簡易檢索 / 詳目顯示

研究生: 張語謙
Chang, Yu-Chien
論文名稱: 以高功率脈衝磁控濺鍍系統鍍製氮化鈮鈦鍍層並探討改變氮氣流量以及添入不同乙炔流量對其機械、磨潤與抗腐蝕性質之影響及高速鑽削測試
Mechanical, tribological, anti-corrosive properties and high-speed drilling performance of NbTiN coating prepared by HIPIMS with different flux rate of nitrogen and acetylene
指導教授: 蘇演良
Su, Yean-Liang
共同指導教授: 高文顯
Kao, Wen-Hsien
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 82
中文關鍵詞: 磨潤科技氮化鈮鈦微鑽針高功率脈衝磁控濺鍍
外文關鍵詞: Tribology, NbTiN, HIPIMS, Micro-drill, Niobium, Titanium
相關次數: 點閱:39下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以HIPIMS鍍製NbTiNx與NbTiN25-CHx系列鍍層於SKH51高速鋼表面,其中’x’表示通入氮氣或乙炔之流量,而CH則代表乙炔的添加。於本研究中,實驗分為三階段,第一階段將以不同氮氣流量作為實驗變因,鍍製NbTiNx系列鍍層並找出具最佳磨潤性質之最佳濺鍍參數;第二階段則以第一階段之最佳濺鍍參數為基礎,添入不同流量之乙炔,觀察並探討乙炔的加入是否能提升鍍層之磨潤性質; 第三階段則以本研究具最佳磨潤性質之鍍層濺鍍參數為基礎,將其被覆於微鑽針上並進行高速鑽削PCB電路板測試。
    於NbTiNx系列鍍層中,NbTiN25具備高硬度25.5GPa、高H/E值0.063與優異之附著性Lc >100N,並且擁有最佳之磨潤性質: 低摩擦係數(0.325)、最低之磨耗深度(0.38 m)與最低之磨耗率(7.23 10-6mm3/Nm),因此於第二階段中,選用NbTiN25濺鍍參數為基礎,添加乙炔。
    隨著通入25 sccm流量之乙炔,NbTiN25-CH25鍍層具備足夠的碳含量將其結構由金屬氮化物複合結晶面結構轉化換為非晶相與具備高sp2含量之DLC結構,。雖然乙炔的加入造成硬度的降低,然而其高H/E值0.063、優異的附著性Lc >100N與高sp2含量之DLC結構使其具備良好的的固體潤滑效果與優異的磨潤性質,且擁有最低之磨擦係數0.144、磨耗深度0.23 m與磨耗深度1.6 10-6mm3/Nm,其磨擦係數曲線於整個磨耗試驗中皆呈現非常穩定的狀態。經磨耗試驗後,於NbTiN25-CH25鍍層之磨痕中其鍍層保留良好,於其對磨球磨耗表面中也發現了富碳轉移層之形成。
    於高速鑽削測試中,被覆NbTiN25-CH25鍍層提升微鑽針之使用壽命至少三倍,而高速鑽削後之鑽孔孔徑誤差皆小於1.5%,且沒有產生變形,鑽孔品質良好,經高速鑽削6000孔後,其孔壁粗糙度與釘頭尺寸比皆仍合乎標準。

    The series of NbTiNx and NbTiN25-CHx coatings were deposited on SKH51 by HIPIMS which ‘x’ means the flux rate of nitrogen or acetylene, and ‘CH’ means the introduction of acetylene. In this study, the experiments were composed of three stages. First, the series of NbTiNx coatings with different nitrogen flux rate are investigate to find out the best deposition parameter which possessed the most excellent tribological properties. In the second stage, different flux rates of acetylene were introduced into the best deposition parameter determined in the first stage. It was expected to improve tribological properties. In the final stage, the coating with the best tribological properties would be deposited on micro-drills, and the coated micro-drills were performed a series of high-speed through-hole drilling tests under dry conditions using printed circuit board (PCB) specimens.
