簡易檢索 / 詳目顯示

研究生: 鄭煜昇
Zheng, Yu-Sheng
論文名稱: 氧化錳添加對俱X8R鈦酸鋇陶瓷介電性質與顯微結構之影響
Effects of MnO Doping on The Dielectric Properties and Microstructure of BaTiO3 with specification of X8R
指導教授: 方滄澤
Fang, Tsang-Tse
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 137
中文關鍵詞: X8Rrelaxor氧化錳鈦酸鋇
外文關鍵詞: X8R, BaTiO3, releaxor, MnO
相關次數: 點閱:81下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近幾年來,電容器要具有良好的溫度特性已經是必備的條件之一,某些應用上甚至特別要求在嚴苛的條件下還能夠擁有平緩的溫度特性。而積層陶瓷電容器,以X8R為例,其應用在許多不同類型的電子設備上,如設置在車輛引擎中的引擎電子控制元件(ECU),輪軸轉角偵測器,反煞車制動裝置(ABS)模組等等,這些類型的電子設備被用在穩定引擎控制,駕駛控制,以及煞車控制,而這些電子設備的運作環境相當嚴苛,可以想像成氣溫約降至-20˚C的寒帶地區,或是夏天引擎剛發動時會上升至約+130˚C的溫度。因此,這些電子設備必須被要求設計成對於環境溫度變化有極良好的穩定性。
    在本研究中發現隨著MnO添加量的上升,整體之介電常數下降,但是相對於室溫之介電常數變化量ΔC/C25˚C在高溫時則有上升的趨勢,介電損失同樣的在高溫時的峰值也有增加的現象。在顯微結構方面,Mn會集中在晶界上,降低了晶界的移動能力而抑制了晶粒的成長。此外,也發現MnO的添加對於relaxor性質有相當重要的影響,根據modify Curie-Weiss law,當MnO添加量上升時會使得鈦酸鋇偏離relaxor而接近normal ferroelectric,表示隨著MnO的添加量的上升,relaxor性質下降。

    In recent years, capacitor is required to have excellent temperature characteristics. In particular, in some applications, it is desired that the temperature characteristics be smooth under harsh conditions. Multi-layer ceramic capacitors, like X8R, have some into use for various types of electronic equipment such as the engine electronic control units (ECU) mounted in engine compartments of automobiles, crank angle sensors, antilock brake system (ABS) modules, etc. These types of electronic equipments are used for stabilizing engine control, drive control, and brake control. The environment in which these types of electronic equipment are used is envisioned to be one in which the temperature fall s to as low as -20˚C or so in the winter in cold areas or the temperature rises to as high as +130˚C or in the summer right after engine startup. Therefore, these types of electronic equipment are required to have excellent circuit temperature stability.
    In this study, the increasing of MnO-doping decreases the dielectric permittivity. However, tangent loss and ΔC/C25˚C in high temperature range increased with additional MnO. In the aspect of microstructure, Mn prohibits the grain growth by decreasing the grain boundary mobility due to a high concentration of Mn near the grain boundary. Furthermore, Mn concentration also has important influence on the relaxor behavior. With increasing dopant of Mn, the BaTiO3 solid solution shows a decreased degree of deviation from the modify Curie–Weiss law. It indicates a crossover from relaxor behavior to a normal ferroelectric state, and results the reduction of relaxor behavior.

