| 研究生: |
邱彥倫 Chiu, Yen-Lun |
|---|---|
| 論文名稱: |
壓電電漿子光催化劑BaTiO3/Ag2O/Ag異質接面 於羅丹明紅之光降解 Piezoelectricity-enhanced Plasmonic BaTiO3/Ag2O/Ag Heterojunction for The Photodegradation of Rhodamine B |
| 指導教授: |
張高碩
Chang, Kao-Shuo |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 英文 |
| 論文頁數: | 95 |
| 中文關鍵詞: | BaTiO3−Ag2O−Ag 、異質接面 、奈米複合材料 、表面電漿共振 、光降解 、壓電光降解 、羅丹明B |
| 外文關鍵詞: | BaTiO3−Ag2O−Ag, heterojunction, nanocomposite, plasmonic effect, photodegradation, piezophotodegradation, RhB pollutant |
| 相關次數: | 點閱:63 下載:14 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
羅丹明B是工業廢水中常見的染料污染物。我們研究並評估了BaTiO3-Ag2O-Ag在模擬太陽光照射下光降解羅丹明B的適用性。為了提高其性能,首先獲得了BTO-Ag2O的最佳比例,然後加入還原劑(H2O2)來探索Ag奈米粒子在其中的作用。為了比較和評估單一材料和複合材料之間晶體結構和形態的變化,進行了 XRD(X光繞射)、SEM(掃描式電子顯微鏡)、TEM(穿透式電子顯微鏡)和BET(Brunauer-Emmett-Teller)量測。元素分佈和價態分析透過 EDS偵測和XPS(X光光電子能譜)分析已知。此外,此研究闡述了BTO-Ag2O-Ag對羅丹明B的降解途徑和去除機制。在壓電光催化下,(1-x-y)BTO-xAg2O-yAg (x = 59.7 and y = 2.2 mol %) 擁有最高的羅丹明B降解率,在30分鐘內分解超過70%羅丹明B。結果顯示,具有壓電性的異質結構複合材料在廢水處理領域可以作為一種適合的光催化劑。
Rhodamine B (RhB) is a dye pollutant commonly present in wastewater from industry. BaTiO3-Ag2O-Ag for the photodegradation of RhB under irradiation was investigate and evaluated. To enhance its performance, an optimal ratio of BTO-Ag2O was obtained first, and then a reducing agent (H2O2) was further added to explore a role of Ag nanoparticles in the composite. To compare and evaluate changes in their crystalline structures and morphologies between single constitutive material and composites, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and Brunauer-Emmett-Teller measurements were conducted. The distribution of elements and valence states were determined through energy-dispersive X-ray spectroscopy mapping and X-ray photoelectron spectroscopy analyses, respectively. Furthermore, the degradation pathways and removal mechanisms of the RhB by the BTO-Ag2O-Ag were elaborated. The composite, (1-x-y)BTO-xAg2O-yAg (x = 59.7 and y = 2.2 mol %) , had the highest RhB degradation rate, which decomposed more than 70% RhB within 30 min and over 90% decomposition after an hour for sonophotocatalysis. Our results indicate that the piezoelectric heterostructure composites are a promising photocatalyst in the wastewater treatment field.
1. C. R. Bowen, H. A. Kim, P. M. Weaver, and S. Dunn, "Piezoelectric and ferroelectric materials and structures for energy harvesting applications," Energy & Environmental Science, 7(1), 25-44, (2014).
2. E. Defaÿ, "Integration of ferroelectric and piezoelectric thin films: concepts and applications for microsystems," (2013).
3. A. Ballato, "Piezoelectricity: old effect, new thrusts," IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 42(5), 916-926, (1995).
4. W. Wang, Y. Jiang, and P. J. Thomas, "Structural Design and Physical Mechanism of Axial and Radial Sandwich Resonators with Piezoelectric Ceramics: A Review," Sensors (Basel), 21(4), (2021).
5. X. Wang, W. Peng, C. Pan, and Z. Lin Wang, "Piezotronics and piezo-phototronics based ona-axis nano/microwires: fundamentals and applications," Semiconductor Science and Technology, 32(4), (2017).
6. Z. L. Wang, "Piezotronics and Piezo-phototronics," Springer, (2012).
7. K. Dilly Rajan, P. P. Gotipamul, S. Khanna, S. Chidambaram, and M. Rathinam, "Piezo-photocatalytic effect of NaNbO3 interconnected nanoparticles decorated CuBi2O4 nanocuboids," Materials Letters, 296, (2021).
8. Q. Yang, X. Guo, W. Wang, Y. Zhang, S. Xu, D. H. Lien, and Z. L. Wang, "Enhancing sensitivity of a single ZnO micro-/nanowire photodetector by piezo-phototronic effect," ACS Nano, 4(10), 6285-6291, (2010).
9. E. Husanu, V. Cappello, C. S. Pomelli, J. David, M. Gemmi, and C. Chiappe, "Chiral ionic liquid assisted synthesis of some metal oxides," RSC Advances, 7(2), 1154-1160, (2017).
10. S.-Y. Lee and S.-J. Park, "TiO2 photocatalyst for water treatment applications," Journal of Industrial and Engineering Chemistry, 19(6), 1761-1769, (2013).
11. J. Fan, T. Li, and H. Heng, "Hydrothermal growth of ZnO nanoflowers and their photocatalyst application," Bulletin of Materials Science, 39(1), 19-26, (2016).
12. L. Huang, H. Xu, R. Zhang, X. Cheng, J. Xia, Y. Xu, and H. Li, "Synthesis and characterization of g-C3N4/MoO3 photocatalyst with improved visible-light photoactivity," Applied Surface Science, 283, 25-32, (2013).