    Finally, NbTiN25-CH25 possessed sufficient carbon contents 34.9 at. % which transferring the structures from metal nitrides crystalline (NbTiN25) to amorphous and DLC structures with high sp2 concentration analyzed by XRD and Raman spectra. The high H/E ratio 0.063, Lc >100 N and DLC structures with high sp2 concentration allowed solid lubrication and leaded to excellent tribological properties including the lowest friction coefficient (0.144), wear depth (0.23 µm), wear rate (1.6 10-6mm3/Nm) and completely stable friction curve throughout the wear test.
    In the high-speed drilling performance, the NbTiN25-CH25 coated micro-drill lifetime increased at least three times higher than uncoated drills. The drilled holes had no deformation and the error of diameters are less than 1.5 %. The quality of drilled PCB holes was excellent that both nail head ratio and surface roughness complied with the criteria after drilling 6000 holes.

    Mechanical, tribological, anti-corrosive properties and high-speed drilling performance of NbTiN coating prepared by HIPIMS with different flux rate of nitrogen and acetylene

    1. http://www.junsun.com.tw/index.php/zh/vacuum-based-deposition-systems/pvd/hipims.html
    2. M. Lattemann, A.P. Ehiasarian, J. Bohlmark, P.Å.O. Persson, U. Helmersson, Investigation of high power impulse magnetron sputtering pretreated interfaces for adhesion enhancement of hard coatings on steel, Surf. Coat. Technol. 200 (2006) 6495–6499
    3. J. Lin, J.J. Moore,W.D. Sproul, B. Mishra, J.A. Rees, Z.Wu, R. Chistyakov, B. Abraham, Ion energy and mass distributions of the plasma during modulated pulse power magnetron sputtering, Surf. Coat. Technol. 203 (2009) 3676–3685
    4. Fundamentals and applications of HIPIMS, in: A.P. Ehiasarian, R. Wei (Eds.), Plasma Surf. Eng. Res. Its. Pract. Appl. Res. Signpost, Trivandrum, India 2008, p. 35–86
    5. Jia-Hong Huang, Cheng-Han Lin, Ge-Ping Yu, Texture evolution of vanadium nitride thin films, Thin Solid Films, (2019) 137415
    6. E. Budke, J. Krempel-Hesse, H. Maidhof, H. Schu ̈ssler, Decorative hard coatings with improved corrosion resistance, Surf. Coat. Technol. 12 (1999) p.108–113
    7. B.M. Howea, E. Sammanna, J.G. Wena, T. Spilaa, J.E. Greenea, L. Hultmanb, I. Petrov, Real-time control of AlN incorporation in epitaxial Hf1 xAlxNusing high-flux, low-energy (10–40 eV) ion bombardmentduring reactive magnetron sputter deposition fromaHf0.7Al0.3alloy target, Acta Materialia. 59 (2011) p.421-428
    8. ASM International Handbook Committee, ASM Handbook, Vol. 2–4, 10th ed,1990
    9. H. Zenghu, H. Xiaoping, T. Jiawan, L. Geyang, M. Gu: Surf. Coat. Technol. Vol. 179 (2004), p. 188
    10. V. N. Zhitomirsky, I. Grimberg, L. Rapoport, N. A. Travitzky, R. L. Boxman, S. Gold-smith, et al.: Thin Solid Films Vol. 326 (1998), p. 134
    11. Zh. Patel, K. Khul’ka: Metallurgist Vol. 45 (2001), p. 447
    12. G. A. Dressler, J. M. Bauer: 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Huntsville, Alabama, 16–19 July, 2000
    13. J. Wadsworth, F. H. Froes: JOM Vol. 41 (1989), p. 12
    14. V. Zhitomirsky: Surf. Coat. Technol. Vol. 201 (2007), p. 6122
    15. R. Franz, M. Lechthaler, C. Polzer, C. Mitterer: Surf. Coat. Technol. Vol. 204 (2010), p. 2447
    16. K. Havey, J. Zabinski, S. Walck: Thin Solid Films Vol. 303 (1997), p. 238
