簡易檢索 / 詳目顯示

研究生: 蔡宜庭
Tsai, Yi-Ting
論文名稱: 應用合成孔徑干涉雷達於阿公店水庫集水區 侵蝕率之估計
Using Differential SAR Interferometery to Estimate the Amount of Erosion Rate at A-kung-tien Watershed
指導教授: 陳時祖
Chen, Shih-Hsu
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 103
中文關鍵詞: 數值高程模型沖蝕量差分合成孔徑雷達干涉術
外文關鍵詞: Differential Interferometric Aperture Radar, Erosion, Digital Elevation Model
相關次數: 點閱:106下載:23
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣地區對於水資源需求甚為殷切,雖有豐沛之雨量,但因季節分配不均,加上地形與地質條件不佳之因素造成水庫淤積嚴重,因而對於水資源之調配相當不利。淤積最嚴重之阿公店水庫位於沖刷快速泥岩地層,為確保水庫有效庫容,必先了解集水區內泥沙沖蝕來源與主因。有鑑於此,本研究利用合程孔徑雷達差分干涉術(D-InSAR)於豐水期與枯水期間拍攝之影像處理後,可差分出阿公店水庫集水區之地表變形量,並評估集水區內坡度及地層因子對土方變化衝擊大小,以做為集水區之泥沙控制與防治之參考依據。
    本研究成果D-InSAR土方變化與不同時期DEM相減比較,每單位面積土方相差3公分。四月到五月降雨量295mm其單位面積地殼與土方變化量約2.06公分,一年降雨量約1314mm其單位面積地殼與土方變化量約17.34公分。要獲取土方變化資訊則需減去集水區之GPS點位變化的內差資訊,研究成果顯示阿公店水庫集水區一年每單位面積垂直土方變化量為13.7公分,誤差來源為大氣與植被對訊號之散射造成影響。雖然在沖蝕量推估上有所高估,但集水區內整體變化趨勢與DEM和GPS變化量經過內差後變化趨勢相同,皆屬東南方崎嵧山區為最大變化處。
    D-InSAR雖不如現場量測精準,但可快速且經濟有效的獲取大範圍土方變化驅勢,對於少植被與地形坡度緩和水庫集水區而言,是有效率且高速之量測工具。

    Water resource management is an important issue in Taiwan, though the rainfall is rich, but it is not raining evenly in all seasons, therefore many reservoirs were built to reserve as much water as they can. However, due to the bad conditions in topography and geology, there are serious reservoir sedimentation problems in Taiwan, such as A-Kung-Tein reservoir. In order to understand where the sediments come form, 3-pass differential Interferometric Synthtic Aperture Rader(D-InSAR)method is used to study the erosion rate in the watershed and to locate the most seriously eroded area and the controlling factors of erosion rate.
    The result shows that the deformation change obtained by D-InSAR is 3cm higher than the DEM aviation. According to the result of D-InSAR measurement, average annual surface change is 17.34cm and the surface of change first month is 2.06cm in the study area. We have to substrate the GPS data to obtain the net soil change, the results show average rate is 13.7cm in depth annually. Although the erosion rate estimated by D-InSAR is too high, the entire pattern of change was similar to DEM and GPS data in the watershed. The error comes from the different time and the plant scattering of radar signal etc.
    The accuracy of InSAR measurement is less accurate than the in-suit measurement methods, but it can complete the work much faster and cheaper, therefore, D-InSAR is a useful tool for investigating the trend of soil change for the watershed area with little vegetation cover.

