簡易檢索 / 詳目顯示

研究生: 蔡銘修
Tsai, Ming-Hsiu
論文名稱: 壓電噴墨技術之微液滴行為及噴印品質研究
Study of Micro-droplet Behavior and Printing Quality by Piezoelectric Ink-jet Printing Method
指導教授: 黃文星
Hwang, Weng-Sing
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 109
中文關鍵詞: 噴墨製程硝酸銀液滴觀測微接點微導線
外文關鍵詞: Ink-jet printing process, Silver nitrate, Droplet observation, Micro-joint, Micro-conductive line
相關次數: 點閱:90下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 壓電噴墨技術是一種溶液式製造方法,利用微液滴沈積於基板上,堆疊出圖形或是精微結構之結果。此技術優點為非接觸式直接製造方法,不需要光罩或是任何相關微影技術步驟。噴印品質會受微液滴行為所影響控制,因為不同噴墨條件下,觀察到流體力學現象也會不一樣。
    本研究採用水基系列墨水為研究主軸,目的在觀察分析微液滴形成過程,及建立壓電噴印技術之理論基礎。微液滴行為則是探討,微液滴形成過程中可能發生,液柱發展模式及斷裂方式、衛星液滴、主液滴及液滴碰撞合併等狀況。另一個研究目標,則是找尋單一顆微液滴行為之最佳噴印條件,並且藉由噴墨條件改變控制液滴大小及速度。此外,為了研發低溫製程步驟,製備導電圖形,採用三種金屬導電墨水材料,以利朝向軟性電子及微電子應用發展。
    黏度較高之溶劑及添加溶質之導電墨水材料,皆需要把脈衝電壓增大方可噴射出微液滴,微液滴行為有三種:單一顆液滴、兩顆液滴碰撞合併及衛星液滴。利用無因次參數分析,可以對脈衝波形中驅動電壓大小及單一顆液滴行為之大小,進行製程條件調整提供預測參考。不同濃度之硝酸銀水溶液之圖形噴印結果,陣列圖形中點直徑為60-220 μm,線寬約為100-600 μm,而噴覆出薄膜經還原後,經XRD圖譜顯示純銀之繞射峰訊號,SEM可觀察到緻密的薄膜表面型態,其最佳電阻率為1.9 x 10-6 Ω•cm。

    Piezoelectric ink-jet printing technology was a droplet deposition method used for liquid phase materials. Ejected micro-droplets were deposited only on the demand positions, resulting in the printing patterns and constructing micro-structures on the substrates. The benefit of ink-jet printing in a non-contacted mode exhibited simpler processing procedures without mask preparation or any lithography process. The printing quality was controlled by droplet behaviors due to various rheological phenomenons performed under different printing conditions.
    The water-base ink materials were employed in this study for observing droplets evolution during ink-jetting and establishing the fundamental principles of the ink-jet printing method. Droplet behavior for ink materials elucidates quantitatively the fluid mechanics of DOD droplet behavior including the time evolution of liquid thread shape, breakup of liquid thread, satellite formation, and combination of satellites and primary droplet. The other objective is to obtain controlled parameters, droplet diameter and velocity for the most stable single droplets formed. In order to fabricate conductive patterns, three kinds of conductive ink materials were conducted into the lower processing temperature for flexible electronics and microelectronics applications.
    For the higher viscosity and additives of ink materials, the pulse voltages of waveform were increased to eject micro droplets from the nozzle. Three different modes of ejection were observed; single droplet, double droplets with subsequent recombination, and droplet with satellites. The appropriate dimensionless groups were employed in comparing and analyzing droplet formation process. Silver nitrate water-based solution of varied concentrations resulted in the dot diameter of matrix pattern between 60-220 μm and the line width from 100 μm to 600 μm. The XRD diffraction pattern of printed silver film after reduction at 200oC by ethylene glycol vapor for 10 min shows the peak characteristic of metallic silver. The optimum resistivity of the silver film is 1.9 x 10-6 Ω•cm measured by the four-probe method due to the dense and continuous surface morphology observed by SEM image.