    17. R. Franz, M. Lechthaler, P. Polcik, M. R. de Figueiredo, C. Mitterer: Tribol. Lett. Vol. 45 (2012), p. 143
    18. K. Singh, N. Krishnamurthy, A. Suri: Tribol. Int. Vol. 50 (2012), p. 16
    19. G. Fontalvo, V. Terziyska, C. Mitterer: Surf. Coat. Technol. Vol. 202 (2007), p. 1017
    20. S. Kim, B. Cha, J. Yoo: Surf. Coat. Technol. Vol. 177 (2004), p. 434
    21. N. Cansever, M. Danıs¸ man, K. Kazmanlı: Surf. Coat. Technol. Vol. 202 (2008), p. 5919
    22. M. Benkahoul, E. Martinez, A. Karimi, R. Sanjinés, F. Lévy: Surf. Coat. Technol. Vol. 180 (2004), p. 178
    23. M. Wen, C. Q. Hu, Q. N. Meng, Z. D. Zhao, T. An, Y. D. Su, W. X. Yu, W. T. Zheng: J. Phys. D. Appl. Phys. Vol. 42 (2009), p. 035304
    24. R. Sanjine´s, M. Benkahoul, C. Sandu, P. Schmid, F. L´evy: Thin Solid Films Vol. 494 (2006), p. 190
    25. Mats Larsson, Michael Bromark, Per Hedenqvist, Sture Hogmark, Mechanical and tribological properties of multilayered PVD TiN/NbN coatings, Surf. Coat. Technol. 91(1997) p.43-49
    26. N.N. Iosad, B.D. Jackson, F. Ferro, J.R. Gao, S.N. Polyakov, P.N. Dmitriev, T.M. Klapwijk, Source optimization for magnetron sputter-deposition of NbTiN tuning elements for SIS THz detectors, Supercond. Sci. Technol. 12 (1999) 736–740.
    27. K. Vasu, M.G. Krishna, K.A. Padmanabhan, Effect of Nb concentration on the structure, mechanical, optical, and electrical properties of nano-crystalline Ti1– xNbxN thin films, J. Mater. Sci. 47 (2012) 3522–3528.
    28. K. Singh, N. Krishnamurthy, A.K. Suri, Tribol. Int. 50 (2012) 16-25.
    29. J. Han, J. Jia, J. Lu, J. Wang, Tribol. Lett. 34 (2009) 193-199.
    30. M. Benkahoul, E. Martinez, A. Karimi, R. Sanjin_es, F. L_evy, Structural and mechanical properties of sputtered cubic and hexagonal NbNx thin films, Surf. Coat. Technol. 180 (2004) 178-183.
    31. N. Cansever, M. Danıs¸ man, K. Kazmanlı, The effect of nitrogen pressure on cathodic arc deposited NbN thin films, Surf. Coat. Technol. 202 (2008) 5919-5923.
    32. M. Wen, C.Q. Hu, Q.N. Meng, Z.D. Zhao, T. An, Y.D. Su, W.X. Yu, W.T. Zheng, Effects of nitrogen flow rate on the preferred orientation and phase transition for niobium nitride films grown by direct current reactive magnetron sputtering, J. Phys. D. Appl. Phys. 42 (2009) 035304.
    33. A. Bendavid, P. JMartin, T. JKinder, E. WPreston, The deposition of NbN and NbC thin films by filtered vacuum cathodic arc deposition, Surface and Coatings Technology 163–164 (2003) 347-352
    34. K. Holmberg, H. Ronkainen, A. Laukkanenl, Wear 254 (2003) 278-291.
    35. X. Pang, H. Yang, K.W. Gao, Y. Wang, A.A. Volinsky, Thin Solid Films 519 (2011) 5353-5357.
    36. R. Machunze, G.C.A.M. Janssen, Thin Solid Films 517 (2009) 5888-5893.
    37. J. Westlinder, T. Schram, L. Pantisano, E. Cartier, A. Kerber, G.S. Lujan, J. Olsson, G. Groeseneken: IEEE Electron Device Lett. Vol. 24 (2003), p. 550
    38. N. Mustapha, R. Howson: Surf. Coat. Technol. Vol. 92 (1997), p. 29
    39. K. Lal, A.K. Meikap, S.K. Chattopadhyay, S.K. Chatterjee, M. Ghosh, K. Baba, R. Hatada: Phys. B Condens. Matter Vol. 307 (2001), p. 150
    40. Y.L. Jeyachandran, Sa.K. Narayandass, D. Mangalaraj, Sami Areva, J.A. Mielczarski: Mater. Sci. Eng. Vol. A 445 (2007), p. 223
    41. O. Borrero-Lopez, M. Hoffman, Measurement of fracture strength in brittle thin films, Surf. Coat. Technol. 254 (2014) 1–10.
