| 研究生: |
張哲鳴 Chang, JE-MING |
|---|---|
| 論文名稱: |
業務部門智慧轉型方法與技術研究 Research on Smart Transformation Methods and Technologies for Business Departments |
| 指導教授: |
陳裕民
Chen, Yuh-Min |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程管理碩士在職專班 Engineering Management Graduate Program(on-the-job class) |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | 智慧轉型 、智慧代理人 、PDCA 循環設計 、流程重構 |
| 外文關鍵詞: | Digital Transformation, Intelligent Agents, PDCA Cycle Design, Business Process Reengineering |
| 相關次數: | 點閱:21 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著數位化與人工智慧技術的快速發展,企業營運模式正經歷深度變革,其中業務部門作為企業面對市場與顧客的第一線,其智慧轉型已成為企業提升反應力與競爭優勢的關鍵課題。傳統以人力經驗與直覺判斷為主的業務作業模式,難以因應當前高變動、客製化的市場需求,需導入資料驅動、智慧決策與流程自動化等技術機制,建構更具彈性與效率的營運架構。
本研究聚焦於部門層級智慧轉型之方法論構建與應用實證,提出一套以 PDCA 循環為核心,整合流程建模(IDEF0)、問題診斷(KPI 成效分析、魚骨圖與 Pareto 分析)與智慧模組設計的系統化架構。研究以某科技製造業業務部門為案例,針對其現行流程活動所面臨之三大問題類型:流程遲滯、決策誤差與跨部門協作斷點,進行結構化診斷與智慧化設計。
於轉型設計層面,本研究提出涵蓋十三項核心業務活動的智慧流程設計,導入 NLP、RPA、資料預測、智慧客服與知識圖譜等技術,建構模組化、自動化與可擴展的作業支援架構;並進一步設計主從式智慧代理人系統,透過知識型、規則型與分析型子代理人模擬常見業務查詢任務,驗證智慧化系統在任務分派、回應生成與使用介面整合等層面之實作可行性與對應邏輯。導入實作亦獲得部門使用者正面回饋,顯示其於減少人力負擔、提升回應速度與決策輔助等層面具顯著效果。
本研究亦關注智慧轉型推動過程中的導入策略與組織回應,強調應以部門為單位,先行進行小規模試點應用,逐步驗證並調整設計架構,進而擴展至其他部門,形塑可持續演進的智慧作業藍圖。研究結果不僅提供一套具體可行的轉型方法論,亦可作為企業未來進行 AI 導入與流程重構的參考依據,特別適用於追求部門自主轉型與快速應變的情境。
本研究建議企業在進行智慧轉型時,應從小規模的試點項目開始,逐步積累經驗,再擴大至全公司的變革。且建立跨部門的協作機制以及長期追蹤進度機制,以確保轉型成效的長期可持續性。
This study explores a systematic methodology for the intelligent transformation of sales departments in the context of enterprise digitalization. Traditional sales workflows are often fragmented, reliant on manual operations, and lack real-time decision-making capabilities. To address these limitations, this research proposes a department-level transformation framework integrating IDEF0-based functional modeling, KPI-driven problem diagnosis, and AI-embedded system architecture.
The methodology emphasizes process automation, decision intelligence, and agent-based collaboration as three pillars of transformation. Anchored in the PDCA cycle, the framework provides a structured and iterative pathway for continuous improvement. It also incorporates tools such as fishbone diagrams and Pareto analysis to facilitate the diagnosis of process bottlenecks and performance gaps, enabling a fact-based understanding of operational challenges. The proposed methodology addresses not only technical implementation, but also organizational readiness, process transparency, and knowledge codification—ensuring a balanced approach to transformation.