    目 錄 中文摘要 I Abstract II 誌 謝 IV 目 錄 VI 表目錄 IX 圖目錄 X 符號對照表 XIV 第一章 前言 1 1.1 研究背景 1 1.2 文獻回顧 1 1.2.1 直接輸出技術 1 1.2.1.1 聚焦離子束製程技術 2 1.2.1.2 微壓印技術 2 1.2.1.3 微/ 奈探針直接輸出 3 1.2.1.4 微液滴技術 3 1.2.2 噴墨製程技術 4 1.2.2.1 連續式噴墨方法 4 1.2.2.2 自控式噴墨方法 4 1.2.3 墨水材料 5 1.2.3.1 常溫噴墨材料 5 1.2.3.2 高溫噴墨材料 7 1.2.4 壓電噴墨技術之應用 7 1.3 研究目的 9 第二章 實驗方法 15 2.1 實驗原理 15 2.1.1 微液滴行為 15 2.1.2 微液滴噴覆於基板之行為 17 2.1.3 無因次分析 18 2.2 噴印品質 19 2.2.1 脈衝波形 20 2.2.2 墨水罐內壓力值影響 21 2.2.3 噴印模式 22 2.2.4 基板條件 22 2.3 實驗步驟 23 2.3.1 壓電噴墨設備 23 2.3.2 墨水製備 24 2.3.3 噴墨條件 26 2.3.4 微液滴觀測分析 27 2.3.5 基板準備及圖形噴印條件 28 第三章 結果與討論 44 3.1 純溶劑之壓電噴墨研究 44 3.1.1 去離子水之微液滴行為 44 3.1.2 乙醇之微液滴行為 47 3.1.3 乙二醇之微液滴行為 48 3.2 奈米銀懸浮溶液之微液滴行為 50 3.2.1 脈衝電壓之影響 51 3.2.2 奈米粒子之影響 53 3.3 製備精微結構 56 3.3.1 微液滴觀測 56 3.3.2 液滴與基板之接觸角及乾燥過程分析 57 3.3.3 圖形噴印及低溫還原處理 59 3.4 銲錫SnAgCu合金之壓電噴墨技術 61 3.4.1 噴墨條件 61 3.4.1.1 脈衝時間 63 3.4.1.2 墨水罐內壓力 64 3.4.2 熔融銲錫Sn3.0Ag0.5Cu合金之微液滴行為 65 第四章 結論 100 參考文獻 102

    1. K. K. B. Hon, L. Li and I. M. Hutchings, “Direct writing technology - Advances and developments”, CIRP Annals - Manufacturing Technology, 57 (2008) 601-620.
    2. R. Parashkov, E. Becker, T. Riedl, H. H. Johannes and W. Kowalsky, “Large area electronics using printing methods”, Proceedings of the IEEE, 93 (2005) 1321-1329.
    3. K. H. Church, C. Fore and T. Feeley, “Commercial applications and review for direct write technologies”, Materials Research Society, 624 (2000) 3-8.
    4. J. L. Wilbur, A. Kumar, E. Kim and G. M. Whitesides, “Microfabrication by microcontact printing of self-assembled monolayers,” Advanced Materials, 6 (1994) 600-604.
    5. P. Manandhar, J. Jang, G. C. Schatz, M. A. Ratner and S. Hong, “Anomalous surface diffusion in nanoscale direct deposition processes”, Physical Review Letters, 90 (2003) 115505.
    6. S. Roy, “Fabrication of micro- and nano-structured materials using mask-less processes”, Journal of Physics D: Applied Physics, 40 (2007) R413.
    7. J.-U. Park, M. Hardy, S. J. Kang, K. Barton, K. Adair, D. k. Mukhopadhyay, C. Y. Lee, M. S. Strano, A. G. Alleyne, J. G. Georgiadis, P. M. Ferreira and J. A. Rogers, “High-resolution electrohydrodynamic jet printing”, Nature Materials, 6 (2007) 782-789.
    8. E. R. Lee, “Microdrop Generation”, New York: CRC, 2003, pp. 59-67.
    9. M. D. Croucher and M. L. Hair, “Design criteria and future directions in inkjet ink technology”, Industrial & Engineering Chemistry Research, 28 (1989) 1712-1718.
    10. S. B. Fuller, E. J. Wilhelm and J. M. Jacobson, “Ink-jet printed nanoparticle microelectromechanical systems”, Journal of Microelectromechanical Systems, 11 (2002) 54-60.
