簡易檢索 / 詳目顯示

研究生: 劉致寧
Liu, Chi-Ning
論文名稱: 橙黃壺菌L-BL10品系之聚酮合成酶基因序列與表現分析
Polyketide synthase gene sequence and expression analysis in Aurantiochytrium sp. strain L-BL10
指導教授: 陳逸民
Chen, Yi-Min
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生物科技研究所
Institute of Biotechnology
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 122
中文關鍵詞: 橙黃壺菌L-BL1022碳6烯酸22碳5烯酸聚酮合成酶
外文關鍵詞: Aurantiochytrium sp. strain L-BL10, DHA, DPA, polyketide synthase
相關次數: 點閱:99下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 橙黃壺菌L-BL10 (Aurantiochytrium sp. strain L-BL10) 富含22碳6烯酸 (C22:6ω3, DHA) 和22碳5烯酸 (C22:5ω6, DPA),然18碳及20碳系列的不飽和脂肪酸含量極低。由過去本實驗室的研究,在其培養基中添加脂肪酸合成酶 (fatty acid synthase, FAS) 抑制劑後,DHA及DPA的產量不減反增的結果推測,L-BL10細胞內存有一個獨立於標準路徑以外的多元不飽和脂肪酸生合成路徑。因此本研究目的即想探討在此條特殊的生合成路徑中多元不飽和脂肪酸可能透過何種酵素進行催化。首先,由實驗室過去已解序出的L-BL10基因體序列搭配NCBI資料庫比對,找出和已知PUFAs (polyunsaturated fatty acids) 生合成基因近似的基因片段並將其完整解序。接著利用SMART (Simple Modular Architecture Research Tool) 軟體預測其功能結構域 (functional domain) 的種類,並由其排列方式與功能結構域的親緣性將此酵素進行分類,另一方面也利用即時聚合酶鏈鎖反應 (real-time PCR),研究各個培養時間點其基因表現量的變化。
    利用上述方法,本研究在L-BL10基因體中找到8段與Schizochytrium sp. ATCC 20888 合成DHA及DPA 的聚酮合成酶 (polyketide synthase, PKS) 類似的基因序列。ATCC 20888在過去證實其聚酮合成酶分別由三段基因所組成,分別命名為pksA、pksB及pksC。由本研究定序結果,分別獲得3個近似於ATCC 20888的pksA、pksB及pksC的完整基因序列,其長度分別為10,068、6,117及4,386 個鹼基對,且利用SMART軟體分析後找到合成脂肪酸所必須的功能性區域,如: ketoacyl synthase、malonyl-CoA:ACP acyl transferase、acyl carrier protein、ketoacyl-ACP reductase、enoyl reductase、chain length factor、acyl transferase和dehydrtase的功能性區域,顯示L-BL10的聚酮合成酶基因應具有合成長鏈不飽和脂肪酸的能力,並由其功能結構域排列方式與KS結構域親緣性分析,皆可將L-BL10的聚酮合成酶歸類在Type I iterative PKS。此外在基因表現分析結果中,發現聚酮合成酶基因在L-BL10的對數成長末期 (接種後20小時) 後才會開始大量表現,而此時L-BL10耗盡培養基內的氮源並開始消耗碳源。由此推測,L-BL10的聚酮合成酶基因表現可能受到營養源的調控,當碳氮源同時存在時,聚酮合成酶的基因並不會啟動,然一旦氮源消耗殆盡僅剩碳源時,其基因就會被誘導開始大量表現,進行DHA和DPA的累積。

    Aurantiochytrium sp. strain L-BL10 is rich in C22 polyunsaturated fatty acids (PUFAs), DHA (C22:6n-3), and DPA (C22:5n-6); however, this species contains very few PUFAs with 18 and 20 carbons. Previous studies in our laboratory demonstrated that adding fatty acid synthase (FAS) inhibitor to a L-BL10 culture failed to decrease the percentages of DHA and DPA. These earlier results revealed that, in addition to the standard pathway, a secondary biosynthesis pathway is involved in the production of these two PUFAs in L-BL10. The purpose of our current research was to identify enzymes capable of catalyzing the synthesis of PUFAs along this specific biosynthetic pathway. First, several genes suspected of being involved in PUFA production were synthesized from the L-BL10 genome sequence and NCBI database. We then predicted the functional domains using SMART (Simple Modular Architecture Research Tool) software and investigated the enzyme classification according to functional domain arrangement and phylogenetic analysis. In addition, we examined gene expression over various incubation times using real-time PCR.