    摘要…………………………………………………………………Ⅰ Abstract……………………………………………………………Ⅱ 誌謝…………………………………………………………………Ⅲ 目錄…………………………………………………………………Ⅳ 表目錄………………………………………………………………Ⅶ 圖目錄………………………………………………………………Ⅷ 第一章 序論…………………………………………………………1 1.1 前言……………………………………………………………1 1.2 研究重點及目的………………………………………………3 第二章 基礎理論與文獻回顧………………………………………5 2.1 介電理論………………………………………………………5 2.1.1 介電常數(dielectric constant) ………………………5 2.1.2 介電損失(dielectric loss,tanδ) ……………………9 2.1.3 極化機制……………………………………………………11 2.2 鈦酸鋇的基本性質……………………………………………24 2.2.1 鈦酸鋇的晶體結構…………………………………………24 2.2.2 組成對鈦酸鋇顯微結構與介電性質的影響………………30 2.3 影響鈦酸鋇陶瓷介電常數的因素……………………………34 2.3.1 孔隙與混合相………………………………………………34 2.3.2 晶域(domain)與雙晶(twin) ……………………………36 2.3.3 晶粒效應與晶粒大小………………………………………37 2.4 添加物對鈦酸鋇性質的影響…………………………………41 2.4.1 等價離子對於居禮溫度的偏移及介電性質的影響………41 2.4.2 施體(donor)的添加對鈦酸鋇性質的影響…………………45 2.4.3 受體(acceptor)的添加對鈦酸鋇性質的影響……………46 2.4.4 補償性體(compensator)的添加對鈦酸鋇性質的影響……48 2.5 X8R材料及相關理論……………………………………………49 2.5.1 X8R材料的分類………………………………………………49 2.5.2 添加物對鈦酸鋇介電性質的影響…………………………49 2.5.3 擴散性相變化(diffuse phase transition,DPT)………57 2.5.4 core-shell結構……………………………………………61 第三章 實驗流程與方法……………………………………………63 3.1 實驗藥品………………………………………………………63 3.2 實驗流程………………………………………………………63 3.2.1 粉末配置及製作生胚………………………………………63 3.2.2 燒結條件……………………………………………………64 3.2.3 BCS((BaCa)SiO3)之合成……………………………………69 3.3 特性分析………………………………………………………71 3.3.1 X光繞射分析…………………………………………………71 3.3.2 密度分析……………………………………………………71 3.3.3 介電性質分析………………………………………………72 3.3.4 SEM顯微結構分析……………………………………………73 第四章 結果與討論…………………………………………………74 4.1 改變MnO添加量對於性質之影響………………………………74 4.1.1 介電性質分析………………………………………………74 4.1.2 SEM顯微結構分析……………………………………………81 4.1.3 XRD分析………………………………………………………85 4.2 改變MnO添加量對於relaxor性質之研究……………………89 4.2.1 Fitting to Curie-Weiss law……………………………89 4.2.2 Fitting to modify Curie-Weiss law…………………102 第五章 結論………………………………………………………114 第六章 參考文獻…………………………………………………115

    1. M. W. Barsoum, “Fundamentails of Ceramics,” pp. 513-543 (1997).
    2. J. M. Herbert, “Ceramic Dielectrics and Capacitors,“ New York, pp. 202-218 (1985).
    3. G. C. Jain, “Properties of Electrical Engineering Materials,“ (1966).
    4. J. Nowotny, “Electronic Ceramic Materials,” (1991)
    5. 邱碧秀, “電子陶瓷材料”, (1988).
    6. A. J. Moulson and J. M. Herbert, “Electroceramics,” Chapman & Hall (1990).
    7. D. E. Rase and R. Roy, “Phase equilibria in the system BaO–TiO2,” J. Am. Ceram. Soc., Vol. 38, Issue 3, pp. 102-113 (1955).
    8. R. K. Sharma, N. H. Chan and D. M. Smyth, “Solubility of TiO2 in BaTiO3,“ J. Am. Ceram. Soc., Vol. 64, Issue 8, pp. 448-451 (1981).
    9. Y. H. Hu, M. P. Harmer and D. M. Smyth, “Solubility of BaO in BaTiO3,“ J. Am. Ceram. Soc., Vol. 8, Issue 7, pp. 372-376 (1985).
    10. K. W. Kirby and B. A. Wechsler, ”Phase relations in the barium titanate—titanium oxide system,“ J. Am. Ceram. Soc., vol. 74, Issue 8, pp. 1841-1847 (1991).
    11. A. K. Maurice et al., Ferroelectrics , 74 , 61-75 (1987)
    12. J. D. Murray et al., Am. Ceram. Soc. Bull., 37 , 476-479 (1958)
    13. A. Beauger et al., J. Mater. Sci., 19 , 195-201 (1984).
    14. J. K. Lee and K. S. Hong, ”Role of Ba/Ti ratios in the dielectric properties of BaTiO3 ceramics,” J. Am. Ceram. Soc., Vol. 84, Issue 9, pp. 2001-2006 (2001).
    15. W. D. Kingery, H. K. Bowen and D. R. Uhlmann, “Introduction to Ceramics,” 2nd Edition , John Wiley & Sons , New York (1976).
    16. K. Uchino, E. Sadanaga and T. Hirose, ”Dependence of the crystal structure on particle size in barium titanate,” J. Am. Ceram. Soc., Vol. 72, Issue 8, pp. 1555-1558 (1989).
    17. G. Arlt , D. Hennings , and G. With, “Dielectric properties of fine-grained barium titanate ceramics,“ J. Appl. Phys., Vol. 58, pp. 1619-1625 (1985).
    18. J. N. Lin and T. B. Wu, “Effect of isovalent substitutions on lattice softening and transition character of BaTiO3 solid solutions,” J. Appl. Phys., Vol. 68, pp. 985-993 (1990).
