| 研究生: |
黃種盛 Huang, Zhong-Sheng |
|---|---|
| 論文名稱: |
以結構因素分析探討台灣鋼鐵業二氧化碳排放之變動 Structural Decomposition of CO2 Emissions From Taiwan’s Iron and Steel Industry |
| 指導教授: |
林素貞
Lin, Sue-Jane |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 英文 |
| 論文頁數: | 112 |
| 中文關鍵詞: | 鋼鐵業 、二氧化碳排放 、迪氏指標分解 、結構因素分解 |
| 外文關鍵詞: | Iron and steel industry, CO2 emission, Divisia index decomposition analysis, Structural decomposition analysis |
| 相關次數: | 點閱:114 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以迪氏指標分解法以及投入產出結構分解法探討1996年至2006年間台灣鋼鐵業二氧化碳排放變動之主要因素。在迪氏指標分解法中我們將二氧化碳排放變動分解為能源係數、二氧化碳排放係數、產業配比以及經濟成長等四個因素,其結果指出能源係數以及經濟成長為最主要之增量因素,其中能源係數為增量因素代表鋼鐵業生產每單位產值之產品所使用的能源增加了,亦或是消耗等量的能源能生產的產值減少了。另一個穩定的增量因素為經濟成長因素,在本研究中進一步以結構因素分解法分析。
在結構因素分解中本研究近一步將二氧化碳排放變動分解成能源係數、二氧化碳排放係數、中間投入量技術、中間投入結構技術、國內最終需求量、國內最終需求結構、出口最終需求量以及出口最終需求結構等八個因素。其中最顯著的增量因素依舊為能源係數,而最顯著的減量因素為中間投入量技術因素。而在這十年間之總增量因素大於總減量因素,故在這十年間台灣鋼鐵業之二氧化碳排放不斷地增加,而其中煤炭的使用是鋼鐵業最主要的二氧化碳排放以及增量來源。
電力消費也佔鋼鐵業二氧化碳排放很大一部份,其中除了大量的電力消費外,電力過高的二氧化碳排放係數亦是一個很大的原因,尤其是汽電共生廠的二氧化碳排放係數特別高,除了大量使用煤之外,效率的低落更是讓電力的二氧化碳排大量增加。鋼鐵業的2006年的二氧化碳排放,煤、油、氣、電分別佔52.79%、6.71%、2.20%以及38.29%,這也代表著鋼鐵業的能源結構有很大的改進空間。
無論是國內消費或是出口,最終需求量很難減少,因為所有的產業都想增加生產,而所有的消費者也都希望可以多消費一些。當然也不會有人想看到最終需求量減少,因為那意味著經濟的蕭條。在理想情況下,最終需求結構應該為減量因素,這意味著大家的需求從較高能源密集度或是二氧化碳密集度的產品轉向較低密集度的產品。然而,在1996-2006年間,雖然國內最終需求結構因素是減量因素,但是出口的最終需求結構仍然是呈現增加的情況。
This study used Divisia index decomposition analysis and input-output structural decomposition analysis to identify the major factors of the CO2 emission in the iron and steel industry during 1996 to 2006.
The result of Divisia index decomposition analysis shows that the industrial energy coefficient factor and economic growth increased the most. The increase in the industrial energy coefficient factor indicates that the energy used to produce per unit product of steel became larger or the product’s value decreased. The GDP factor was also a stable factor, so we further used structural decomposition analysis to decompose the economic factor.
The result of structural decomposition analysis shows that the most significant increasing CO2 emission factor was the industrial energy coefficient; and the most significant decreasing factor was the intermediate input level change. In these ten years, the total increasing factors are stronger than the total decreasing factors so the CO2 emission amount kept increasing. Coal was the major CO2 emission source and the largest CO2 emission increase energy type of the iron and steel industry.
Electricity consumption in the iron and steel industry caused very a large amount of CO2 emission. Furthermore, the CO2 emission factor of electricity in the iron and steel industry was very large in the co-generation plants (combined heat and power, CHP). This suggests that most of the heat source of CHP was from coal and with low efficiency. The CO2 emissions from electricity, coal, oil and gas account for 38.29%, 52.79%, 6.71% and 2.20%, respectively, in 2006, it indicates that the energy structure of the iron and steel industry should be improved in the future.
The industrial energy coefficient factor is positive indicating that the energy consumption used to produce the unit total output kept rising. In other words, as time goes on, we input more and more energy to produce a dollar of output. The problem may be due to the poor energy efficiency or a decrease in the value of the product.