    These efforts revealed that 8 polyketide synthase (PKS)-like genes may be involved in the production of DHA and DPA in Schizochytrium sp. ATCC 20888. Previous researchers confirmed that the polyketide synthase of ATCC 20888 comprises three genes, pksA, pksB, and pksC. The results of this current study further demonstrated that L-BL10 has three complete polyketide synthase genes, which are similar to Schizochytrium sp. ATCC 20888. The lengths of these genes are 10068, 6117, and 4386 base pairs, respectively. We also identified the functional domains capable of synthesizing PUFAs, such as ketoacyl synthase, malonyl-CoA:ACP acyl transferase, acyl carrier protein, ketoacyl-ACP reductase, enoyl reductase, chain length factor, acyl transferase, and dehydratase functional domain. These results indicate that L-BL10 should have the ability to synthesize PUFAs. Moreover, the PKS of L-BL10 was shown to belong to Type I iterative PKS according to its arrangement of functional domains and the results of phylogenetic analysis related to KS domains. Conversely, we found that PKS gene expression reached the culminating point when L-BL10 was in the last stage of log phase (after culturing for 20 hours). At this point, the nitrogen source on the culture plate was depleted and L-BL10 began using the carbon source. Thus, we surmise that the PKS gene may be regulated by its nutrient source, such that the co-existence of a carbon source and nitrogen source on the culture plate prevents induction of the PKS gene. Nonetheless, these conditions could promote the accumulation of DHA and DPA when induced by only a carbon source on the culture plate.

    中文摘要 i 英文摘要 iii 致謝 v 目錄 vii 表目錄 x 圖目錄 xi 前言 1 1-1 多元不飽和脂肪酸之定義與功能 1 1-2 不同生物體內多元不飽和脂肪酸之組成與生合成路徑 3 1-3 以聚酮合成酶合成不飽和脂肪酸的研究 5 1-4 BL10藻株的相關研究 8 1-5 研究的目的及策略 10 材料與方法 11 2-1 藥品與儀器 11 2-2 L-BL10來源、純品系篩選與保存 13 2-2-1 L-BL10純品系藻種篩選 14 2-2-2 L-BL10藻種保存 18 2-3 L-BL10不飽和脂肪酸相關合成基因之篩選 19 2-4 L-BL10聚酮合成酶mRNA全長解序 20 2-4-1 開放閱讀框架區之定序 20 2-4-2 五端未轉譯區之定序 29 2-4-3 三端未轉譯區之定序 31 2-5 聚酮合成酶功能性結構域預測分析 33 2-5-1 功能性結構域預測與比較 33 2-5-2 以功能性結構域分類聚酮合成酶 33 2-6 聚酮合成酶基因表現分析 34 結果 36 3-1 L-BL10 純品系篩選與保存 36 3-2 L-BL10不飽和脂肪酸相關合成基因之篩選 37 3-3 聚酮合成酶mRNA全長解序 37 3-4 聚酮合成酶功能結構域預測分析 39 3-4-1 功能結構域預測與比較 39 3-4-2 以功能結構域分類具酮合成酶 40 3-5 聚酮合成酶基因表現分析 41 討論 42 總結 49 參考文獻 50 附錄 107

    Akamatsu, Y., & Law, J. H. (1970). The enzymatic synthesis of fatty acid methyl esters by carboxyl group alkylation. J Biol Chem, 245. p. 709-713.
    Allen, E. E., & Bartlett, D. H. (2002). Structure and regulation of the omega-3 polyunsaturated fatty acid synthase genes from the deep-sea bacterium Photobacterium profundum strain SS9. Microbiology, 148. p. 1903-1913.
    Arakawa, K. (2012). Biosynthesis: Diversity between PKS and FAS. Nat Chem Biol, 8. p. 604-605.
    Bar-Nun, S., Shneyour, Y., Beckmann, J. S., & Beckmann, J. S. (1983). G-418, an elongation inhibitor of 80 S ribosomes. Biochim Biophys Acta, 741. p. 123-127.
    Bell, M. V., & Tocher., D. R. (2009). Biosynthesis of polyunsaturated fatty acids in aquatic ecosystems: general pathways and new directions. Lipids in aquatic ecosystems, p. 211-236.
    Bigogno, C., Khozin-Goldberg, I., Boussiba, S., Vonshak, A., & Cohen, Z. (2002). Lipid and fatty acid composition of the green oleaginous alga Parietochloris incisa, the richest plant source of arachidonic acid. Phytochemistry, 60. p. 497-503.
    Chaung, K. C., Chu, C. Y., Su, Y. M., & Chen, Y. M. (2012). Effect of culture conditions on growth, lipid content, and fatty acid composition of Aurantiochytrium mangrovei strain BL10. AMB Express, 2. p. 42-53.