    19. H. Ihrig, “The phase stability of BaTiO3 as a function of doped 3d element: an experimental study,” J. Phys. C: Solid State Phys., Vol. 11, pp. 819-827 (1978).
    20. D. Hennings and A. Schnell, “Diffuse ferroelectric phase transitions in Ba(Ti1-yZry)O3 ceramics,” J. Am. Ceram. Soc., Vol. 65, Issue 11, pp. 539-534 (1982).
    21. J. H. Hwang and Y. H. Han, “Electrical properties of cerium-doped BaTiO3,” J. Am. Ceram. Soc., Vol. 84, Issue 8, pp. 1750-1754 (2001).
    22. S. S. Yukie, N. A. Sato and T. Nomura , “Effect of Y-doping on resistance degration of multilayer ceramic capacitors with Ni electrodes under the highly accelerated life test,“ Jpn. J. Appl. Phys., Vol. 36, pp. 6016-6020 (1997).
    23. S. B. Desu and E. C. Subbarao, “Effect of oxidation states of Mn on the phase stability of Mn-doped BaTiO3,” Ferroelectrics, Vol. 37, pp. 665-668 (1981).
    24. D. F. K. Hennings, “Dielectric materials for sintering in reducing atmospheres,” J. Eur. Ceram. Soc., Vol. 21, pp. 1637-1642 (2001).
    25. L. A. Xue , Y. Chen and R. J. Brook, ”The influence of ionic radii on the incorporation of trivalent dopants into BaTiO3,” Mater. Sci. Engin., B1, pp. 193-201 (1988).
    26. H. Kishi, N. Kohzu, Y. Mizuno, Y. Iguchi, J. Sugino, H. Ohsato and T. Okuda, ”Effect of occupational sites of rare-earth elements on the microstructure in BaTiO3,” Vol.38 , pp.5452-5456 (1999).
    27. S. Sato, T. Nomura and A. Sato, ”Dielectric Ceramic Composition and Electronic Device,” US Patent 6, 226, 172 (2001).
    28. S. Sato, Y. Fujikawa and Y. Terada, “Dielectric Ceramic Composition and Electronic Device,” US Patent 6,403,513 (2002).
    29. S. Sato, Y. Fujikawa and Y. Terada, “Dielectric Ceramic Composition and Electronic Device,” US Patent 6,544,916 (2003).
    30. S. Sato, Y. Fujikawa and Y. Terada, “Dielectric Ceramic Composition and Electronic Device,” US Patent 6,548,437 (2003).
    31. Y. Fujikawa, Y. Terada and S. Sato, “Dielectric Ceramic Composition and Electronic Device,” US Patent 6,559,084 (2003).
    32. Y. Fujikawa, Y. Terada and S. Sato, “Dielectric Ceramic Composition and Electronic Device,” US Patent 6,699,809 (2004).
    33. Y. S. Jung, E. S. Na, U. Paik, J. Lee and J. Kim, ”A study on the phase transition and characteristics of rare earth element doped BaTiO3,” Mater. Res. Bull., Vol. 37, pp.1633-1640 (2002).
    34. E. Na, S. C. Choi and U. Paik, ”Temperature dependence of dielectric properties of rare-earth element doped BaTiO3,” J. Ceram. Pro. Res., Vol. 4, No.4, pp.181-184 (2003).
    35. S. Sato, Y. Fujikawa and T. Nomura, “Effect of rare-earth doping on the temperature-capacitance characteristics of MLCCs with Ni electrodes,” Dielectric Materials and Devices, pp.473-481 (2000).
    36. Y. Li, X. Yao and L. Zhang, “High permittivity neodymium-doped barium titanate sintered in pure nitrogen,” Ceram. Inter., Vol. 30, pp.1325-1328 (2004).
    37. S. Wang, S. Zhang, X. Zhou, B. Li and Z. Chen, ”Effect of sintering atmosphere on the microstructure and dielectric properties of Yb/Mg co-doped BaTiO3 ceramics,” Mater. Lett., Vol. 59, pp. 2457-2460 (2005).
    38. Y. H. Song, J. H. Hwang and Y. H. Han, ”Effect of Y2O3 on temperature stability of acceptor-doped BaTiO3,” Jpn. J. Appl. Phys., Vol. 44, No. 3, pp. 1310-1313 (2005).
    39. Y. H. Song and Y. H. Han, ”Effects of rare-earth oxides on temperature stability of acceptor-doped BaTiO3,” Jpn. J. Appl. Phys., Vol. 44, No. 8, pp. 6143-6147 (2005).
