51.81 mg MEA/g VSS-hr;好氧與缺氧狀態下,其比MEA利用率在12~27mg MEA/g VSS-hr之間。因此在好氧與缺氧狀態下,有較佳之比MEA利用率。
    在TMAH方面,在厭氧與缺氧狀態下之比TMAH利用率低於3.3 mg TMAH/g VSS-hr;在好氧狀態下之比TMAH利用率在5.3和17.5 mg TMAH
    /g VSS-hr之間。由上述三種狀態,好氧狀態明顯有較佳之比TMAH利用率。
    總體而言,DMSO在厭氧狀態下能最有效率降解;在好氧狀態下,TMAH有最佳之降解效率;MEA則是在好氧與缺氧狀態下均有極佳之去除效果。

    Due to the increasing production rate of the Opto-electronic industry in Taiwan, the amount of pollutants produced in the manufacturing process of TFT-LCD (Thin-film transistor liquid crystal display) also increases. In the year of 2003, the amount of TFT-LCD manufacturing solid waste was 25,723.5 ton/year. Also, the amount of wastewater in TFT-LCD wastewater manufacturing process will be approximately 200,000 CMD in the near future. According to some studies, organic wastewater accounts for more than 33% of the total TFT-LCD manufacturing wastewater. The main components of this organic wastewater are composed of the stripper (DMSO&MEA), developer (TMAH) and chelating agents.
    In this study, the performance of A/O (anoxic/oxic) and aerobic SBR (sequencing batch reactor) in treating TFT-LCD manufacturing wastewater is discussed. A/O SBR achieved good removal rate for DMSO, MEA and TMAH. In run I and run II, the removal rate of all three substance is more than 98%. For aerobic SBR, the removal rate of MEA and TMAH achieved 100%. But the removal rate of DMSO is not good at the beginning. After 71 days, the removal rate improved to 100%. Hence, A/O and aerobic SBR can treat TFT-LCD manufacturing wastewater effectively.
    On the other hand, batch tests are conducted to study the mechanism of the degradation of TFT-LCD manufacturing wastewater. In the tests, the degradation of DMSO, MEA and TMAH under aerobic, anoxic and anaerobic condition is discussed. The substrate of the tests contains DMSO, MEA and TMAH.
    For DMSO, specific DMSO utilization rate under aerobic and anoxic condition is both lower than 5 mg DMSO/g VSS-hr. In anaerobic condition, the specific DMSO utilization rate of group (250mg/L DMSO, 150mg/L MEA and 70mg/L TMAH) is 24.54 mg DMSO/g VSS-hr. The specific DMSO utilization rate of the other group (400 mg/L DMSO, 250 mg/L MEA and 100 mg/L TMAH) is 14.06 mg DMSO/g VSS-hr. Therefore, the degradation of DMSO under anaerobic condition is better than the other two. But for getting better specific DMSO utilization rate under anaerobic condition, additional carbon source other than DMSO is necessary.
    For MEA, specific MEA utilization rate under anaerobic condition is low (under 5.6 mg MEA/g VSS-hr). The best specific MEA utilization rate is 51.81 mg MEA/g VSS-hr in group (50mg/L DMSO, 130mg/L MEA and 30mg/L TMAH) under anoxic condition. The specific MEA utilization rate of other groups under aerobic and anoxic condition lies between 12 and 27 mg MEA/g VSS-hr. Hence, the specific MEA utilization rate is better under aerobic and anoxic condition.
    For TMAH, specific TMAH utilization rate is low under anaerobic and anoxic condition (< 3.3 mg TMAH/g VSS-hr). Under aerobic condition, the specific TMAH utilization rate lies between 5.3 and 17.5 mg TMAH/g VSS-hr, which is the best among the three conditions.
    Overall, DMSO can be effectively degraded under anaerobic condition. But for TMAH degradation, aerobic condition gets the best result. MEA can degraded efficiently under both aerobic and anoxic condition.

    中文摘要........................................................................I 英文摘要........................................................................II 目錄........................................................................IV 表目錄........................................................................VI 圖目錄........................................................................VIII 摘要........................................................................I Abstract................................................................V 第一章 前言........................................................................1 1-1 研究緣起及目的........................................................................1 第二章 文獻回顧........................................................................3 2-1 薄膜液晶顯示器( TFT-LCD )製程及廢水來源........................................................................3 2-2 薄膜液晶顯示器( TFT-LCD )製程廢水組成與特性........................................................................7 2-2-1 TFT-LCD製程有機廢水生物處理程序........................................................................8 2-3 DMSO、MEA、TMAH生物分解之相關研究........................................................................9 2-3-1 二甲基亞楓( Dimethyl sulphoxide,DMSO) 之分解機制..........................9 2-3-2 乙醇胺( Monoethanolamine, MEA )之分解機制..............................................11 2-3-3 氫氧化四甲基胺( Tetra-methyl ammonium hydroxide, TMAH )之分解 機制..........................................................13 2-4 有關DMSO、MEA和TMAH廢水之控制技術...................................14 2-4-1 生物處理......................................................14 2-4-2 Fenton法結合生物處理..........................................16 第三章 實驗設備與方法.......................................................20 3-1 研究流程............................................................20 3-2 缺氧好氧循序批分式反應槽(Anoxic/Aerobic Sequencing Batch Activated Sludge Process).....................................................21 3-3 好氧循序批分式反應槽(Aerobic Sequencing Batch Activated Sludge Process)............................................................25 3-4 批次實驗............................................................28 3-5 水質分析項目與使用儀器..............................................29 3-5-1 一般水質分析項目..............................................29 3-5-2 儀器分析......................................................29 第四章 結果與討論...........................................................31 4-1 無氧/好氧批分式生物反應槽程序.......................................31 4-1-1 無氧/好氧批分式生物程序反應槽內之 MLVSS.......................32 4-1-2 無氧/好氧批分式生物程序對DMSO、MEA與TMAH之去除效能............33 4-1-3 無氧/好氧批分式生物程序對含氮污染物之去除效能.................38 4-1-4 無氧/好氧批分式生物槽內一個週期的情形.........................41 4-2 好氧批分式生物反應槽程序............................................49 4-2-1 好氧批分式生物反應槽MLVSS.....................................49 4-2-2 好氧批分式生物程序對DMSO、MEA與TMAH之去除效能.................50 4-2-3 好氧批分式生物程序對氮之去除效能..............................54 4-2-4 好氧批分式生物槽內一個週期的情形..............................55 4-3 批次實驗............................................................62 4-3-1 好氧狀態下各污染物的分解效能..................................62 4-3-2 厭氧狀態下各污染物的分解效能..................................66 4-3-3 缺氧狀態下各污染物的分解效能..................................71 4-3-4 各污染物在不同狀態下的分解速率................................76 4-3-5 有無額外添加碳源在好氧與厭氧狀態下對於DMSO降解之影響..........79 4-3-6 總結..........................................................85 第五章 結論.................................................................86 5-1 結論................................................................86 5-2 建議................................................................87 第六章 文獻回顧.............................................................88 附錄........................................................................93 表目錄 Table 2-1-1 Pollutants in TFT-LCD manufacturing process...................5 Table 2-2-1 Components of organic wastewater in TFT-LCD manufacturing process.......................................................8 Table 3-2-1 Concentration of the three substrates in pre-Influent wastewater of A/O SBR.........................................22 Table 3-2-2 Concentration of nutrients components in SBR and batch test Influent......................................................22 Table 3-3-1 Concentration of DMSO, MEA and TMAH in the influent of Oxic SBR...........................................................26 Table 3-5-1 Methodologies for water quality analysis......................29 Table 4-1-1 Operational parameter of thermophilic anoxic/aerobic squcing batch reactorinRun 1and Run 2.................................31 Table 4-1-2 Specific DMSO utilization rate under different DMSO concentration in A/O SBR......................................44 Table 4-1-3 Specific MEA utilization rate under different MEA concentration in A/O SBR......................................45 Table 4-1-4 Specific TMAH utilization rate under different TMAH concentration in A/O SBR......................................46 Table 4-2-2 Specific DMSO utilization rate at different time in aerobic SBR...........................................................56 Table 4-2-3 Specific MEA utilization rate at different time in oxic SBR...58 Table 4-2-4 Specific TMAH utilization rate at different time in oxic SBR..59 Table 4-2-5 Volumetric loading and removal rate of SBRs...................62 Table 4-3-1 Experimental design of batch test (aerobic)...................62 Table 4-3-2 Comparison of the theoretical org-N concentration and the observed inorganic-N concentration in the aerobic batch tests.66 Table 4-3-3 Experimental design of batch test (anaerobic).................66 Table 4-3-4 Comparison of the theoretical org-N concentration and the observed inorganic-N concentration in the aerobic batch tests.71 Table 4-3-5 Experimental design of batch test.............................71 Table 4-3-6 Comparison of the theoretical org-N concentration and the observed inorganic-N concentration in the aerobic batch tests.76 Table 4-3-7 Specific DMSO utilization rate under different conditions.....77 Table 4-3-8 Specific MEA utilization rate under different conditions......78 Table.4-3-9 Specific TMAH utilization rate under different conditions.....79 Table 4-3-10 Specific DMSO utilization rate under different condition......82 圖目錄 Fig. 2-1-1 TFT-LCD manufacturing process..................................6 Fig. 2-3-1 Metabolic pathway of DMSO degradation..........................10 Fig. 2-3-2 Metabolic pathway of MEA degradation...........................12 Fig. 2-3-3 Metabolic pathway for TMA+ by organism 5H2.....................13 Fig. 2-4-1 Pathways for DMSO degradation with combined physiochemical and biological methods.............................................19 Fig. 3-2-1 Schematic illustration of Anoxic/Oxic and Aerobic sequencing batch reactor..................................................23 Fig. 3-2-2 Operational process of A/O Sequencing batch reactor............24 Fig. 3-3-1 Operational process of oxic Sequencing batch reactor...........27 Fig. 4-1-1 MLVSS concentration in A/O SBR.................................33 Fig. 4-1-2 Concentration of DMSO in A/O SBR...............................35 Fig. 4-1-3 MEA concentration in A/O SBR...................................36 Fig. 4-1-4 TMAH concentration in A/O SBR..................................37 Fig. 4-1-5 NH4+ concentration in A/O SBR..................................39 Fig. 4-1-6 NO2- concentration in A/O SBR..................................40 Fig. 4-1-7 NO3- concentration in A/O SBR..................................41 Fig. 4-1-8 Time-course profile of DMSO, MEA, TMAH degradation in A/O SBR..43 Fig. 4-1-9 Time-course profile of NH4+, NO2- and NO3- concentration in A/O SBR............................................................47 Fig. 4-2-1 MLVSS concentration in aerobic SBR.............................50 Fig. 4-2-2 Concentration of DMSO in aerobic SBR...........................51 Fig. 4-2-3 Concentration of MEA in aerobic SBR............................52 Fig. 4-2-4 TMAH concentration in aerobic SBR..............................53 Fig. 4-2-5 Concentration of NH4+, NO2- and NO3- in aerobic SBR effluent...55 Fig. 4-2-6 Time-course profile of DMSO, MEA and TMAH degradation in Aerobic SBR....................................................57 Fig. 4-2-7 Time-course profile of NH4+, NO2- and NO3- concentration in Aerobic SBR....................................................60 Fig. 4-3-1 Time-course profile of DMSO degradation and NOx--N production under different DMSO, MEA and TMAH concentration in aerobic condition......................................................63 Fig. 4-3-2 Time-course profile of MEA and TMAH degradation ,NH4+-N concentration and NOx--N production under different DMSO, MEA and TMAH concentration in aerobic condition....................65 Fig. 4-3-3 Time-course profile of DMSO degradation and NOx--N concentration under different DMSO, MEA and TMAH concentration in anaerobic condition.........................................68 Fig. 4-3-4 Time-course profile of MEA and TMAH degradation and NH4+-N concentration under different DMSO, MEA and TMAH concentration in anaerobic condition.........................................70 Fig. 4-3-5 Time-course profile of DMSO degradation and NOx--N concentration under different DMSO, MEA and TMAH concentration in anoxic condition............................................73 Fig. 4-3-6 Time-course profile of MEA and TMAH degradation and NH4+-N concentration under different DMSO, MEA and TMAH concentration in anoxic condition............................................75 Fig. 4-3-7 Time-course profile of DMSO concentration under different DMSO concentration in aerobic condition.............................80 Fig. 4-3-8 Time-course profile of DMSO concentration under different DMSO concentration in anaerobic condition...........................81 Fig. 4-3-9 Time-course profile of DMSO degradation with different carbon source under anaerobic condition...............................84 Fig. 4-3-10 Time-course profile of CH3COONa, MEA and TMAH concentration under anaerobic condition......................................84

    Andreae M. O. Dimethylsulfoxide in marine and
    freshwaters. Limnology and Oceanography 25:
    1054–1063 (1972)
    Anthony, C. The biochemisstry of Methylotrophs,
    Academic press, Lodon (1982)
    Biolous, R. T. and Weiner, J. H. Dimethyl sulfoxide
    reductase activity by anaerobically grown
    Escherichia HB101. Journal of bacteriology 162:
    1151-1155 (1985)
    Bradbeer, C. The Clostridial Fermentations of
    Choline and Ethanolamine, I. Preparation and
    Properties of cell-free extracts. Journal of
    Biological Chemistry 240: 4669-4674 (1965)
    Chen, T. K., Ni, C. H., Chen, J. N.
    Nitrification-Denitrification of Opto-electronic
    Industrial,Wastewater by anoxic/Aerobic Process.
    Journal of environmental science and health.
    Part A, Toxic/hazardous substances &
    environmental engineering A38(10): 2157-2167
    (2003)
    De Bont, J. A. M., van Dijiken, J. P., Harder, W.
    Dimethyl sulfoxide and dimethyl sulfide as a
    carbon, sulfur and energy source for growth of
    Hyphomicrobium S. Journal of general
    microbiology 127: 315-323 (1981)
    Griebler, C. Dimethylsulfoxide (DMSO) reduction: a
    new approach to determine microbial activity in
    freshwater sediments. Joural of Microbiological
    Methods 29: 31-40 (1997)
    Henk , M. J., Marc J. V. D. M., Hans V. G., Theo A.
    H. Dimethylsulfoxide reduction by marine
    sulfate-reducing bacteria. FEMS Microbiology
    136. 283-287 (1996)
    Jones, R. D. and Morita, R. Y. Methane oxidation by
    Nitrosococcus oceanus and Nitrosomonas europaea.
    Applied and environmental microbiology 45:
    401-410 (1983)
    Jones, A. and Turner, J. M. 1-aminopropan-2-ol and
    ethanolamine metabolism via propionaldehyde and
    acetaldehyde in a species of pseudomonas. The
    Biochemical journal 134: 167-182 (1973)
    Kaplan, B. H., and Stadtman, E. R. Ethanolamine
    deaminase (Clostridium sp.) Journal of
    biological chemistry 243: 1787-1794 (1968)
    Ke, S. C. Spin-spin interaction in ethanolamine
    deaminase. Biochimica et Biophysica Acta 1620:
    267-272 (2003)
    Kino, K., Murakami-nitta, T., Oishi, M., Ishiguro,
    S., Kirimura, K. Isolation of Dimethyl
    Sulfone-Degrading Microorganisms and Application
    to Odorless Degradation of Dimethyl Sulfoxide.
    Journal of Bioscience and Bioengineering 97(1):
    82–84 (2004)
    Knapp, J. S., Jenkey, N. D., Townsley, C. C. The
    anaerobic biodegradation of diethanolamine by a
    nitrate reducing bacterium. Biodegradation 7:
    183-189 (1996)
    Koito, T., Tekawa, M., Toyoda, A. A novel treatment
    technique for DMSO wastewater.IEEE Transactions
    on Semiconductor Manufacturing 1(11): 3–8
    (1998)
    Lai, Berlin and Shieh, W. K. Batch monoethylamine
    degradation via nitrate respiration. Water
    Research 30(10): 2530-2534 (1996)
    Murakami-Nitta, T., Kurimura, H., Kirimura, K.,
    Kino, K., Usami, S. Continuous degradation of
    dimethyl sulfoxide to sulfate ion by
    Hyphomicrobium denitrificans WUK217. Journal of
    bioscience and bioengineering 94: 52-56 (2002)
    Murakami-Nitta, T., Kirimura, K., Kino, K.
    Degradation of dimethyl sulfoxide by the
    immobilized cells of Hyphomicrobium
    denitrificans WU-K217. Biochemical Engineering
    Journal 15: 199–204 (2003)
    Murakami-Nitta, T., Kirimura, K., Kino, K.
    Oxidative Degradation of Dimethyl Sulfoxide by
    Cryptococcus humicolus WU-2, a Newly Isolated
    Yeast. Journal of Bioscience and Bioengineering
    95(1): 109-111 (2003)
    Muratani, T. Biological treatment of wastewater
    containing DMSO. Sharp Giho 73: 20-25 (in
    Japanese) (1999)
    Narrod, S. A. and Jakoby, W. B. Metabolism of
    ethanolamine an ethanolamine oxidase. Journal of
    biological chemistry 239: 2189-2193 (1964)
    Ndegwa A. W. , Wong, C. K. R., Chu, A. , Bentley L.
    R. , and Lunn R. D. S. Degradation of
    monoethanolamine in soil. Environmental
    Engineering Science 3: 137-145 (2004)
    Nguyen V.T., SIEH W. K. Evaluation of intrinsic and
    inhibition kinetics in
    biological fluidized bed reactors Water Resarch
    29:2520-2524 (1995)
    Park, S. J., Yoon, T. I., Bae, J. H., Seo, H. J.,
    Park, H. J. Biological treatment of wastewater
    containing dimethyl sulphoxide from the
    semi-conductor industry. Process Biochemistry
    36: 579–589 (2001)
    Shieh, W. K., Tsao, Y. C. Impulse responses of a
    monoethylamine-fed fluidized bed reactor, Water
    Research 37: 2331–2338 (2003)
    Simo, R.Trace chromatographic analysis of dimethyl
    sulfoxide and related methylated sulfur
    compounds in natural waters. Journal of
    chromatography A 807: 151-164 (1998)
    Suylen, G. M. H. and Stefess, D. Chemolithotrophic
    potential of a Hyphomicrobium species, capable
    of growth on methylated sulphur compounds.
    Archives of microbiology 146: 192–198 (1986)
    Suylen, G. M. H. and Kuenen, J. G. Chemostat
    enrichment and isolation of Hyphomicrobium EG.
    Antonie van Leeuwenhoek 52: 281-293 (1986)
    Yen, H. C. and Marrs, B. Growth of Rhodopseudo-mans
    capsula under anaerobic dark conditions with
    dimethyl sulfoxide. Archives of biochemistry and
    biophysics 181: 411-418 (1977)
    Zinder, S. H. and Brock, T. D. Dimethyl sulphoxide
    reduction by microorganisms. Journal of general
    microbiology 105: 342–55 (1978)

    產業情勢 液晶顯示器(LCD)業產業經濟。226: 27-33
    (2000)
    呂志宏 有機廢水之硝化與脫硝處理研究,大同大學生物工
    程研究所碩士論文 (2001)
    陳廷光、陳重男、倪振鴻,GREEN MEMBIOR®生物薄膜程序
    處理TFT-LCD製程有機廢水之研究,第二十七屆廢水處
    理技術研討會論文。(2002)
    黃志彬 “高科技工業廢水處理操作效能提昇研析”,第一
    屆高科技工業環保技術及安全衛生學術及實務研討會論
    文集。(2002)
    倪震鴻 國內第一座沉浸式生物薄膜程序廢水處理廠處理
    TFT-LCD製程有機廢水回收再利用之長期操作經驗”。
    (2003)
    陳重男、陳廷光、廖威智 “TFT-LCD製程廢水生物處理效
    能之研究” 行政院國家科學委員會專題盃究計畫成果
    報告。(2003)
    廖威智 薄膜電晶體液晶顯示器(TFT-LCD)製程有機廢水虛
    理與回收再利用之研究,國立交通大學環境工程研究所
    碩士論文 (2003)
    鄭幸雄、楊雅斐、黃良銘 “運用分子生物技術提升厭氧好
    氧薄膜濾離生 物反應器之生物分解功能” 行政院環境
    保護署期末報告。(2004)
    杜建德 TFT-LCD環保運作概述 (2005)

    下載圖示 校內:立即公開
    校外:2006-07-31公開
    QR CODE