    Cheng, Y. Q., Tang, G. L., Shen, B., & Shen, B. (2003). Type I polyketide synthase requiring a discrete acyltransferase for polyketide biosynthesis. Proc Natl Acad Sci, 100. p. 3149-3154.
    Connor, W. E. (2000). Importance of n-3 fatty acids in health and disease. Am J Clin Nutr, 71. p. 171-175.
    De Caterina, R., & Basta, G. (2001). n-3 Fatty acids and the inflammatory response - biological background. Eur Heart J Suppl, 3. p. 42-49.
    Delong, E. F., & Yayanos, A. A. (1986). Biochemical function and ecological significance of novel bacterial lipids in deep-sea procaryotes. Appl Environ Microbiol, 51. p. 730-737.
    Edwards, D. J., Marquez, B. L., Nogle, L. M., McPhail, K., Goeger, D. E., Roberts, M. A., & Gerwick, W. H. (2004). Structure and biosynthesis of the jamaicamides, new mixed polyketide-peptide neurotoxins from the marine cyanobacterium Lyngbya majuscula. Chem Biol, 11. p. 817-833.
    Else, P. L., & Wu, B. J. (1999). What role for membranes in determining the higher sodium pump molecular activity of mammals compared to ectotherms? J Comp Physiol B, 169. p. 296-302.
    Felsenstein, J. (1981). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol, 17. p. 368-376.
    Ghosh, J., & Myers, C. E. (1997). Arachidonic acid stimulates prostate cancer cell growth: critical role of 5-lipoxygenase. Biochem Biophys Res Commun, 235. p. 418-423.
    Goodman, M., Moore, G. W., Barnabas, J., & Matsuda, G. (1974). The phylogeny of human globin genes investigated by the maximum parsimony method. J Mol Evol, 3. p. 1-48.
    Guillou, H., Zadravec, D., Martin, P. G., & Jacobsson, A. (2010). The key roles of elongases and desaturases in mammalian fatty acid metabolism: Insights from transgenic mice. Prog Lipid Res, 49. p. 186-199.
    Hauvermale, A., Kuner, J., Rosenzweig, B., Guerra, D., Diltz, S., & Metz, J. G. (2006). Fatty acid production in Schizochytrium sp.: Involvement of a polyunsaturated fatty acid synthase and a type I fatty acid synthase. Lipids, 41. p. 739-747.
    Hazel, J. R. (1984). Effects of temperature on the structure and metabolism of cell membranes in fish. Am J Physiol, 246. p. 460-470.
    Higashihara, E., Nutahara, K., Horie, S., Muto, S., Hosoya, T., Hanaoka, K., Tuchiya, K., Kamura, K., Takaichi, K., Ubara, Y., Itomura, M., & Hamazaki, T. (2008). The effect of eicosapentaenoic acid on renal function and volume in patients with ADPKD. Nephrol Dial Transplant, 23. p. 2847-2852.
    Holub, B. J. (2009). Docosahexaenoic acid (DHA) and cardiovascular disease risk factors. Prostaglandins Leukot Essent Fatty Acids, 81. p. 199-204.
    Hopwood, D. A., & Sherman, D. H. (1990). Molecular genetics of polyketides and its comparison to fatty acid biosynthesis. Annu Rev Genet, 24. p. 37-62.
    Huang, J., Jiang, X., Zhang, X., Chen, W., Tian, B., Shu, Z., & Hu, S. (2008). Expressed sequence tag analysis of marine fungus Schizochytrium producing docosahexaenoic acid. J Biotechnol, 138. p. 9-16.
    Jakobsen, A. N., Aasen, I. M., Josefsen, K. D., & Strom, A. R. (2008). Accumulation of docosahexaenoic acid-rich lipid in thraustochytrid Aurantiochytrium sp. strain T66: effects of N and P starvation and O2 limitation. Appl Microbiol Biotechnol, 80. p. 297-306.
    Jakobsson, A., Westerberg, R., Jacobsson, A., & Jacobsson, A. (2006). Fatty acid elongases in mammals: their regulation and roles in metabolism. Prog Lipid Res, 45. p. 237-249.
    Jenke-Kodama, H., Sandmann, A., Muller, R., & Dittmann, E. (2005). Evolutionary implications of bacterial polyketide synthases. Mol Biol Evol, 22. p. 2027-2039.
    Katz, L., & Donadio, S. (1993). Polyketide synthesis: prospects for hybrid antibiotics. Annu Rev Microbiol, 47. p. 875-912.
