| 研究生: |
吳俊寬 Wu, Jun-Kuan |
|---|---|
| 論文名稱: |
應用平板具狹縫斜肋於通道熱源之層流強制對流熱傳增益研究 Study on Heat Transfer Enhancement for Laminar Forced Convection over Heat Sources in a Channel by a Narrow Plate with Slits and Inclined Ribs |
| 指導教授: |
吳鴻文
Wu, Horng-Wen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 系統及船舶機電工程學系 Department of Systems and Naval Mechatronic Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 121 |
| 中文關鍵詞: | 通道 、斜肋 、狹縫 、層流 、強制對流 、熱傳增益 |
| 外文關鍵詞: | Channel, rib, slit, laminar flow, forced convection, heat transfer |
| 相關次數: | 點閱:52 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文探討運用數值分析具有狹縫之散熱片之三維層流流場及熱傳現象。本文利用有限體積法(FVM)離散Navier-Stokes方程式和能量方程式,並化成代數方程組。接著運用解壓力耦合方程一致的半隱式方法(SIMPLE, Semi-Implicit Method for Pressure-Linked Equation Consistent) 迭代至收斂,獲得流場及溫度場。此模擬將兩種有狹縫與無狹縫的平板放置於通道內總長度的1/3處,改變放置高度(3/4通道高度、1/2通道高度及1/4通道高度)和雷諾數(500, 1000, 1500, 2000),分析不考慮重力作用強制對流之溫度場與速度場分佈。
研究結果顯示: 放置平板於通道有效改善通道內的熱傳現象,雷諾數等於2000時與C2(狹縫)(3/4通道高度)相比,平均紐賽數最大增加率為27.7%。平板具有狹縫可以在斜肋間影響渦流,改變擺放位置高度可影響流道內部的流場,在所有情況下具有狹縫的鰭片的流道內最高溫度都有所降低。從斜肋之平均紐賽數上看到,在雷諾數等於1000時,C1(狹縫)和C4(非狹縫)(1/2通道高度)相比,C1的平均紐賽數最大增加率為5.07%。在雷諾數等於500-1500時,C1的平均紐賽數最高,而在雷諾數等於2000時,C2(狹縫)(3/4通道高度)的平均紐賽數超過C1。
This study investigates the three-dimensional heat transfer of plate with slit and inclined rib module by numerically analyzes the laminar flow field and heat transfer performance. The Navier-Stokes equations and energy equation are constructed by the Finite Volume Method (FVM) and then are discretized to a system of algebraic equations and dimensionless of mathematical formulation. They can be solved by semi-implicit method for pressure linked equations-consistent (SIMPLEC). The solutions must be iterated to converge within each step to obtain the temperature and flow field.
This simulation places two different plate inclined ribs (slit or not) on the 1/3 of the total length and changes the heights of placement (3/4 channel height, 1/2 channel height and 1/4 channel height) with four different Re levels (500, 1000, 1500, 2000) to investigate the temperature and flow field without gravity in forced convection.The results indicate that place the plate can effectively improve the heat transfer. Compared with C2 (slit) (3/4 channel height), at Re=2000 the max increasing rate is 27.7%. For plate with the slits and inclined rib module, the maximum temperature in all cases is reduced. From averaged Nu profiles, compared to C1 (slit) and C4 (non-slit) (1/2 channel height), the maximum increase rate in average Nu of C1 of races is 5.07% at Re=1000. At Re=500-1500, the Nu of C1 is highest. At Re=2000, the Nu of C2 (slit) (3/4 channel height) exceed C1 becomes to the highest.
References
[1] C. Chen and J.-T. Teng, “A study on fluid flow and heat transfer in rectangular microchannels with various longitudinal vortex generators”, Int. J. Heat Mass Transf. ,Vol.69, pp.203-214, 2014.
[2] G. Zhou, Z. Feng, “Experimental investigations of heat transfer enhancement by plane and curved winglet type vortex generators with punched holes”, Int. J.Therm. Sci. ,Vol.78, pp.26-35, 2014.
[3] S. Taneda, “Experimental investigation of vortex streets”, J. Phys. Soc. Jpn. , Vol.20, pp.1714-1721, 1965.
[4] N.C. DeJong, A.M. Jacobi, “An experimental study of flow and heat transfer in parallel-plate arrays: local, row-by-row and surface average behavior”, Int. J. Heat Mass Transfer, Vol.40, pp.1365–1378, 1997.
[5] S.A. El-Sayed, S.M. Mohamed, A.M. Abdel-latif, and A.E. Abouda, “Investigation of turbulent heat transfer and fluid flow in longitudinal Rectangular-Fin arrays of different geometries and shroud din array”, Experimental Thermal and fluid Science, Vol.26, pp.879-900, 2002.