    中文摘要Ⅰ 英文摘要Ⅱ 誌謝Ⅲ 目錄Ⅵ 表目錄Ⅶ 圖目錄Ⅷ 第一章 緒論1 1-1 前言1 1-2 研究動機與目的2 1-3 研究流程與方法2 1-4 研究區位置概述5 1-4-1 研究區位置5 1-4-2 地質環境5 1-4-3 水文氣象9 第二章 雷達影像基本原理10 2-1 雷達影像演進10 2-1-1 真實孔徑雷達( RAR )10 2-1-2 合成孔徑雷達(SAR)13 2-1-3 合成孔徑干涉雷達(InSAR)14 2-1-4 差分合成孔徑雷達(D-InSAR)16 2-2雷達影像特性原理16 2-2-1 雷達影像基本特性16 2-2-2 雷達影像幾何形變特性19 2-2-3 雷達輻射特性20 第三章 前人研究22 3-1合成孔徑干涉雷達22 3-1-1 合成孔徑干涉雷達演進發展22 3-1-2 雷達影像應用回顧23 3-1-3 合成孔徑干涉雷達應用回顧25 3-1-4 合成孔徑差分干涉法回顧28 3-2集水區坡面泥砂產量推估31 3-2-1 集水區定義與劃分法31 3-2-2 集水區泥砂產量推估回顧32 3-2-3 台灣西南部泥岩沖蝕率研究回顧36 第四章 研究方法37 4-1使用軟體介紹37 4-1-1 EV-InSAR 2.1.2 37 4-1-2 PCI EASI/PACE38 4-2使用之影像介紹39 4-2-1 合成孔徑雷達衛星ERS-1/2與影像規格介紹39 4-2-2 影像干涉對之選取42 4-2-3 影像處理流程42 4-3集水區土方變化量推估流程54 第五章 成果與討論56 5-1雷達影像干涉成果56 5-1-1 純地形效應影像對成果56 5-1-2 間隔35天地形變化影像對成果65 5-1-3 間隔350天地形變化影像對成果67 5-2集水區土方沖蝕量變化推估成果70 5-2-1 集水區內地殼與土方變化量70 5-2-2 集水區內土方變化量 72 5-2-3 數值地形模型變化趨勢比對78 5-2 集水區泥沙產量變化因素探討79 5-3 都卜勒中心頻率的影響84 5-4 誤差來源探討86 5-4-1 影像品質影響因素86 5-4-2 影像處理誤差因素88 5-4-3 資料套合誤差90 第六章 結論與建議91 6-1 結論91 6-2 建議94 參考文獻96

    Alaska SAR Facility Scientific SAR User’s Guide,  Alaska SAR Facility.
    Alberti, G., S. Esposito, and S. Vetrella, The Vesuvius DEM: a test case for the TOPSAR system, Proc. of the Final Workshop "MAC-Europe 1991", 1994.
    Briole, P., D. Massonnet, C. Delacourt, Post-eruptive deformation associated with the 1986-87 and 1989 lava flows of Etna detected by radar interferometry, Geophysical Research Letters, 24, 37-40. 1997.
    Brown, C.B., Sediment Transportation in Engineering Hydraulics, H. Rouse, Ed., John Wiley and Sons, Inc., New York, p.771, 1950.
    Burns, R.G., An Improved Sediment Delivery Model for Piedmont Forests, Georgia Inst. Technol., Atlanta, Ca, 1979.
    Chen, Y.Q., G.B. Zhang, X.L. Ding, and Z.L. Li, Monitoring Earth Surface Deformations with InSAR Technology: Principle and Some critical Issues, Journal of Geospatial Engineering, Vol.2, NO.1, 3-21, 2000.
    Chow, V.T., D.R. Maidment, and L.W. Mays, Applied Hydrology, McGraw-Hill, New York, p.7, 1988.
    EV-InSAR User’s Guide, ATLANTIS Scientific Inc.
    Fruneau, B., J. Achache, and C. Delacourt, Observations and modeling of the Saint-Etienne-de-Tinee landslide using SAR interferometry, Tectonophys, 265: 181-190, 1996.
    Fujiawara, S., P.A. Rosen, Crustal deformation measurements using repeat pass JERS-1 Sythetic Radar Interferometry near the Izu Peninsula, Japan, Journal of Geophysical Research, 103(B2), 2411-2426, 1998.
    Gabriel, A.K., R.M. Goldstein, and H.A. Zebker, Mapping Small Elevation Changes Over Large Areas: Differential Radar Interferometry, Journal of Geophysical Research, 94(B7), 9183-9191,1989.
    Gens, R. and J.L. Van Genderen, Review article: SAR interferometry-issue, techniques, applications, International Journal of Remote Sensing, vol. 17, no. 10, 1803-1835. 1996.
    Graham, L.C., Synthetic Interferometer Radar for Topographic Mapping, Proc. Of the IEEE, 62(2), 763-768,1974.
    Glymph, L.M., Studies of Sediment Yields from Watersheds International Association of Hydrology Science, Publication. 36, 173-191, 1954.