    Korlach, J., Bjornson, K. P., Chaudhuri, B. P., Cicero, R. L., Flusberg, B. A., Gray, J. J., Holden, D., Saxena, R., Wegener, J., & Turner, S. W. (2010). Real-time DNA sequencing from single polymerase molecules. Methods Enzymol, 472. p. 431-455.
    Kris-Etherton, P. M., Harris, W. S., Appel, L. J., & Harris, W. S. (2003). Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Arterioscler Thromb Vasc Biol, 23. p. 20-30.
    Kroken, S., Glass, N. L., Taylor, J. W., Yoder, O. C., & Turgeon, B. G. (2003). Phylogenomic analysis of type I polyketide synthase genes in pathogenic and saprobic ascomycetes. Proc Natl Acad Sci, 100. p. 15670-15675.
    Kuznetsov, V. E., & Elizarova, I. V. (1992). Parthenogenetic activation of bovine oocytes maturing in vitro. Ontogenez, 23. p. 650-653.
    Leesong, M., Henderson, B. S., Gillig, J. R., Schwab, J. M., & Smith, J. L. (1996). Structure of a dehydratase-isomerase from the bacterial pathway for biosynthesis of unsaturated fatty acids: two catalytic activities in one active site. Structure, 4. p. 253-264.
    Letunic, I., Doerks, T., Bork, P., & Bork, P. (2012). SMART 7: recent updates to the protein domain annotation resource. Nucleic Acids Res, 40. p. 302-305.
    Li, D., Sinclair, A., Wilson, A., Nakkote, S., Kelly, F., Abedin, L., Mann, N., & Turner, A. (1999). Effect of dietary alpha-linolenic acid on thrombotic risk factors in vegetarian men. Am J Clin Nutr, 69. p. 872-882.
    Maged P Mansour, John K Volkman, Daniel G Holdsworth, & Anne E Jackson. (1990). Very-long-chain (C28) highly unsaturated fatty acids in marine dinoflagellates. Phytochemistry, 50. p. 541-548.
    McCarthy, A. (2010). Third generation DNA sequencing: pacific biosciences' single molecule real time technology. Chem Biol, 17. p. 675-676.
    McLennan, P. L., Abeywardena, M. Y., Charnock, J. S., & Charnock, J. S. (1988). Dietary fish oil prevents ventricular fibrillation following coronary artery occlusion and reperfusion. Am Heart J, 116. p. 709-717.
    Metz, J. G., Roessler, P., Facciotti, D., Levering, C., Dittrich, F., Lassner, M., Valentine, R., Lardizabal, K., Domergue, F., Yamada, A., Yazawa, K., Knauf, V., & Browse, J. (2001). Production of polyunsaturated fatty acids by polyketide synthases in both prokaryotes and eukaryotes. Science, 293. p. 290-293.
    Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci, 7. p. 405-410.
    Morrison, D., Woodford, N., Barrett, S. P., Sisson, P., & Cookson, B. D. (1999). DNA banding pattern polymorphism in vancomycin - resistant Enterococcus faecium and criteria for defining strains. J Clin Microbiol, 37. p. 1084-1091.
    Mount, D. W. (2007). Using the Basic Local Alignment Search Tool (BLAST). CSH Protoc, 7. p. 17-21.
    Nakamura, M. T., & Nara, T. Y. (2004). Structure, function, and dietary regulation of delta6, delta5, and delta9 desaturases. Annu Rev Nutr, 24. p. 345-376.
    Omura, S. (1976). The antibiotic cerulenin, a novel tool for biochemistry as an inhibitor of fatty acid synthesis. Bacteriol Rev, 40. p. 681-697.
    Paschoal, V. A., Vinolo, M. A., Crisma, A. R., Magdalon, J., & Curi, R. (2013). Eicosapentaenoic (EPA) and docosahexaenoic (DHA) acid differentially modulate rat neutrophil function in vitro. Lipids, 48. p. 93-103.
    Petrie, J. R., & Singh, S. P. (2011). Expanding the docosahexaenoic acid food web for sustainable production: engineering lower plant pathways into higher plants. AoB Plants, 2011. p. 11-22.
    Ratledge, C. (2004). Fatty acid biosynthesis in microorganisms being used for Single Cell Oil production. Biochimie, 86. p. 807-815.
    Reed, M. A., Schweizer, M., Szafranska, A. E., Arthur, C., Nicholson, T. P., Cox, R. J., Crosby, J., Crump, M. P., & Simpson, T. J. (2003). The type I rat fatty acid synthase ACP shows structural homology and analogous biochemical properties to type II ACPs. Org Biomol Chem, 1. p. 463-471.