    42. F. Lomello, M.A. Pour, F. Sanchette, F. Schuster, M. Tabarant, A. Billard, Temperature dependence of the residual stresses and mechanical properties in TiN/CrN nanolayered coatings processed by cathodic arc deposition, Surf. Coat. Technol. 238 (2014) 216–222
    43. T. Guo, L. Qiao, X. Pang, A.A. Volinsky, Brittle film-induced cracking of ductile substrates, Acta Mater. 99 (2015) 273–280
    44. Escobar-Alarcon, E. Camps, M. A. Castro, S. Muhl, J. A. Mejia-Hernandez: Appl. Phy. Vol. A 81 (2005), p. 1221
    45. L.R. Sheppard, H. Zhang, R. Liu, S. Macartney, T. Murphy, R. Wuhrer, Reactive sputtered TiXNbYNZ thin films. I. Basic processing relationships, Materials Chemistry and Physics 224 (2019) 308–313
    46. L.R. Sheppard, H. Zhang, R. Liu, S. Macartney, T. Murphy, P. Wainer, R. Wuhrer, Reactive sputtered TixNbyN coatings. II. Effect of common deposition Parameters, Materials Chemistry and Physics 224 (2019) 320–327
    47. A.P. Serro, C. Completo, R. Colaço, F. dos Santos, C. Lobato da Silva, J.M.S. Cabral, H. Araújo, E. Pires, B. Saramago, A comparative study of titanium nitrides, TiN, TiNbN and TiCN, as coatings for biomedical applications, Surface & Coatings Technology 203 (2009) 3701–3707
    48. M.L.S. Arockiasamy, M. Sundarewari, M. Rajagopalan, Ductility behaviour of cubic titanium niobium nitride ternary alloy: a first principles study, Indian J. Phys. 90 (2016) 149–154.
    49. M.P. Gispert, A.P. Serro, R. Colaco, E. Pires, B. Saramago, Wear of ceramic coated metal-on-metal bearings used for hip replacement, Wear 263 (2007) 1060–1065.
    50. H.A. Jehn, Surf. Coat. Technol. 125 (2000) 212.
    51. Fei Zhou, Koshi Adachi, Koji Kato, Sliding friction and wear property of a-C and a-CNx coatings against SiC balls in water, Thin Solid Films 514 (2006) 231–239
    52. K.H. Lee,R. Ohta, H. Sugimura, Y. Inoue, O. Takaia, H. Sugimur, Amorphous carbon and carbon nitride multilayered films prepared by shielded arc ion plating, Thin Solid Films 475 (2005) 308– 312
    53. Jianhui Guo, Jingwei Zhang, Chuang Zhao, Jiwei Zhang, Zhijun Zhang, Influence of temperature on structure as well as adhesion and friction and wear behavior of hydrogenated carbon nitride films prepared on silicon substrate, Applied Surface Science 258 (2011) 791– 799
    54. A. Erdemir, I.B. Nilufer, O.L. Eryilmaz, M. Beschliesser, G.R. Fenske, Friction and wear performance of diamond-like carbon films grown in various source gas plasmas, Surface and Coatings Technology 120–121 (1999) 589–593
    55. http://ir.lib.ncku.edu.tw/bitstream/987654321/177014/1/3010203001-000027.pdf
    56. Wolfgang Tillmann, Evelina Vogli and Fabian Hoffmann, Wear resistant and low
    friction diamond like carbon (DLC) layers for industrial tribological applications under humid conditions, Surf. Coat. Technol. Vol. 204, p. 1040 1045 (2009).
    57. Stephane Neuville and Allan Matthews, A perspective on the optimisation of hard carbon and related coatings for engineering app lications. Thin solid films Vol. 515 p. 6619 6653 (2007).