    40. S. Zhang, S. Wang, X. Zhou, B. Li and Z. Chen, “Influence of 3d-elements on dielectric properties of BaTiO3 ceramics,” J. Mater. Sci.: Mater. electro., Vol. 16, pp. 669-672 (2005).
    41. S. Wang, S. Zhang, X. Zhou, B. Li and Z. Chen, “Investigation on dielectric properties of BaTiO3 co-doped with Ni and Nb,” Mater. Lett., Vol. 60, pp. 909-911 (2006).
    42. B. S. Rewal, M. Kahn and W. R. Buessem, “Grain core-grain shell structure in barium titanate-based-dielectric,” pp. 172-188 in Advances in Ceramics, Vol. 1, Grain Boundary Phenomena in Electronic Ceramics. Edited by L. M. Levinson. American Ceramic Society, Columbus, OH, 1981.
    43. J. S. Kim and S. J. Kang, “Formation of core-shell structure in the BaTiO3-SrTiO3 system,” J. Am. Ceram. Soc., Vol. 82, Issue 4, pp. 1085-1088 (1999).
    44. N. Setter and L. E. Cross, “The role of B-site cation disorder in diffuse phase transition behavior of perovskite ferroelectrics,” J. Appl. Phys., Vol. 51, No. 8, pp. 4356-4360 (1980).
    45. G. A. Smolenskii, A. I. Agranovskaya and V. A. Isupov, “New ferroelectrics of complex compound,” Sov. Phys. Solid State., Vol. 1, pp. 907-908 (1959).
    46. D. Hennings and R. Rosenstein, “Temperature-stable dielectrics based on chemically inhomogeneous BaTiO3,” J. Am. Ceram. Soc., Vol. 67, Issue 4, pp. 249-254 (1984).
    47. H. Y. Lu, J. S. Bow and W. H. Deng, “Core-shell structure in ZrO2-modified BaTiO3 ceramics,” J. Am. Ceram. Soc., Vol. 73, Issue 12, pp. 3562-3568 (1990).
    48. H. T. Martirena and J. C. Burfoot, “Grain-size effects on properties of some ferroelectric ceramics,” J. Phys., c7, pp. 3182-3192 (1974).
    49. W. R. Beussem, L. E. Cross and A. K. Goswami, “Phenomenological theory of high permittivity in fine-grained barium titanate,” J. Am. Ceram. Soc., Vol. 49, Issue 1, pp. 33-36 (1966).
    50. W. R. Beussem, L. E. Cross and A. K. Goswami, “Effect of two-dimensional pressure on the permittivity of fine and coarse-grains barium titanate,” J. Am. Ceram. Soc., Vol. 49, Issue 1, pp. 36-39 (1966).
    51. P. Murugaraj, T. N. Kutty and M. S. Rao, “Diffuse phase transformation in neodymium-doped BaTiO3 ceramics,” J. Mater. Sci., Vol. 21, pp. 3521-3527 (1986).
    52. L. Benguigui and K. Bethe, ”Diffused phase transition in BaxSr1-xTiO3 single crystal,” J. Appl. Phys., Vol. 47, No. 7, pp. 2787-2791 (1976).
    53. D. Bard, E. Barbulescu and A. Barbulescu, “Diffuse phase transitions and ferroelectric-paraelectric diagram for the BaTiO3-SrTiO3 system,” Phys. Stat. Sol. (a), Vol. 74, pp. 79-83 (1982).
    54. T. R. Armstrong, L. E. Morgens, A. K. Maurice and R. C. Buchanan, “Effects of zirconia on microstructure and dielectric properties of barium titanate ceramics,” J. Am. Ceram. Soc., Vol. 72, Issue 4, pp. 605-611 (1989).
    55. H. Chazono and H. Kishi, “Sintering characteristics in BaTiO3-Nb2O5-Co3O4 ternary system: I, electrical properties and microstructure,” J. Am. Ceram. Soc., Vol. 82, Issue 10, pp. 2689-2697 (1999).
    56. H. Chazono and H. Kishi, “Sintering characteristics in BaTiO3-Nb2O5-Co3O4 ternary system: II, stability of so-called ‘core-Shell’ Structure,” J. Am. Ceram. Soc., Vol. 83, Issue 1, pp. 101-106 (2000).
    57. T. R. Armstrong and R. C. Buchanan, ”Influence of core-shell grains on the internal stress state and permittivity response of zirconia-modified barium titanate,” J. Am. Ceram. Soc., Vol. 73, Issue 5, pp. 1268-1273 (1990).