    Happ, S.C., G. Rittenhouse, and G.C. Dobson, Some Principles of Accelerated Stream and Valley Sedimentation, Technical Bulletin 695, United States Department of Agriculture, 1940.
    Jenson, S.K. and J.O. Domingue, Extracting Topographic Structure from Digital Elevation Data for Geographic Information System Analysis, Photogrammetric Engineering and Remote Sensing, 54(11), 1593-1600, 1988.
    Joughin, I.R., Estimation of ice sheet motion and topography using interferometric synthetic aperture radar, Ph.D. Thesis, University of Washington, 1995.
    Kling, G.F., A Computer Model of Diffuse Source of Sediment and Phosphorous Moving into a Lake, Ph. D. Thesis, Cornell University, Ithaca, New York, 1974.
    Lewis, A.J., Geoscience Application of Imaging Radar System, Remote Sensing of the Electromagnetic Spectrum, vol. 3, no.3, 1976.
    Liang, L.S., C.T. Wang, K.S. Chen, C.S. Hou, A Study On Differential Interferometry in Subsidence, Proceedings of the fourth groundwater resource and water quality protection, 191-195, 2001.
    Liao Jingjuan, Guo Huadong, Multifrequency and multipolarization radar data for estimation of forest volume over the Zhaoqing area of southern China, Canadian Journal of Remote Sensing, 24(3), 240-245, 1998.
    Lillesand, T.M. and R.W. Kiefer, Remote Sensing and Image Interpretation, Fourth Edition: John Wiley and Sons Inc, 2000.
    Liu, J.G., M. Haynes, R. Capes, J. McM.Moore, ERS SAR multi-temporal coherence image as a tool for sand desert study (dune migration, sand encroachment and erosion), Proceedings of the 12th International Conference on Applied Geological Remote Sensing, Vol. 1, 478-485, 17-19 November, Denver, CO, USA, 1997.
    Massonnet, D. and T. Rabaute, Radar Interferometry: limits and potential, IEEE Transactions on Geoscience and Remote Sensing, 31(2), 455-464, 1993.
    Massonnet, D., P. Briole, and A. Arnaud, Deflation of Mount Etna monitored by spaceborne radar interferometry, Letter To Nature, 375, 567-570, 1995.
    Massonnet, D., M. Rossi, C. Carmona, F. Adragna, G. Peltzer, K. Feigl, and T. Rabaute, The displacement field of the Landers earthquake mapped by radar interferometry, Letter To Nature, 364(12), 138-142, 1993.
    Murakam,i M., M. Tobita, S. Fujiwara, T. Saito, and H. Masaharu, Coseismic crustal deformations of 1994 Northridge, California, earthquake detected by interferometric JERS 1 synthetic aperture radar, Journal of Geophysical Research, 101(B4), 8605-8614, 1996.
    Naden, P.S. and D.M. Cooper, Development of a Sediment Delivery Model for Application in Large River Basins, Hydrological Processes, 13, 1011-1034, 1999.
    O’Callaghan, J.F. and D.M. Mark, The Extraction of Drainage Networks from Digital Elevation Data, Computer Graphics and Image Processing, 28, 323-344, 1984.
    Phillips, J.D., Fluvial Sediment Delivery to a Coastal Plain Estuary in the Atlantic Drainage of the Untied States, Marine Geology, 98, 121-134, 1991.
    Ponte, S., ERS tandem data for earthquake prediction: preliminary results[EB/OL], http://earth1. esrin.esa.it/florence/, 1997.
    Tadono, T., Development of a SAR algorithm for soil roughness, JSCE Journal of Hydroscience and Hydraulic Engineering, 18(1), 29-38, 2000.
    Takeuchi, S., Y. Suga, Y. Oguro, A. J. Chen and C. Yonezawa, Verification Of INSAR Capability For Disaster Monitoring – a case study on CHI-CHI earthquake in Taiwan, Asian Conference on Remote Sensing, 2, 738- 743, 2000.
    Tarayre, H. and D. Massonnet, Atmospheric propagation heterogeneities revealed by ERS-1 Interferometry, Geophysical Research Letters, 23, 989-992, 1996.
    U.S. EPA, EPA Compendium of Watershed-scale Models for TMDL Development, EPA 841-R-92-002, 1992.