    58. Z.H. Han, X.P. Hu, J.W. Tian, G.Y. Li,M.Y. Gu,Magnetron sputtered NbN thin films and mechanical properties, Surf. Coat. Technol. 179 (2004) 188–192.
    59. M.Wen, C.Q. Hu, C.Wang, T. An, Y.D. Su, Q.N. Meng,W.T. Zheng, Effects of substrate bias on the preferred orientation, phase transition and mechanical properties for NbN films grown by direct current reactive magnetron sputtering, J. Appl. Phys. 104 (2008) 023527 1-7.
    60. A. Bendavid, P.J. Martin, T.J. Kinder, E.W. Preston, Surf. Coat. Technol. 163 (2003) 347.
    61. H. Hajihoseini, M. Kateb, S. Ingvarsson, J.T. Gudmundsson, Effect of substrate bias on properties of HiPIMS deposited vanadium nitride films, Thin Solid Films. 663 (2018) 126-130
    62. Barnali Biswas, Yashodhan Purandare, Arunprabhu A. Sugumaran, Daniel A. L. Loch, Stuart Creasey, Imran Khan, Arutiun P. Ehiasarian, Papken E. Hovsepian, Defect growth in multilayer chromium nitride/niobium nitride coatingsproduced by combined high power impulse magnetron sputtering andunbalance magnetron sputtering technique, Thin Solid Films. 636 (2017) 558-566
    63. M. Samuelsson, D. Lundin, J. Jensen, M.A. Raadu, J.T. Gudmundsson, U. Helmersson, On the film density using high power impulse magnetron sputtering, Surf. Coatings Technol. 205 (2010) 591-596.
    64. G. Greczynski, J. Lu, J. Jensen, S. Bolz,W. Kölker, C. Schiffers, O. Lemmer, J.E. Greene, L. Hultman, Surf. Coat. Technol. 257 (2014) 15.
    65. G. Greczynski, J. Lu, J. Jensen, I. Petrov, J.E. Greene, S. Bolz, W. Kölker, C. Schiffers, O. Lemmer, L. Hultman, Thin Solid Films 556 (2014) 87.
    66. E. Lewin, D. Loch, A. Montagne, A.P. Ehiasarian, J. Patscheider, Surf. Coat. Technol. 232 (2013) 680.
    67. L. Del Giudice , S. Adjam, D. La Grange , O. Banakh, A. Karimi , R. Sanjinés, NbTiN thin films deposited by hybrid HiPIMS/DC magnetron co-sputtering, Surface & Coatings Technology 295 (2016) 99–106
    68. Jicheng Ding , Tengfei Zhang , Haijuan Mei , Je Moon Yun , Seong Hee Jeong ,Qimin Wang , and Kwang Ho Kim, Effects of Negative Bias Voltage and Ratio of Nitrogenand Argon on the Structure and Properties of NbNCoatings Deposited by HiPIMS Deposition System, Coatings 2018, 8, 10 8010010
    69. http://ir.lib.ncku.edu.tw/bitstream/987654321/76563/1/3010200403011.pdf
    70. 吳錦裕(Jin-Yu Wu),梁文龍(Wen-Lung Liung) ,艾啟峰(Chi-Fong Ai),新鍍膜技術-高功率脈衝磁控濺射之介紹及研發,真空科技(2009),22卷4期,p24 - 33
    71. 蘇政揚,調控脈衝電壓及脈衝波間隔時間對高功率脈衝磁控濺鍍系統製備氮化鈦薄膜性質研究,國立清華大學工程與系統科學系,碩士論文,2011。
    72. 劉得權,高功率脈衝磁控濺鍍磊晶生長立方晶氮化鋁於鋁金屬,逢甲大學材料科學與工程學系,碩士論文,2015。
    73. 陳柏任,以高功率脈衝磁控濺鍍法製備氮化鋯阻障層於金屬閘極金氧半結構之特性研究,亞洲大學光電與通訊學系,碩士論文,2014。
    74. http://ir.lib.ncku.edu.tw/bitstream/987654321/76563/1/3010200403011.pdf
    75. W.H. Kao, High-speed drilling performance of coated micro-drills with Zr–C:H:Nx% coatings, Wear, 267 (2009) 1068–1074
    76. L. D. Giudice, S. Adjam, D. L. Grange, O. Banakh, A. Karimi and R. Sanjinés, NbTiN thin films deposited by hybrid HiPIMS/DC magnetron co-sputtering, Surf. Coat. Technol. 295 (2016) p. 99-106
    77. A. Erdemir, I.B. Nilufer, O.L. Eryilmaz, M. Beschliesser, G.R. Fenske, Friction and wear performance of diamond-like carbon films grown in various source gas plasmas, Surface and Coatings Technology 120–121 (1999) 589–593