    11. N. R. Bieri, J. Chung, D. Poulikakos and C. P. Grigoropoulos, “Manufacturing of nanoscale thickness gold lines by laser curing of a discretely deposited nanoparticle suspension”, Superlattices and Microstructures, 35 (2004) 437-444.
    12. P. Buffat and J. P. Borel, “Size effect on the melting temperature of gold particles”, Physical Review A, 13 (1976) 2287-2298.
    13. H.-H. Lee, K.-S. Chou and K.-C. Huang, “Inkjet printing of nanosized silver colloids”, Nanotechnology, 16 (2005) 2436.
    14. S. L.-C. Hsu and R.-T. Wu, “Synthesis of contamination-free silver nanoparticle suspensions for micro-interconnects”, Materials Letters, 61 (2007) 3719-3722.
    15. Z. Liu, Y. Su and K. Varahramyan, “Inkjet-printed silver conductors using silver nitrate ink and their electrical contacts with conducting polymers”, Thin Solid Films, 478 (2005) 275-279.
    16. J. T. Wu, S. L. C. Hsu, M. H. Tsai and W. S. Hwang, “Conductive silver patterns via ethylene glycol vapor reduction of ink-jet printed silver nitrate tracks on a polyimide substrate”, Thin Solid Films, 517 (2009) 5913-5917.
    17. K. Kaija, V. Pekkanen, M. Mäntysalo and P. Mansikkamäki, “Controlling warpage of molded package for inkjet manufacturing”, Microelectronic Engineering, 85 (2008) 518-526.
    18. A. F. J. Baggerman and D. Schwarzbach, “Solder-jetted eutectic PbSn bumps for flip-chip”, IEEE Transactions on Components, Packaging, and Manufacturing Technology, Part B: Advanced Packaging, 21 (1998) 371-381.
    19. S. K. Kang, P. A. Lauro, D. Y. Shih, D. W. Henderson and K. J. Puttlitz, “Microstructure and mechanical properties of lead-free solders and solder joints used in microelectronic applications”, IBM Journal of Research and Development, 49 (2005) 607-620.
    20. J. S. Hwang, “Implementing Lead-Free Electronics”, New York: McGraw-Hill, 2004, p 69.
    21. H.-H. Lee, K.-S. Chou and K.-C. Huang, “Inkjet printing of nanosized silver colloids”, Nanotechnology, 16 (2005) 2436.
    22. V. Marin, E. Holder, M. M. Wienk, E. Tekin, D. Kozodaev and Ulrich S. Schubert, “Ink-jet printing of electron donor/ acceptor blends: Towards bulk heterojunction solar cells”, Macromolecular Rapid Communications, 26 (2005) 319-324.
    23. C. N. Hoth, S. A. Choulis, P. Schilinsky and C. J. Brabec, “High photovoltaic performance of inkjet printed polymer: Fullerene blends”, Advanced Materials, 19 (2007) 3973-3978.
    24. H. Ottevaere, B. Volckaerts, J. Lamprecht, J. Schwider, A. Hermanne, I. Veretennicoff and H. Thienpont, “Two-dimensional plastic microlens arrays by deep lithography with protons: fabrication and characterization”, Journal of Optics A: Pure and Applied Optics, 4 (2002) S22-S28.
    25. H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu and E. P. Woo, “High-resolution inkjet printing of all-polymer transistor circuits”, Science, 290 (2000) 2123-2126.
    26. D. Redinger, S. Molesa, S. Yin, R. Farschi and V. Subramanian, “An ink-jet-deposited passive component process for RFID”, IEEE Transactions on Electron Devices, 51 (2004) 1978-1983.
    27. H. Y. Son, J. W. Nah and K. W. Paik, “Formation of Pb/63Sn solder bumps using a solder droplet jetting method”, IEEE Transactions on Electronics Packaging Manufacturing, 28 (2005) 274-281.
    28. D. B. Bogy and F. E. Talke, “Experimental and theoretical study of wave propagation phenomena in drop-on-demand ink jet devices”, IBM Journal of Research and Development, 28 (1984) 314-321.
    29. E. Tekin, P. J. Smith and U. S. Schubert, “Inkjet printing as a deposition and patterning tool for polymers and inorganic particles”, Soft Matter, 4 (2008) 703-713.