[6] Xianli Li, Chao Li, Bojia Li, “Net heat gain assessment on a glazed transpired solar air collector with slit-like perforations”, Applied Thermal Engineering, Vol. 99, pp.1-10, 2016.
[7] R. Bessaih, and M. Kadja, “Turbulent natural convection cooling of electronic components mounted on a vertical channel”, Applied Thermal Engineering, Vol.20, pp.141-154, 2000.
[8] H.R. Goshayeshi, M. Fahiminia, and M.M. Naserian, “Numerical modeling of natural convection on various configuration of rectangular fin arrays on vertical base plates”, World Academy of Science, Engineering and Technology, Vol.73, pp.91-96, 2011.
[9] R.L. Linton, and D. Agonafer, “Coarse and detailed CFD modeling of finned heat sink”, IEEE Transactions On Components, Packaging, and Manufacturing Technology-Part A, Vol. 18, no. 3,1995.
[10] R.A. Wirtz, W. Chen, and R. Zhou, “Effect of flow bypass on the performance of longitudinal fin heat sink”, Journal of Electronic Packaging, Vol.116, pp.206-211, 1994.
[11] M. Dastmalchi, A. Arefmanesh, G. A. Sheikhzadeh, “Numerical investigation of heat transfer and pressure drop of heat transfer oil in smooth and micro-finned tubes”, International Journal of Thermal Sciences, Vol.121, pp.294-304, 2017.
[12] J.B. Copetti, M.H. Macagnan, D. de Souza, RDC. Oliveski , “Experiments with micro-fin tube in single phase”, Int J Refrig, Vol.27, pp.876-83, 2004.
[13] Gun Woo Kim, Hyun Muk Lim, Gwang Hoon Rhee, “Numerical studies of heat transfer enhancement by cross-cut flow control in wavy fin heat exchangers”, International Journal of Heat and Mass Transfer, Vol.96, pp.110-117, 2016.
[14] Zhi-Min Lin, Cai-Ping Liu, Mei Lin, Liang-Bi Wang, “Numerical study of flow and heat transfer enhancement of circular tube bank fin heat exchanger with curved delta-winglet vortex generators”, Applied Thermal Engineering, Vol.88, pp.198-210, 2015.
[15] Shobhana Singh, Kim Sørensen, Anders Schou Simonsen, Thomas J. Condra, “Implications of fin profiles on overall performance and weight reduction of a fin and tube heat exchanger”, Applied Thermal Engineering, Vol.107, pp.612-624, 2016.
[16] H. Jonsson, B. Palm, “Thermal and hydraulic behavior of plate fin and strip fin heat sink under varying bypass conditions”, IEEE Transactions on Components and Packaging Technologies, Vol.23, pp.47-54, 2000.
[17] Ahmadali Gholami, Mazlan A. Wahid, H. A. Mohammed, “Thermal–hydraulic performance of fin-and-oval tube compact heat exchangers with innovative design of corrugated fin patterns”, International Journal of Heat and Mass Transfer, Vol.106, pp.573-592, 2016.
[18] G. Ledezma, and A. Bejan, “Heat sinks with sloped plate fins in natural and forced convection”, International Journal of Heat Mass Transfer, Vol.39, pp.1773-1783, 1996.
[19] W.K. Anderson, D.L. Bonhus, “An Implicit Upwind Algorithm for Computing Turbulent Flows on Unstructured Grids”, Computers Fluids, Vol.23, pp.1-21, 1994.
[20] S.V. Patankar, “Numerical Heat Transfer and Fluid Flow”, McGraw-Hill, New York, 1980.
[21] A. Bejan, “Convection heat transfer”, John Wiley and Sons Inc., New York, 1985.
[22] F.P. Incropera, D.P. Dewitt, “Fundamentals of heat transfer and mass transfer”, John Wiley and Sons Inc., New York, 1997.
[23] Feng Xin, Zhichun Liu, Si Wang, Wei Liu, “Study of heat transfer in oscillatory flow for a Stirling engine heating tube
inserted with spiral spring”, Applied Thermal Engineering, Vol.143, pp.182-192, 2018.
[24] Wenbin Tu, Zhenying Xu, Yingxia Zhu, Yun Wang, Yong Tang, “Boundary layer redevelops with mesh cylinder inserts for heat transfer enhancement”, International Journal of Heat and Mass Transfer, Vol.109, pp.147-156, 2017.
[25] Peng Liu, Nianben Zheng, Feng Shan, Zhichun Liu, Wei Liu, “Heat transfer enhancement for laminar flow in a tube using bidirectional conical strip inserts”, International Journal of Heat and Mass Transfer, Vol.127, pp.1064-1076, 2018.
校內:2023-09-06公開