A real-world case study in a high-tech manufacturing firm was conducted, in which thirteen business activities—ranging from customer engagement to post-sales support—were redesigned using intelligent tools such as NLP-based customer service, demand forecasting with LSTM, and decision tree-based negotiation support. These redesigned activities were supported by a hierarchical intelligent agent architecture composed of knowledge-based, rule-based, and analytical sub-agents, each assigned to simulate and automate specific sales tasks. The modular nature of the agent system allows flexible deployment and task adaptation across different sales contexts and organizational layers.
Implementation outcomes include improved workflow continuity, faster response times, reduced manual workload, and enhanced decision accuracy. The agent system also demonstrated potential for reusability, transparency in task delegation, and integration with CRM platforms, facilitating better knowledge management and customer experience. User feedback from internal stakeholders indicated high usability, improved decision support, and increased confidence in handling complex sales scenarios.
This research contributes academically by formalizing a modular, repeatable transformation approach specifically tailored for department-level application, bridging the methodological gap between enterprise-wide digital transformation strategies and practical department-level implementation. Practically, it offers actionable and scalable guidelines for embedding AI technologies into core sales operations, emphasizing low-risk pilot-based deployment strategies and long-term adaptability. Furthermore, the framework’s extensibility enables future incorporation of generative AI technologies and cross-departmental collaborative intelligence.
The findings not only address current inefficiencies but also illustrate how AI-driven systems can reconfigure sales execution logic and reshape organizational behavior toward a more agile, data-centric operating model. The study provides a validated pathway for enterprises seeking to initiate smart transformation from within operational departments, setting the stage for enterprise-wide AI adoption.
李吉仁(2024)。《轉型再成長:策略架構與執行力》。台北:天下雜誌
局荊玲(2024)。《企業人工智慧與數位轉型之策略與實踐—以高科技製造業為例》(碩士論文)。國立臺灣大學。
Accenture. (2018, May 22). Widening gap between consumer expectations and reality in personalization signals warning for brands. Accenture Interactive. Retrieved from https://newsroom.accenture.com/news/2018/widening-gap-between-consumer-expectations-and-reality-in-personalization-signals-warning-for-brands-accenture-interactive-research-finds
Argote, L., & Miron-Spektor, E. (2011). Organizational learning: From experience to knowledge. Organization Science, 22(5), 1123–1137.
Anonymous. (2024). Sales forecasting with LSTM, custom loss function, and hyperparameter optimization: A case study. Applied Sciences, 14(21), 9957. https://doi.org/10.3390/app14219957
Bandara, K., Shi, P., Bergmeir, C., Hewamalage, H., Tran, Q., & Seaman, B. (2019). Sales demand forecast in e‑commerce using a long short‑term memory neural network methodology. In Proceedings of the 26th International Conference on Neural Information Processing (ICONIP 2019) (pp. –). Springer. https://doi.org/10.1007/978-3-030-36718-3_39
Buhl, H. U., Röglinger, M., Stöckl, S., & Braunwarth, K. S. (2011). Value orientation in process management. Business & Information Systems Engineering, 3(3), 163–172.
Cespedes, F. V. (2014). Aligning Strategy and Sales: The Choices, Systems, and Behaviors that Drive Effective Selling. Harvard Business Review Press.
Davenport, T. H. (2006). Competing on analytics. Harvard Business Review, 84(1), 98–107.
Davenport, T. H., & Harris, J. G. (2007). Competing on Analytics: The New Science of Winning. Boston, MA: Harvard Business Review Press.
Davenport, T. H., & Ronanki, R. (2018). Artificial intelligence for the real world. Harvard Business Review, 96(1), 108–116.
Davenport, T. H., Guha, A., Grewal, D., & Bressgott, T. (2020). How artificial intelligence will change the future of marketing. Journal of the Academy of Marketing Science, 48(1), 24–42.
Dumas, M., La Rosa, M., Mendling, J., & Reijers, H. A. (2018). Fundamentals of Business Process Management (2nd ed.). Springer.