    Vincent, P., Application of SAR Interferometry to low-rate crustal deformation fields, Dissertation of Department of Geological Science the in University of Colorado, 1998.
    Walling, D.E., The Sediment Delivery Problem, Journal Hydrology, 65, 209-237, 1983.
    Wang, J.R., The SIR-B observations of microwave dependence on soil moisture, surface roughness, and vegetation covers. IEEE Trans. Geosci. Remote Sensing, 24, 510-516, 1986.
    Ward, A.D and W.J. Elliot, Environmental Hydrology, Boca Raton, Fla., Lewis Publishers. 1995.
    Wischmeier, W.H. and D.D. Smith, Rainfall Energy and Its Relationship to Soil Loss, Transaction America Geophysics Unuin, 39: 258-291,1958.
    Young, R.A., C.A. Onstad, D.D. Bosch and W.P. Anderson, Agricultural Non-point Source Pollution Model for Evaluating Agricultural Watersheds, Journal of Soil and Water Conservation, 44(2), 168-173, 1989.
    Young, R.A., C.A. Onstad, D.D. Bosch, and W.P. Anderson, Agricultural Non-point Source Pollution Model, Version 4.03, AGNPS USER’S GUIDE, 1994.
    Zebker, H.A., P.A. Rosen, and S. Hensley, Atmospheric effects in interferometric synthetic aperture radar surface deformation and topographic maps, J. Geoph. Res., 102(B4), 7547-7563, 1997.
    Zebker, H.A., P.A. Rosen, R.M. Goldstein, A. Gabriel, and C. L. Werner, On the derivation of coseismic displacement field using differential Radar interferometry: The Landers earthquake, Journal of Geophysical Research, 99 (B10), 19617-19634, 1994.
    Zebker, H.A. and R.M. Goldstein, Topographic Mapping from Interferometric Synthetic Aperture Radar Observation, J. of Geophys. Res., 91(B5), 4993-4999, April 1986.
    Zhou, Y.Q., R. Kless, J.L. van Gendern, and D.R. Li, Differential SAR Interferometery: Principles and applications, Spatial Information Science Technology and Its Applications, 227-236, 1998.
    王志添、王顯達、陳滌清、陳乃宇,「雷達差分干涉法應用於地層下陷研究」,第十九屆測量學術及應用研討會論文集(二),pp.511-519,建國技術學院,2000。
    台灣省政府農林廳山地農牧局第四工程處,「台灣西南部泥岩崩塌地保育與拓墾實驗報告」,1979。
    呂建興,「使用三軌跡法與ERS資料偵測台灣都市地區地貌變化」,國立成功大學測量工程學系碩士論文,2001。
    李德河,「泥岩吸水破壞過程及穩定方法之研究」,國科會防災科技研究報告,1984。
    林文賜,「集水區空間資訊萃取即坡面泥砂產量推估之研究」,國立中興大學水土保持學系博士論文,2002。
    徐鐵良,地質與工程,中國工程師學會,pp. 43-47,1984。
    陳卉瑄,「差分合成孔徑干涉雷達應用於偵測集集地震地形變之研究」,國立成功大學地球科學學系碩士論文,2001。
    陳彥甫,「利用合成孔徑雷達(SAR)探查船隻訊息」,國立台灣大學海洋工程學系碩士論文,1998。
    陳時祖、李元富、劉裕聰,「台灣西南部泥岩坡地沖蝕特性之研究(第一期報告)」,行政院國家科學委員會防災科技研究報告73-07號,1984。
    耿文溥,「台南以東丘陵區地質」,經濟部中央地質調查所彙刊,第一號,pp1~31,1981。
    淡江大學、經濟部水利署水資源管理與政策研究中心http://www.water.tku.edu.tw/
    廖泫銘,「合成孔徑雷達影像模擬之研究」,國立台灣大學地理學研究所碩士論文,1999。
    劉國祥、丁曉利、陳永奇、李志林,極具潛力的空間對地觀測新科技-合成孔徑干涉雷達,中國科學院資源環境科學資訊中心,文章編號1001-816606-0734-07,2000。
    謝嘉聲、史天元,「以雷達干涉偵測地表變形之研究」,第二十一屆測量學術及應用研討會論文集(一),pp.471-478,2002。

    下載圖示 校內:2005-07-29公開
    校外:2005-07-29公開
    QR CODE