    58. T. Takeuchi, K. Ado, K. Asai, H. Kageyama, Y. Saito, C. Masquelier and O. Nakamure, “Thickness of cubic surface phase on barium titanate single-crystalline grains,” J. Am. Ceram. Soc., Vol. 77, Issue 6, pp. 1665-1668 (1994).
    59. G. Liu, X. Wang, Y. Lin, L. T. Li and C. W. Nan, “Growth kinetics of core-shell-structured grains and dielectric constant in rare-earth doped BaTiO3 ceramics,” J. Appl. Phys., Vol. 98, pp. 044105 (2005).
    60. D. E. McCauley, M. S. H. Chu, and M. H. Megherhi, “PO2 dependence of the diffuse-phase transition in base metal capacitor dielectrics,” J. Am. Ceram. Soc., Vol. 89, Issue 1, pp. 193-201 (2006).
    61. Q. Feng, C. J. McConville and D. D. Edwards, “Effect of oxygen partial pressure on the dielectric properties and microstructures of cofired base-metal-electrode multilayer ceramic capacitors,” J. Am. Ceram. Soc., Vol. 89, Issue 3, pp. 894-901 (2006).
    62. Q. Feng and C. J. McConville, “Weak-beam dark-field microscopy of complex stress states in X7R-type BaTiO3 dielectric core-shell structures,” J. Am. Ceram. Soc., Vol. 87, Issue 10, pp. 1945-1951 (2004).
    63. Y. Mizuno, Y. Okino, N. Kohzu, H. Chazono and H. Kishi, “Influence of the microstructure evolution on electrical properties of multilayer capacitor with Ni electrode,” Jpn. J. Appl. Phys., Vol. 37, pp. 5227-5231 (1998).
    64. R. J. Brandmayr et al., USA ECOM Technical Report 2614, May 1965.
    65. A. Yamaji, Y. Enomoto, K. Kinoshita and T. Murakami, “Preparation, characterization, and properties of Dy-doped small-grained BaTiO3 ceramics,” J. Am. Ceram. Soc., Vol. 60, Issue 3-4, pp. 97-101 (1977).
    66. A. J. Bell, A. J. Moulson and L. E. Cross, “The effect of grain size on the permittivity of BaTiO3,” Ferroelectrics, Vol.54, 147-150 (1984).
    67. T. T. Fang, H. L. Hsieh, F. S. Shiau, “Effect of pore morphology and grain size on the dielectric properties and tetragonal-cubic phase transition of high purity barium titanate,” J. Am. Ceram. Soc., Vol. 76, Issue 5, pp. 1205-1211 (1993).
    68. A. J. Moulson, J. M. Herbert, “Electrocreamics”, Second Edition (2003)
    69. Shahid Anwar, P.R. Sagdeo, N.P. Lalla, “Study of the relaxor behavior in BaTi1-Hf-O3 ceramics”, Solid State Sciences, Vol. 9, Issue. 11, pp. 1054-1060 (2007)
    70. Huichun Yu and Zuo-Guang Ye, “Dielectric properties and relaxor behavior of a new BaTiO3-xBiAlO3 solid solution”, Journal of Applied Physics, Vol. 103, Issue. 3, Article Number. 034114, (2008)
    71. L. Eric Cross, “Relaxor Ferroelectrics”, Ferroelectrics, Vol. 76, pp. 241-267 (1987)
    72. L. L. Hencb, J. K. West, “Principles of Eectronic Ceramics” (1990)
    73. Morita K, Mizuno Y, Chazono H, “Effect of Mn addition on dc-electrical degradation of multilayer ceramic capacitor with Ni internal electrode”, Japanese Journal of Applied Physics Part1-Regular Papers Short Notes & Review Papers, Vol. 41, Issue. 11B, pp. 6957-6961 (2002)
    74. Z.Y. Cheng, R.S. Katiyar, X. Yao, Aqiang Guo, “Phys. Rev. B”, Vol. 55, pp. 8165 (1997)
    75. Chen Ang, Zhi Jing, Zhi Yu, J. Phys., “Condens. Matter. ”, Vol. 14, pp. 8901 (2002)
    76. Shahid Anwar, P.R. Sagdeo, N.P. Lalla, J. Phys., “Condens. Matter.” Vol. 18, pp. 3455 (2006)
    77. A. A. BOKOV, Z.-G. YE, “Recent progress in relaxor ferroelectrics with perovskite structure”, Journal of Inorganic Materials, Vol.17, Issue. 3, pp. 385-391 (2002)

    下載圖示 校內:2018-08-12公開
    校外:2018-08-12公開
    QR CODE