Dwivedi, Y. K., Hughes, L., Ismagilova, E., Aarts, G., Coombs, C., Crick, T., Duan, Y., Dwivedi, R., Janssen, M., et al. (2021). Artificial intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. International Journal of Information Management, 57, Article 101994. https://doi.org/10.1016/j.ijinfomgt.2019.08.002
Eckerson, W. W., & Ereth, J. (2018, June 30). DataOps: Industrializing data and analytics. Eckerson Group. https://www.eckerson.com/research/dataops-industrializing-data-and-analytics
FIPS PUB 183. (1993). Integration definition for function modeling (IDEF0). National Institute of Standards and Technology (NIST), U.S. Department of Commerce. https://nvlpubs.nist.gov/nistpubs/Legacy/FIPS/fipspub183.pdf
Fitzgerald, M., Kruschwitz, N., Bonnet, D., & Welch, M. (2014). Embracing digital technology: A new strategic imperative. MIT Sloan Management Review, 55(2), 1–12.
Grewal, D., Satornino, C. B., Davenport, T., & Guha, A. (2025). How generative AI is shaping the future of marketing. Journal of the Academy of Marketing Science, 53(3), 702–722. https://doi.org/10.1007/s11747-024-01064-3
Haag, F. (2025, April). The effect of explainable AI-based decision support on human task performance: A meta-analysis [Preprint]. arXiv. https://doi.org/10.48550/arXiv.2504.13858
Hammer, M. (1996). Beyond reengineering: How the process-centered organization is changing our work and our lives. Harper Business.
Hammer, M., & Champy, J. (2009). Reengineering the corporation: A manifesto for business revolution (Rev. ed.). HarperBusiness.
Hanrahan, R. P. (1995, June). The IDEF process modeling methodology. Software Technology Support Center, U.S. Air Force.
Harkness, L., Robinson, K., Stein, E., & Wu, W. (2023, December 5). How generative AI can boost consumer marketing. McKinsey & Company. Retrieved from https://www.mckinsey.com/business-functions/marketing-and-sales/our-insights/how-generative-ai-can-boost-consumer-marketing
Honkanen, T., O'Dwyer, J., & Salminen, V. (2022). Multidisciplinary teamwork in Machine Learning Operations (MLOps). Human Factors, Business Management and Society, 56, 137–144.
Huang, M. H., & Rust, R. T. (2021). A strategic framework for artificial intelligence in marketing. Journal of the Academy of Marketing Science, 49, 30–50.
Hussain, A., & Rizwan, R. (2024). Strategic AI adoption in SMEs: A prescriptive framework [Preprint]. arXiv:2408.11825. https://doi.org/10.48550/arXiv.2408.11825
Ingram, T. N., LaForge, R. W., Avila, R. A., Schwepker Jr, C. H., & Williams, M. R. (2007). Professional selling: A trust-based approach (4th ed.). Cengage Learning.
Ishikawa, K. (1985). What is Total Quality Control? The Japanese Way. Prentice Hall.
Juran, J. M. (1995). A history of managing for quality: The evolution, trends, and future directions of managing for quality. ASQC Quality Press.
Kane, G. C., Palmer, D., Phillips, A. N., Kiron, D., & Buckley, N. (2015). Strategy, not technology, drives digital transformation. MIT Sloan Management Review. Retrieved from https://sloanreview.mit.edu/projects/strategy-drives-digital-transformation/
Kostopoulos, G., Davrazos, G., & Kotsiantis, S. (2024). Explainable Artificial Intelligence-Based Decision Support Systems: A Recent Review. Electronics, 13(14), 2842.
Krasnikov, A., Jayachandran, S., & Kumar, V. (2009). The impact of customer relationship management implementation on cost and profit efficiencies: Evidence from the US commercial banking industry. Journal of Marketing, 73(6), 61–76.
Kreuzberger, D., Kühl, N., & Hirschl, S. (2022). Machine learning operations (MLOps): Overview, definition, and architecture [Preprint]. arXiv. https://doi.org/10.48550/arXiv.2205.02302
Kumar, V., & Reinartz, W. (2016). Creating Enduring Customer Value. Journal of Marketing, 80(6), 36–68.
Ljepava, N. (2022). AI Enabled Marketing Solutions in Marketing Decision Making: AI Application in Different Stages of Marketing Process. TEM Journal, 11(3), 1308–1315.
Lokuge, S., & Duan, S. (2023). Exploring the enablers of digital transformation in small and medium sized enterprises [Preprint]. arXiv. https://doi.org/10.48550/arXiv.2302.12506
Mayer, R. J., Menzel, C. P., Painter, M. K., deWitte, P. S., Blinn, T., & Perakath, B. (1995). Information Integration for Concurrent Engineering (IICE) IDEF3 Process Description Capture Method Report. Knowledge Based Systems, Inc.
McKinsey & Company. (2016). The age of analytics: Competing in a data-driven world. Retrieved from https://www.mckinsey.com/business-functions/mckinsey-analytics/our-insights/the-age-of-analytics
McKinsey & Company. (2017). Intelligent process automation: The engine at the core of the next-generation operating model. Retrieved from https://www.mckinsey.com/business-functions/mckinsey-digital/our-insights/intelligent-process-automation
McKinsey & Company. (2020, May 13). Sales automation: The key to boosting revenue and reducing costs. Retrieved from https://www.mckinsey.com/business-functions/growth-marketing-and-sales/our-insights/sales-automation-the-key-to-boosting-revenue-and-reducing-costs
McKinsey & Company. (2023). How generative AI can boost consumer marketing. Retrieved from https://www.mckinsey.com/business-functions/marketing-and-sales/our-insights/how-generative-ai-can-boost-consumer-marketing
McKinsey & Company. (2023, August 1). The state of AI in 2023: Generative AI’s breakout year. Retrieved from https://www.mckinsey.com/capabilities/quantumblack/our-insights/the-state-of-ai-in-2023-generative-ais-breakout-year
McKinsey & Company. (2024, November). Why agents are the next frontier of generative AI. Retrieved from https://www.mckinsey.com/featured-insights/artificial-intelligence/why-agents-are-the-next-frontier-of-generative-ai
Menzies, T., & Zimmermann, T. (2013). Software analytics: So what? IEEE Software, 30(4), 31–37.
Menzies, T., & Zimmermann, T. (2021). Software engineering for AI: Challenges and opportunities. IEEE Software, 38(5), 15–18.
Mikalef, P., van de Wetering, R., & Krogstie, J. (2021). Building dynamic capabilities by leveraging big data analytics: The role of organizational inertia. Information & Management, 58(6), Article 103412. https://doi.org/10.1016/j.im.2020.103412
Mirwan, S. H., Ginny, P. L., Darwin, D., Ghazali, R., & Lenas, M. N. J. (2023). Using artificial intelligence (AI) in developing marketing strategies. International Journal of Applied Research and Sustainable Sciences, 1(3), 225–238. https://doi.org/10.59890/ijarss.v1i3.896
Mukherjee, A. (2024, March). Safeguarding marketing research: The generation, identification, and mitigation of AI‑fabricated disinformation [Preprint]. arXiv:2403.14706. https://doi.org/10.48550/arXiv.2403.14706
Mikalef, P., van de Wetering, R., & Krogstie, J. (2021). Building dynamic capabilities by leveraging big data analytics: The role of organizational inertia. Information & Management, 58(6), Article 103412. https://doi.org/10.1016/j.im.2020.103412
Nonaka, I., & Takeuchi, H. (1995). The knowledge-creating company: How Japanese companies create the dynamics of innovation. Oxford University Press.
Patil, D. (2025, January 6). Artificial Intelligence‑Driven Customer Service: Enhancing personalization, loyalty, and customer satisfaction [Manuscript]. SSRN. https://doi.org/10.2139/ssrn.5057432
Pumplun, L., Peters, F., Gawlitza, J. F., & Buxmann, P. (2023). Bringing machine learning systems into clinical practice: A design science approach to explainable machine learning based clinical decision support systems. Journal of the Association for Information Systems, 24(4), 953–979.