In the view of the final demand, it is hard to reduce the final demand level because people want to consume more and have a better life; but under ideal conditions, the final demand structure should be shifted to lower energy intensity products. From 1996-2006, the domestic final demand structure decreased, whereas the export final demand structure increased in Taiwan.
Ang, B. W., & Pandiyan, G. (1997). Decomposition of energy-induced CO2 emissions in manufacturing. Energy Economics, 19(3), 363-374. doi: Doi 10.1016/S0140-9883(96)01022-5
Bureau of Energy, Ministry of Economic Affairs Taiwan Energy Balance Table.
Chang, Y. F., Lewis, C., & Lin, S. J. (2008). Comprehensive evaluation of industrial CO2 emission (1989-2004) in Taiwan by input-output structural decomposition. Energy Policy, 36(7), 2471-2480. doi: DOI 10.1016/j.enpol.2008.01.043
Chang, Y. F., & Lin, S. J. (1998). Structural decomposition of industrial CO2 emission in Taiwan: An input-output approach. Energy Policy, 26(1), 5-12. doi: Doi 10.1016/S0301-4215(97)00089-X
Chang, Yih Feng. (1997). Model Development and Application of Linkage Effects between Industry, Energy and CO2 Reduction.
Chang, Yih Feng, Yu, Yuan Chieh, Yu, Chih Jen, Chang, Chia Feng, & Wu, Jia Rong. (2006). Assessment and Analysis of CO2 Reduction for Steel Industry in Taiwan - An Application of Input-Output Structural Decomposition Method. CHIA-NAN ANNUAL BULLETIN, 32, 82-97.
Chen, C. Y., & Wu, R. H. (1994). Sources of Change in Industrial Electricity Use in the Taiwan Economy, 1976-86. Energy Economics, 16(2), 115-120. doi: Doi 10.1016/0140-9883(94)90005-1
Chen, Y. I., Wu, J. H., & Huang, Y.S. (2008). Study on the Driving Forces of CO₂ Emissions for Energy Intensive Industries in Taiwan.
Chen, Y. Y., & Wu, J. H. (2008). Simple Keynesian input-output structural decomposition analysis using weighted Shapley value resolution. Annals of Regional Science, 42(4), 879-892. doi: DOI 10.1007/s00168-007-0192-9
Choi, K. H., & Ang, B. W. (2012). Attribution of changes in Divisia real energy intensity index - An extension to index decomposition analysis. Energy Economics, 34(1), 171-176. doi: DOI 10.1016/j.eneco.2011.04.011
Directorate-General of Budget, Accounting and Statistics, Executive Yuan, Taiwan. (2009). Taiwan inter-industry input-output linkage table compilation-Year 2006.
Directorate-General of Budget, Accounting and Statistics, Executive Yuan, Taiwan (1999). Taiwan inter-industry input-output linkage table compilation-Year 1996.
Directorate-General of Budget, Accounting and Statistics, Executive Yuan, Taiwan (2002). Taiwan inter-industry input-output linkage table compilation-Year 1999.
Directorate-General of Budget, Accounting and Statistics, Executive Yuan, Taiwan (2007). Taiwan inter-industry input-output linkage table compilation-Year 2004.
Fernández González, P., Landajo, M., & Presno, M. J. (2013). The Divisia real energy intensity indices: Evolution and attribution of percent changes in 20 European countries from 1995 to 2010. Energy(0). doi: http://dx.doi.org/10.1016/j.energy.2013.06.013
Hansen, J., Sato, M., & Ruedy, R. (2012). Perception of climate change. Proceedings of the National Academy of Sciences of the United States of America, 109(37), E2415-E2423. doi: DOI 10.1073/pnas.1205276109
Hatzigeorgiou, E., Polatidis, H., & Haralambopoulos, D. (2008). CO2 emissions in Greece for 1990-2002: A decomposition analysis and comparison of results using the Arithmetic Mean Divisia Index and Logarithmic Mean Divisia Index techniques. Energy, 33(3), 492-499. doi: DOI 10.1016/j.energy.2007.09.014
Huang, Yun-Hsun, & Wu, Jung-Hua. (2013). Analyzing the driving forces behind CO2 emissions and reduction strategies for energy-intensive sectors in Taiwan, 1996–2006. Energy, 57(0), 402-411. doi: http://dx.doi.org/10.1016/j.energy.2013.05.030
IPCC. (2007). Climate Change 2007 The Physical Science Basis.
IPCC, Institute for Global Environmental Strategies (IGES), Hayama, Japan. (2006). 2006 IPCC Guidelines for National Greenhouse Gas Inventories.