    78. J. Robertson, Diamond-like amorphous carbon, Mater. Sci. Eng., R., 37 (2002) p 129-281.
    79. C. Guo, S. Lin, D. Gao, Q. Shi, C. Wei, M. Dai, Y. Su, W. Xu, P. Tang, H. Li, W. Wang, X. Zhu, Tuning C–C sp2/sp3 ratio of DLC films in FCVA system for biomedical application, Bioact. Mater. 5 (2020) 192-200
    80. Li Qiang, S. Yu, G. Liu, H. Tangc, X. Zhanga, J. Zhang, Comparative study on the influence of bias on the properties of Si-DLC film with and without Si interlayer on NBR: The role of Si interlayer, Diam Relat Mater. 101(2020) 107614
    81. C. Guo, S. Lin, D. Gao, Q. Shi, C. Wei, M. Dai, Y. Su, W. Xu, P. Tang, H. Li, W. Wang, X. Zhu, Modulation of Si on microstructure and tribo-mechanical properties of hydrogen-free DLC films prepared by magnetron sputtering, Appl. Surf. Sci. 509(2020) 145381
    82. M. Li and F. Wang, Effects of nitrogen partial pressure and pulse bias voltage on (Ti, Al) N coatings by arc ion plating, Surface and Coatings Technology, Vol. 67 (2003) 197-202
    83. L.R. Shepparda, H. Zhang, R. Liu, S. Macartney, T. Murphy, P. Wainer, R. Wuhrer, Reactive sputtered TixNbyN coatings. II. Effect of common deposition parameters, Materials Chemistry and Physics 224 (2019) 320–327
    84. Yen-Liang Su, Wen-Hsien Kao and Yu-Chien Chang, The Effect of CN Coatings Doped with Niobium, Titanium and Zirconium Metal on Mechanical, Tribological and Corrosion Resistance Properties of Thin Films, Key Engineering Materials, 823 (2019) pp 81-90
    85. Hongbo Ju, Ning Ding, Junhua Xu, Lihua Yu, Yaoxiang Geng, Guo Yi, Tianyao Wei, Improvement of tribological properties of niobium nitride films via copper addition, Vacuum 158(2018) p.1-5
    86. M. F. Pillis, G. A. Geribola, G. Scheidt, E. G. de Araújo, M. C. L. de Oliveira and R. Al. Antunes, Corrosion of thin, magnetron sputtered Nb2O5 films, Corros. Sci. Vol 102, p. 317-325 (2016).
    87. A. C. Alves, F. Wenger, P. Ponthiaux, J. P. Celis, A. M. Pinto, L. A. Rocha and J. C. S. Fernandes, Corrosion mechanisms in titanium oxide-based films produced by anodic treatment, Electrochim. Acta Vol. 234, p. 16-27 (2017).
    88. C. Liu, Q. Bi, A. Leyland and A. Matthews: Corros. Sci. Vol. 45 (2003) p. 1257-1273.
    89. H. Hsueh, W. Shen, M. Tsai and J. Yeh: Surf. Coat. Technol. Vol. 206 (2012) p. 4106–4112.
    90. Y. L. Su, W.H. Kao, and Y. H. Mao, Mechanical and tribological properties of NbTi–NX and NbTi–N12–CH coatings prepared using radio frequency magnetron sputtering and their application for micro-drills, Journal of Materials Engineering and Performance (2020)

    無法下載圖示 校內:2025-06-29公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE