| 研究生: |
林宏霖 Lin, Hung-Lin |
|---|---|
| 論文名稱: |
探討生物分解光電產業
製程廢水之反應動力特性研究 Study on reaction kinetics characteristics of Thin-film transistor liquid crystal display wastewater by SBR bioreactor |
| 指導教授: |
黃良銘
Whang, Liang-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 95 |
| 中文關鍵詞: | MEA 、DMSO 、SBR 、TMAH |
| 外文關鍵詞: | TMAH, DMSO, SBR, MEA |
| 相關次數: | 點閱:91 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著光電半導體業產量的增加,可預期高強度且不易處理的TFT-LCD製程廢棄物量也隨之增加,2003年科學園區TFT-LCD製程事業廢棄物產生量已達25,725.5公噸/年(科學工業園區管理局,2003) ,因此預計未來高科技產業每日所生產之廢水量將達200,000噸以上。其中在TFT-LCD製程廢水中,有機廢水約佔總廢水量三分之一以上,這些有機物質的來源主要是製程中使用大量之二甲基亞楓(dimethyl sulphoxide, DMSO )、乙醇胺(monoethanolamine, MEA )、氫氧化四甲基銨(tetra-methyl ammonium hydroxide, TMAH)。
本研究分別以無氧/好氧程序(Anoxic-Oxic, AO Process)與好氧(Aerobic process)程序之循序批分式反應槽(SBR)針對TFT-LCD製程廢水處理做探討,無氧/好氧程序之SBR對於DMSO、MEA和TMAH有極佳之處理效率,在Run 1與Run 2去除上述三種有機化合物之去除率均超過98%。好氧程序之批分式反應槽其對於MEA與TMAH之去除率達100%,但於好氧程序之SBR啟動初期對於DMSO之去除效果並不佳,直至反應槽啟動71天之後,DMSO去除率才達到100%,由上述可知無氧/好氧與好氧程序之SBR皆能有效率處理TFT-LCD製程之廢水。
另一方面,以批次實驗針對TFT-LCD製程廢水進行機制之探討,實驗主軸為在好氧、缺氧和厭氧狀態下,針對混合不同濃度之DMSO、MEA與TMAH做一討論。
在DMSO方面,在好氧與缺氧狀態下,其比DMSO利用率皆低於5 mg DMSO/g VSS-hr;在厭氧狀態下,混合基質濃度為250 mg/L DMSO、150 mg/L MEA 和70 mg/L TMAH時,其比DMSO利用率為24.54 mg DMSO/g VSS-hr;混合基質濃度為400 mg/L DMSO、250 mg/L MEA 和100 mg/L TMAH,其比DMSO利用率為14.06 mg DMSO/g VSS-hr。
因此,在厭氧狀態下之比DMSO降解率高於好氧與缺氧狀態,且由實驗中發現,厭氧狀態下欲達到較佳之比DMSO利用率,仍需添加不同於DMSO之碳源。
在MEA方面,在厭氧狀態下,其比MEA利用率在5.6 mg MEA/g VSS-hr以下;混合基質濃度為50 mg/L DMSO、130 mg/L MEA 和30 mg/L TMAH且為缺氧狀態下,其比MEA利用率達51.81 mg MEA/g VSS-hr;好氧與缺氧狀態下,其比MEA利用率在12~27mg MEA/g VSS-hr之間。因此在好氧與缺氧狀態下,有較佳之比MEA利用率。
在TMAH方面,在厭氧與缺氧狀態下之比TMAH利用率低於3.3 mg TMAH/g VSS-hr;在好氧狀態下之比TMAH利用率在5.3和17.5 mg TMAH
/g VSS-hr之間。由上述三種狀態,好氧狀態明顯有較佳之比TMAH利用率。
總體而言,DMSO在厭氧狀態下能最有效率降解;在好氧狀態下,TMAH有最佳之降解效率;MEA則是在好氧與缺氧狀態下均有極佳之去除效果。
Due to the increasing production rate of the Opto-electronic industry in Taiwan, the amount of pollutants produced in the manufacturing process of TFT-LCD (Thin-film transistor liquid crystal display) also increases. In the year of 2003, the amount of TFT-LCD manufacturing solid waste was 25,723.5 ton/year. Also, the amount of wastewater in TFT-LCD wastewater manufacturing process will be approximately 200,000 CMD in the near future. According to some studies, organic wastewater accounts for more than 33% of the total TFT-LCD manufacturing wastewater. The main components of this organic wastewater are composed of the stripper (DMSO&MEA), developer (TMAH) and chelating agents.
In this study, the performance of A/O (anoxic/oxic) and aerobic SBR (sequencing batch reactor) in treating TFT-LCD manufacturing wastewater is discussed. A/O SBR achieved good removal rate for DMSO, MEA and TMAH. In run I and run II, the removal rate of all three substance is more than 98%. For aerobic SBR, the removal rate of MEA and TMAH achieved 100%. But the removal rate of DMSO is not good at the beginning. After 71 days, the removal rate improved to 100%. Hence, A/O and aerobic SBR can treat TFT-LCD manufacturing wastewater effectively.
On the other hand, batch tests are conducted to study the mechanism of the degradation of TFT-LCD manufacturing wastewater. In the tests, the degradation of DMSO, MEA and TMAH under aerobic, anoxic and anaerobic condition is discussed. The substrate of the tests contains DMSO, MEA and TMAH.
For DMSO, specific DMSO utilization rate under aerobic and anoxic condition is both lower than 5 mg DMSO/g VSS-hr. In anaerobic condition, the specific DMSO utilization rate of group (250mg/L DMSO, 150mg/L MEA and 70mg/L TMAH) is 24.54 mg DMSO/g VSS-hr. The specific DMSO utilization rate of the other group (400 mg/L DMSO, 250 mg/L MEA and 100 mg/L TMAH) is 14.06 mg DMSO/g VSS-hr. Therefore, the degradation of DMSO under anaerobic condition is better than the other two. But for getting better specific DMSO utilization rate under anaerobic condition, additional carbon source other than DMSO is necessary.
For MEA, specific MEA utilization rate under anaerobic condition is low (under 5.6 mg MEA/g VSS-hr). The best specific MEA utilization rate is 51.81 mg MEA/g VSS-hr in group (50mg/L DMSO, 130mg/L MEA and 30mg/L TMAH) under anoxic condition. The specific MEA utilization rate of other groups under aerobic and anoxic condition lies between 12 and 27 mg MEA/g VSS-hr. Hence, the specific MEA utilization rate is better under aerobic and anoxic condition.
For TMAH, specific TMAH utilization rate is low under anaerobic and anoxic condition (< 3.3 mg TMAH/g VSS-hr). Under aerobic condition, the specific TMAH utilization rate lies between 5.3 and 17.5 mg TMAH/g VSS-hr, which is the best among the three conditions.
Overall, DMSO can be effectively degraded under anaerobic condition. But for TMAH degradation, aerobic condition gets the best result. MEA can degraded efficiently under both aerobic and anoxic condition.
Andreae M. O. Dimethylsulfoxide in marine and
freshwaters. Limnology and Oceanography 25:
1054–1063 (1972)
Anthony, C. The biochemisstry of Methylotrophs,
Academic press, Lodon (1982)
Biolous, R. T. and Weiner, J. H. Dimethyl sulfoxide
reductase activity by anaerobically grown
Escherichia HB101. Journal of bacteriology 162:
1151-1155 (1985)
Bradbeer, C. The Clostridial Fermentations of
Choline and Ethanolamine, I. Preparation and
Properties of cell-free extracts. Journal of
Biological Chemistry 240: 4669-4674 (1965)
Chen, T. K., Ni, C. H., Chen, J. N.
Nitrification-Denitrification of Opto-electronic
Industrial,Wastewater by anoxic/Aerobic Process.
Journal of environmental science and health.
Part A, Toxic/hazardous substances &
environmental engineering A38(10): 2157-2167
(2003)
De Bont, J. A. M., van Dijiken, J. P., Harder, W.
Dimethyl sulfoxide and dimethyl sulfide as a
carbon, sulfur and energy source for growth of
Hyphomicrobium S. Journal of general
microbiology 127: 315-323 (1981)
Griebler, C. Dimethylsulfoxide (DMSO) reduction: a
new approach to determine microbial activity in
freshwater sediments. Joural of Microbiological
Methods 29: 31-40 (1997)
Henk , M. J., Marc J. V. D. M., Hans V. G., Theo A.
H. Dimethylsulfoxide reduction by marine
sulfate-reducing bacteria. FEMS Microbiology
136. 283-287 (1996)
Jones, R. D. and Morita, R. Y. Methane oxidation by
Nitrosococcus oceanus and Nitrosomonas europaea.
Applied and environmental microbiology 45:
401-410 (1983)
Jones, A. and Turner, J. M. 1-aminopropan-2-ol and
ethanolamine metabolism via propionaldehyde and
acetaldehyde in a species of pseudomonas. The
Biochemical journal 134: 167-182 (1973)
Kaplan, B. H., and Stadtman, E. R. Ethanolamine
deaminase (Clostridium sp.) Journal of
biological chemistry 243: 1787-1794 (1968)
Ke, S. C. Spin-spin interaction in ethanolamine
deaminase. Biochimica et Biophysica Acta 1620:
267-272 (2003)
Kino, K., Murakami-nitta, T., Oishi, M., Ishiguro,
S., Kirimura, K. Isolation of Dimethyl
Sulfone-Degrading Microorganisms and Application
to Odorless Degradation of Dimethyl Sulfoxide.
Journal of Bioscience and Bioengineering 97(1):
82–84 (2004)
Knapp, J. S., Jenkey, N. D., Townsley, C. C. The
anaerobic biodegradation of diethanolamine by a
nitrate reducing bacterium. Biodegradation 7:
183-189 (1996)
Koito, T., Tekawa, M., Toyoda, A. A novel treatment
technique for DMSO wastewater.IEEE Transactions
on Semiconductor Manufacturing 1(11): 3–8
(1998)
Lai, Berlin and Shieh, W. K. Batch monoethylamine
degradation via nitrate respiration. Water
Research 30(10): 2530-2534 (1996)
Murakami-Nitta, T., Kurimura, H., Kirimura, K.,
Kino, K., Usami, S. Continuous degradation of
dimethyl sulfoxide to sulfate ion by
Hyphomicrobium denitrificans WUK217. Journal of
bioscience and bioengineering 94: 52-56 (2002)
Murakami-Nitta, T., Kirimura, K., Kino, K.
Degradation of dimethyl sulfoxide by the
immobilized cells of Hyphomicrobium
denitrificans WU-K217. Biochemical Engineering
Journal 15: 199–204 (2003)
Murakami-Nitta, T., Kirimura, K., Kino, K.
Oxidative Degradation of Dimethyl Sulfoxide by
Cryptococcus humicolus WU-2, a Newly Isolated
Yeast. Journal of Bioscience and Bioengineering
95(1): 109-111 (2003)
Muratani, T. Biological treatment of wastewater
containing DMSO. Sharp Giho 73: 20-25 (in
Japanese) (1999)
Narrod, S. A. and Jakoby, W. B. Metabolism of
ethanolamine an ethanolamine oxidase. Journal of
biological chemistry 239: 2189-2193 (1964)
Ndegwa A. W. , Wong, C. K. R., Chu, A. , Bentley L.
R. , and Lunn R. D. S. Degradation of
monoethanolamine in soil. Environmental
Engineering Science 3: 137-145 (2004)
Nguyen V.T., SIEH W. K. Evaluation of intrinsic and
inhibition kinetics in
biological fluidized bed reactors Water Resarch
29:2520-2524 (1995)
Park, S. J., Yoon, T. I., Bae, J. H., Seo, H. J.,
Park, H. J. Biological treatment of wastewater
containing dimethyl sulphoxide from the
semi-conductor industry. Process Biochemistry
36: 579–589 (2001)
Shieh, W. K., Tsao, Y. C. Impulse responses of a
monoethylamine-fed fluidized bed reactor, Water
Research 37: 2331–2338 (2003)
Simo, R.Trace chromatographic analysis of dimethyl
sulfoxide and related methylated sulfur
compounds in natural waters. Journal of
chromatography A 807: 151-164 (1998)
Suylen, G. M. H. and Stefess, D. Chemolithotrophic
potential of a Hyphomicrobium species, capable
of growth on methylated sulphur compounds.
Archives of microbiology 146: 192–198 (1986)
Suylen, G. M. H. and Kuenen, J. G. Chemostat
enrichment and isolation of Hyphomicrobium EG.
Antonie van Leeuwenhoek 52: 281-293 (1986)
Yen, H. C. and Marrs, B. Growth of Rhodopseudo-mans
capsula under anaerobic dark conditions with
dimethyl sulfoxide. Archives of biochemistry and
biophysics 181: 411-418 (1977)
Zinder, S. H. and Brock, T. D. Dimethyl sulphoxide
reduction by microorganisms. Journal of general
microbiology 105: 342–55 (1978)
產業情勢 液晶顯示器(LCD)業產業經濟。226: 27-33
(2000)
呂志宏 有機廢水之硝化與脫硝處理研究,大同大學生物工
程研究所碩士論文 (2001)
陳廷光、陳重男、倪振鴻,GREEN MEMBIOR®生物薄膜程序
處理TFT-LCD製程有機廢水之研究,第二十七屆廢水處
理技術研討會論文。(2002)
黃志彬 “高科技工業廢水處理操作效能提昇研析”,第一
屆高科技工業環保技術及安全衛生學術及實務研討會論
文集。(2002)
倪震鴻 國內第一座沉浸式生物薄膜程序廢水處理廠處理
TFT-LCD製程有機廢水回收再利用之長期操作經驗”。
(2003)
陳重男、陳廷光、廖威智 “TFT-LCD製程廢水生物處理效
能之研究” 行政院國家科學委員會專題盃究計畫成果
報告。(2003)
廖威智 薄膜電晶體液晶顯示器(TFT-LCD)製程有機廢水虛
理與回收再利用之研究,國立交通大學環境工程研究所
碩士論文 (2003)
鄭幸雄、楊雅斐、黃良銘 “運用分子生物技術提升厭氧好
氧薄膜濾離生 物反應器之生物分解功能” 行政院環境
保護署期末報告。(2004)
杜建德 TFT-LCD環保運作概述 (2005)