Iron and steel industry policy assessment report. (2011).
Lee, C. F., & Lin, S. J. (2001). Structural decomposition of CO2 emissions from Taiwan's petrochemical industries. Energy Policy, 29(3), 237-244. doi: Doi 10.1016/S0301-4215(00)00117-8
Lee, C. F., Lin, S. J., & Lewis, C. (2001). Devising an integrated methodology for analyzing energy used and CO2 emissions from Taiwan's petrochemical industries. Journal of Environmental Management, 63(4), 377-385. doi: DOI 10.1006/jema.2001.0479
Leontief, Wassily. (1936). Quantitative Input and Output Relations in the Economic System of the United States. Review of Economic Statistics, 18(3), 105-125. doi: Doi 10.2307/1927837
Leontief, Wassily. (1970). Environmental Repercussions and Economic Structure - Input-Output Approach. Review of Economics and Statistics, 52(3), 262-271. doi: Doi 10.2307/1926294
Lim, H. J., Yoo, S. H., & Kwak, S. J. (2009). Industrial CO2 emissions from energy use in Korea: A structural decomposition analysis. Energy Policy, 37(2), 686-698. doi: DOI 10.1016/j.enpol.2008.10.025
Lin, S. J., & Chang, Y. F. (1997). Linkage effects and environmental impacts from oil consumption industries in Taiwan. Journal of Environmental Management, 49(4), 393-411. doi: DOI 10.1006/jema.1995.0119
Lin, S. J., Liu, C. H., & Lewis, C. (2012). CO2 Emission Multiplier Effects of Taiwan's Electricity Sector by Input-output Analysis. Aerosol and Air Quality Research, 12(2), 180-190. doi: DOI 10.4209/aaqr.2012.01.0006
Lin, S. J., Lu, I. J., & Lewis, C. (2006). Identifying key factors and strategies for reducing industrial CO2 emissions from a non-Kyoto protocol member's (Taiwan) perspective. Energy Policy, 34(13), 1499-1507. doi: DOI 10.1016/j.enpol.2005.08.006
Lin, Sue J., & Chang, Tzu C. (1996). Decomposition of SO2, NOx and CO2 emissions from energy use of major economic sectors in Taiwan. Energy Journal, 17(1).
Liu, C. H., Lin, S. J., & Lewis, C. (2012). Environmental Impacts of Electricity Sector in Taiwan by Using Input-Output Life Cycle Assessment: The Role of Carbon Dioxide Emissions. Aerosol and Air Quality Research, 12(5), 733-744. doi: DOI 10.4209/aaqr.2012.04.0090
Lu, I. J., Lin, S. J., & Lewis, C. (2007). Decomposition and decoupling effects of carbon dioxide emission from highway transportation in Taiwan, Germany, Japan and South Korea. Energy Policy, 35(6), 3226-3235. doi: DOI 10.1016/j.enpol.2006.11.003
Miller, Ronald E., & Blair, Peter D. (2009). Input–Output Analysis Foundations and Extentions.
Schmidt, G. A., Ruedy, R. A., Miller, R. L., & Lacis, A. A. (2010). Attribution of the present-day total greenhouse effect. Journal of Geophysical Research-Atmospheres, 115. doi: Artn D20106
Doi 10.1029/2010jd014287
Statistics, National. (2011). Standard Industrial Classification System of The Republic of China (Rev.9 , 2011).
Su, B., & Ang, B. W. (2012). Structural decomposition analysis applied to energy and emissions: Some methodological developments. Energy Economics, 34(1), 177-188. doi: DOI 10.1016/j.eneco.2011.10.009
Wu, J. H., Chen, Y. Y., & Huang, Y. H. (2007). Trade pattern change impact on industrial CO2 emissions in Taiwan. Energy Policy, 35(11), 5436-5446. doi: DOI 10.1016/j.enpol.2007.05.011
Wu, R. H., & Chen, C. Y. (1990). On the Application of Input-Output-Analysis to Energy Issues. Energy Economics, 12(1), 71-76. doi: Doi 10.1016/0140-9883(90)90010-D
Xu, X. Y., & Ang, B. W. (2013). Index decomposition analysis applied to CO2 emission studies. Ecological Economics, 93(0), 313-329. doi: http://dx.doi.org/10.1016/j.ecolecon.2013.06.007
Yabe, N. (2004). An analysis of CO2 emissions of Japanese industries during the period between 1985 and 1995. Energy Policy, 32(5), 595-610. doi: Doi 10.1016/S0301-4215(02)00312-9
校內:2016-08-12公開