    Riediger, N. D., Othman, R. A., Suh, M., & Moghadasian, M. H. (2009). A systemic review of the roles of n-3 fatty acids in health and disease. J Am Diet Assoc, 109. p. 668-679.
    Russo, G. L. (2009). Dietary n-6 and n-3 polyunsaturated fatty acids: from biochemistry to clinical implications in cardiovascular prevention. Biochem Pharmacol, 77. p. 937-946.
    Saitou, N., & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol, 4. p. 406-425.
    Sasser, M. (1990). Identification of Bacteria by Gas Chromatography
    of Cellular Fatty Acids. MIDI,p. 101-107.
    Schweizer, E., & Hofmann, J. (2004). Microbial type I fatty acid synthases (FAS): major players in a network of cellular FAS systems. Microbiol Mol Biol Rev, 68. p. 501-517
    Shen, B. (2003). Polyketide biosynthesis beyond the type I, II and III polyketide synthase paradigms. Curr Opin Chem Biol, 7. p. 285-295.
    Singh, S., Kate, B. N., Banerjee, U. C., & Banerjee, U. C. (2005). Bioactive compounds from cyanobacteria and microalgae: an overview. Crit Rev Biotechnol, 25. p. 73-95.
    St-Onge, M. P., & Jones, P. J. (2002). Physiological effects of medium - chain triglycerides: potential agents in the prevention of obesity. J Nutr, 132. p. 329-332.
    Staunton, J., & Weissman, K. J. (2001). Polyketide biosynthesis: a millennium review. Nat Prod Rep, 18. p. 380-416.
    Stillwell, W., & Wassall, S. R. (2003). Docosahexaenoic acid: membrane properties of a unique fatty acid. Chem Phys Lipids, 126. p. 1-27.
    Takeyama, H., Takeda, D., Yazawa, K., Yamada, A., & Matsunaga, T. (1997). Expression of the eicosapentaenoic acid synthesis gene cluster from Shewanella sp. in a transgenic marine cyanobacterium, Synechococcus sp. Microbiology, 143. p. 2725-2731.
    Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol, 28. p. 2731-2739.
    Theobald, H. E., Goodall, A. H., Sattar, N., Talbot, D. C., Chowienczyk, P. J., & Sanders, T. A. (2007). Low-dose docosahexaenoic acid lowers diastolic blood pressure in middle-aged men and women. J Nutr, 137. p. 973-978.
    W. R. Barclay, K. M. Meager, J. R. Abril, & J. R. Abril. (1994). Heterotrophic production of long chain omega-3 fatty acids utilizing algae and algae-like microorganisms. J Appl Phycol, 6. p. 123-129.
    Wakil, S. J. (1989). Fatty acid synthase, a proficient multifunctional enzyme. Biochemistry, 28. p. 4523-4530.
    Wallis, J. G., Watts, J. L., Browse, J., & Browse, J. (2002). Polyunsaturated fatty acid synthesis: what will they think of next? Trends Biochem Sci, 27. p. 467-473.
    Wei, L. J. W. (2006). Detailed assessment of homology detection using different substitution matrices. Chinese Science Bulletin, 51. p. 1538-1545.
    Wenzel, S. C., & Muller, R. (2005). Formation of novel secondary metabolites by bacterial multimodular assembly lines: deviations from textbook biosynthetic logic. Curr Opin Chem Biol, 9. p. 447-458.
    Yang, H. L., Lu, C. K., Chen, S. F., & Chen, Y. M. (2010). Isolation and characterization of Taiwanese heterotrophic microalgae: screening of strains for docosahexaenoic acid (DHA) production. Mar Biotechnol, 12. p. 173-185.
    Yazawa, K., Araki, K., Okazaki, N., Watanabe, K., Ishikawa, C., Inoue, A., Numao, N., & Kondo, K. (1988). Production of eicosapentaenoic acid by marine bacteria. J Biochem, 103. p. 5-7.
    Zhang, J., Liu, H., Sun, J., Li, B., Zhu, Q., Chen, S., & Zhang, H. (2012). Arabidopsis fatty acid desaturase FAD2 is required for salt tolerance during seed germination and early seedling growth. PLoS One, 7. p. 30355-30367.
    Zulet, M. A., Marti, A., Parra, M. D., & Martinez, J. A. (2005). Inflammation and conjugated linoleic acid: mechanisms of action and implications for human health. J Physiol Biochem, 61. p. 483-494.

    下載圖示 校內:2018-08-30公開
    校外:2018-08-30公開
    QR CODE