Raji, I. D., Smart, A., White, R., Mitchell, M., Gebru, T., Hutchinson, B., Smith-Loud, J., Theron, D., & Barnes, P. (2020). Closing the AI accountability gap: Defining an end-to-end framework for internal algorithmic auditing. In Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency (FAT)* (pp. 33–44). ACM. https://doi.org/10.1145/3351095.3372873
Rodriguez, M., Peterson, R. M., & Krishnan, V. (2018). Impact of CRM on sales process behaviors: Empirical results from US, Europe, and Asia. Journal of Business-to-Business Marketing, 25. https://doi.org/10.1080/1051712X.2018.1424754
Rosemann, M., & vom Brocke, J. (2010). The six core elements of business process management. In J. vom Brocke & M. Rosemann (Eds.), *Handbook on Business Process Management 1* (pp. 107–122). International Handbooks on Information Systems. Springer. https://doi.org/10.1007/978-3-642-45100-3_5
Sculley, D., Holt, G., Golovin, D., Davydov, E., Phillips, T., Ebner, D., … & Dennison, D. (2015). Hidden technical debt in machine learning systems. In *Advances in Neural Information Processing Systems 28 (NeurIPS 2015)* (pp. 2503–2511). Curran Associates, Inc.
Seyedan, M., & Mafakheri, F. (2020). Predictive big data analytics for supply chain demand forecasting: Methods, applications, and research opportunities. Journal of Big Data, 7, 53.
Siffer, A., Fouque, P.-A., Termier, A., & Largouët, C. (2017, August). Anomaly detection in streams with extreme value theory. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 1067–1075). ACM. https://doi.org/10.1145/3097983.3098144 Conference on Knowledge Discovery and Data Mining (pp. 1067–1075). ACM. https://doi.org/10.1145/3097983.3098144
Studer, S., Bui, T. B., Drescher, C., Hanuschkin, A., Winkler, L., Peters, S., & Müller, K.-R. (2021). Towards CRISP‑ML(Q): A machine learning process model with quality assurance methodology. Machine Learning and Knowledge Extraction, 3(2), 392–413. https://doi.org/10.3390/make3020020
Tague, N. R. (2005). The Quality Toolbox (2nd ed.). ASQ Quality Press.
Teece, D. J. (2018). Business models and dynamic capabilities. Long Range Planning, 51(1), 40–49.
van de Wetering, R., & Mikalef, P. (2021). Strategic alignment between IT flexibility and dynamic capabilities: An empirical investigation [Preprint]. arXiv. https://doi.org/10.48550/arXiv.2105.08429
van der Aalst, W. M. P. (2016). Process mining: Data science in action (2nd ed.). Springer.
Wamba‑Taguimdje, S.‑L., Fosso Wamba, S., Kala Kamdjoug, J. R., & Tchatchouang Wanko, C. E. (2020). Influence of artificial intelligence (AI) on firm performance: The business value of AI‑based transformation projects. Business Process Management Journal, 26(7), 1893–1924. https://doi.org/10.1108/BPMJ‑10‑2019‑0411
Wirth, R., & Hipp, J. (2000). CRISP‑DM: Towards a standard process model for data mining. In Proceedings of the 4th International Conference on the Practical Applications of Knowledge Discovery and Data Mining (pp. 29–39). Manchester, UK.
Wooldridge, M., & Jennings, N. R. (1995). Intelligent agents: Theory and practice. The Knowledge Engineering Review, 10(2), 115–152.
Yoo, Y., Boland Jr, R. J., Lyytinen, K., & Majchrzak, A. (2010). Organizing for innovation in the digitized world. Organization Science, 21(6), 1345–1360.
Zairi, M. (1997). Business process management: a boundaryless approach to modern competitiveness. Business Process Management Journal, 3(1), 64–80.