    30. H. Dong, W. W. Carr and J. F. Morris, “Visualization of drop-on-demand inkjet: Drop formation and deposition”, Review of Scientific Instruments, 77 (2006) 085101-8.
    31. M. H. Tsai and W. S. Hwang, “Effects of pulse voltage on the droplet formation of alcohol and ethylene glycol in a piezoelectric inkjet printing process with bipolar pulse”, Materials Transactions, 49 (2008) 331-338.
    32. H. Dong, W. W. Carr and J. F. Morris, “An experimental study of drop-on-demand drop formation”, Physics of Fluids, 18 (2006) 072102-16.
    33. R. J. Furbank and J. F. Morris, “An experimental study of particle effects on drop formation”, Physics of Fluids, 16 (2004) 1777-1790.
    34. J. Perelaer, B.-J. de Gans and U. S. Schubert, “Ink-jet printing and microwave sintering of conductive silver tracks”, Advanced Materials, 18 (2006) 2101-2104.
    35. S. H. Ko, H. Pan, C. P. Grigoropoulos, C. K. Luscombe, J. M. J. Fréchet and D. Poulikakos, “All-inkjet-printed flexible electronics fabrication on a polymer substrate by low-temperature high-resolution selective laser sintering of metal nanoparticles”, Nanotechnology 18 (2007) 345202.
    36. D. Kim, S. Jeong, S. Lee, B. K. Park and J. Moon, “Organic thin film transistor using silver electrodes by the ink-jet printing technology”, Thin Solid Films, 515 (2007) 7692-6.
    37. R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel and T. A. Witten, “Capillary flow as the cause of ring stains from dried liquid drops”, Nature, 389 (1997) 827-829.
    38. R. D. Deegan, “Pattern formation in drying drops”, Physical Review E, 61 (2000) 475-485.
    39. P. C. Duineveld, “The stability of ink-jet printed lines of liquid with zero receding contact angle on a homogeneous substrate”, Journal of Fluid Mechanics, 477 (2003) 175-200.
    40. J. de Jong, R. Jeurissen, H. Borel, M. van den Berg, H. Wijshoff, H. Reinten, M. Versluis, A. Prosperetti and D. Lohse, “Entrapped air bubbles in piezo-driven inkjet printing: Their effect on the droplet velocity”, Physics of Fluids, 18 (2006) 121511-121517.
    41. J. de Jong, G. de Bruin, H. Reinten, M. van den Berg, H. Wijshoff, M. Versluis and D. Lohse, “Air entrapment in piezo-driven inkjet printheads”, The Journal of the Acoustical Society of America, 120 (2006) 1257-1265.
    42. H. Y. Gan, X. Shan, T. Eriksson, B. K. Lok and Y. C. Lam, “Reduction of droplet volume by controlling actuating waveforms in inkjet printing for micro-pattern formation”, Journal of Micromechanics and Microengineering, 19 (2009) 055010.
    43. K. A. M. Seerden, N. Reis, J. R. G. Evans, P. S. Grant, J. W. Halloran and B. Derby, “Ink-jet printing of wax-based alumina suspensions”, Journal of the American Ceramic Society, 84 (2001) 2514-2520.
    44. N. Reis, C. Ainsley and B. Derby, “Ink-jet delivery of particle suspensions by piezoelectric droplet ejectors”, Journal of Applied Physics, 97 (2005) 094903-6.
    45. A. U. Chen and O. A. Basaran, “A new method for significantly reducing drop radius without reducing nozzle radius in drop-on-demand drop production”, Physics of fluids, 14 (2002) L1-L4.
    46. J. de Jong, H. Reinten, H. Wijshoff, M. van den Berg, K. Delescen, R. van Dongen, F. Mugele, M. Versluis and D. Lohse, “Marangoni flow on an inkjet nozzle plate”, Applied Physics Letters, 91 (2007) 204102-3.
    47. E. Tekin, B.-J. d. Gans and U. S. Schubert, “Ink-jet printing of polymers - from single dots to thin film libraries”, Journal of Materials Chemistry, 14 (2004) 2627-2632.
    48. D. M. Anderson and S. H. Davis, “The spreading of volatile liquid droplets on heated surfaces”, Physics of Fluids, 7 (1995) 248-265.
    49. E. Adachi, A. S. Dimitrov and K. Nagayama, “Stripe patterns formed on a glass surface during droplet evaporation”, Langmuir, 11 (1995) 1057-1060.
    50. S. Maenosono, C. D. Dushkin, S. Saita and Y. Yamaguchi, ”Growth of a semiconductor nanoparticle ring during the drying of a suspension droplet”, Langmuir, 15 (1999) 957-965.
    51. T. Laurila, T. Mattila, V. Vuorinen, J. Karppinen, J. Li, M. Sippola and J. K. Kivilahti, “Evolution of microstructure and failure mechanism of lead-free solder interconnections in power cycling and thermal shock tests”, Microelectronics Reliability, 47 (2007) 1135-1144.
    52. J. Glazer, “Microstructure and mechanical properties of Pb-free solder alloys for low-cost electronic assembly: a review”, Journal of Electronic Materials, 23 (1994) 693-700.
    53. V. H. Stott, “The measurement of the viscosity of a molten metal by means of an oscillating disc”, Proceedings of the Physical Society, 45 (1933) 530-544.
    54. D W Tian, C Q Wang and Y H Tian, “Effect of solidification on solder bump formation in solder jet process: simulation and experiment”, Transactions of Nonferrous Metals Society of China, 18 (2008) 1201-1208.
    55. T. W. Shield, D. B. Bogy and F. E. Talke, “Drop formation by DOD ink-jet nozzles: A comparison of experiment and numerical simulation”, IBM Journal of Research and Development, 31 (1987) 96-110.
    56. M. H. Tsai, W. S. Hwang, H. H. Chou and P. H. Hsieh, “Effects of pulse voltage on inkjet printing of a silver nanopowder suspension”, Nanotechnology, 19 (2008) 335304.
    57. C. W. Macosko, “Rheology: Principles, Measurements, and Applications”, New York: VCH, 1994, p 449.
    58. B. Beulen, J. de Jong, H. Reinten, M. van den Berg, H. Wijshoff and R. van Dongen, “Flows on the nozzle plate of an inkjet printhead”, Experiments in Fluids, 42 (2007) 217-224.
    59. J. E. Fromm, “Numerical calculation of the fluid dynamics of drop-on-demand jets”, IBM Journal of Research and Development, 28 (1984) 322-333.
    60. N. Reis, C. Ainsley and B. Derby, “Ink-jet delivery of particle suspensions by piezoelectric droplet ejectors”, Journal of Applied Physics, 97 (2005) 094903-094906.
    61. T. Lim, S. Han, J. Chung, J. T. Chung, S. Ko and C. P. Grigoropoulos, “Experimental study on spreading and evaporation of inkjet printed pico-liter droplet on a heated substrate”, International Journal of Heat and Mass Transfer, 52 (2009) 431-441.
    62. A. F. J. Baggerman and D. Schwarzbach, “Solder-jetted eutectic PbSn bumps for flip-chip”, IEEE Transactions on Components, Packaging, and Manufacturing Technology, Part B: Advanced Packaging, 21 (1998) 371-381.
    63. H. Y. Son, J. W. Nah and K. W. Paik, “Formation of Pb/ 63Sn Solder Bumps Using a Solder Droplet Jetting Method”, IEEE Transactions on Electronics Packaging Manufacturing, 28 (2005) 274-281.
    64. M. H. Tsai, W. S. Hwang and H. H. Chou, “The micro-droplet behavior of a molten lead-free solder in an inkjet printing process”, Journal of Micromechanics and Microengineering, 19 (2009) 125021.
    65. V. H. Stott, “The measurement of the viscosity of a molten metal by means of an oscillating disc”, Proceedings of the Physical Society, 45 (1993) 530–544.
    66. L. Fiori, E. Ricci, E. Arato and P. Costa, “Dynamic surface tension measurements on a molten metal-oxygen system: The behaviour of the temperature coefficient of the surface tension of molten tin”, Journal of Materials Science, 40 (2005) 2155-2159.
    67. J. Glazer, “Microstructure and mechanical properties of Pb-free solder alloys for low-cost electronic assembly: A review”, Journal of Electronic Materials, 23 (1994) 693-700.

    下載圖示 校內:2015-07-12公開
    校外:2015-07-12公開
    QR CODE