13. A. Meng, B. Zhu, B. Zhong, L. Zhang, and B. Cheng, "Direct Z-scheme TiO2/CdS hierarchical photocatalyst for enhanced photocatalytic H2-production activity," Applied Surface Science, 422, 518-527, (2017).
14. A. Ibhadon and P. Fitzpatrick, "Heterogeneous Photocatalysis: Recent Advances and Applications," Catalysts, 3(1), 189-218, (2013).
15. K. Melghit and S. S. Al-Rabaniah, "Photodegradation of Congo red under sunlight catalysed by nanorod rutile TiO2," Journal of Photochemistry and Photobiology A: Chemistry, 184(3), 331-334, (2006).
16. J. Lan, B. He, C. Haw, M. Gao, I. Khan, R. Zheng, S. Guo, J. Zhao, Z. Wang, S. Huang, S. Li, and J. Kang, "Band engineering of ZnO/Si nanowire arrays in Z-scheme heterojunction for efficient dye photodegradation," Applied Surface Science, 529, (2020).
17. Y.-Q. Jing, C.-X. Gui, J. Qu, S.-M. Hao, Q.-Q. Wang, and Z.-Z. Yu, "Silver Silicate@Carbon Nanotube Nanocomposites for Enhanced Visible Light Photodegradation Performance," ACS Sustainable Chemistry & Engineering, 5(5), 3641-3649, (2017).
18. A. D. S. Montallana, B.-Z. Lai, J. P. Chu, and M. R. Vasquez, "Enhancement of photodegradation efficiency of PVA/TiO2 nanofiber composites via plasma treatment," Materials Today Communications, 24, (2020).
19. T. Fan, C. Chen, and Z. Tang, "Hydrothermal synthesis of novel BiFeO3/BiVO4 heterojunctions with enhanced photocatalytic activities under visible light irradiation," RSC Advances, 6(12), 9994-10000, (2016).
20. Z. Tang, J. Wu, X. Yu, R. Hong, X. Zu, X. Lin, H. Luo, W. Lin, and G. Yi, "Fabrication of Au Nanoparticle Arrays on Flexible Substrate for Tunable Localized Surface Plasmon Resonance," ACS Appl Mater Interfaces, 13(7), 9281-9288, (2021).
21. J. Hanuš, H. Libenská, I. Khalakhan, A. Kuzminova, O. Kylián, and H. Biederman, "Localized surface plasmon resonance tuning via nanostructured gradient Ag surfaces," Materials Letters, 192, 119-122, (2017).
22. Z. Han, L. Ren, Z. Cui, C. Chen, H. Pan, and J. Chen, "Ag/ZnO flower heterostructures as a visible-light driven photocatalyst via surface plasmon resonance," Applied Catalysis B: Environmental, 126, 298-305, (2012).
23. S. J. P. R. Roberts, "Dielectric and piezoelectric properties of barium titanate," 71(12), 890, (1947).
24. M. Mirseraji and M. G. Shahraki, "DFT study of the polarization behaviors of various distorted barium titanate crystals: The role of atomic displacements," Physica B: Condensed Matter, 538, 120-130, (2018).
25. M. Acosta, N. Novak, V. Rojas, S. Patel, R. Vaish, J. Koruza, G. A. Rossetti, and J. Rödel, "BaTiO3-based piezoelectrics: Fundamentals, current status, and perspectives," Applied Physics Reviews, 4(4), (2017).
26. M. T. Buscaglia, M. Bassoli, V. Buscaglia, and R. Vormberg, "Solid-State Synthesis of Nanocrystalline BaTiO3: Reaction Kinetics and Powder Properties," Journal of the American Ceramic Society, 91(9), 2862-2869, (2008).
27. J. Yuk and T. Troczynski, "Sol–gel BaTiO3 thin film for humidity sensors," Sensors and Actuators B: Chemical, 94(3), 290-293, (2003).
28. W. Wang, L. Cao, W. Liu, G. Su, and W. Zhang, "Low-temperature synthesis of BaTiO 3 powders by the sol–gel-hydrothermal method," Ceramics International, 39(6), 7127-7134, (2013).
29. L. Guo, H. Luo, J. Gao, L. Guo, and J. Yang, "Microwave hydrothermal synthesis of barium titanate powders," Materials Letters, 60(24), 3011-3014, (2006).
30. Y. Cui, H. Sun, and P. Guo, "Highly efficient SrTiO3/Ag2O n-p heterojunction photocatalysts: improved charge carrier separation and enhanced visible-light harvesting," Nanotechnology, 31(24), 245702, (2020).
31. X. Wang, S. Li, H. Yu, J. Yu, and S. Liu, "Ag2O as a new visible-light photocatalyst: self-stability and high photocatalytic activity," Chemistry, 17(28), 7777-7780, (2011).
32. N. R. Khalid, M. Bilal, M. B. Tahir, M. Shakil, T. Iqbal, M. Rafique, N. Yousaf, and S. S. A. Gillani, "Interfacial coupling effect of Ag2O nanorods over MoS2 microflowers for improved photocatalytic activity," Ceramics International, 46(5), 6856-6859, (2020).
33. Q. Liu, M. Li, Q. Zeng, and X. Wu, "Synthesis and kinetics of micron-scale silver(I) oxide via efficient chemical precipitation process," Materials Research Express, 6(11), (2019).
34. B. Zhang, D. Zhang, Z. Xi, P. Wang, X. Pu, X. Shao, and S. Yao, "Synthesis of Ag 2 O/NaNbO 3 p-n junction photocatalysts with improved visible light photocatalytic activities," Separation and Purification Technology, 178, 130-137, (2017).
35. S. P. Vinay, Udayabhanu, H. N. Sumedha, G. Nagaraju, S. Harishkumar, and N. Chandrasekhar, "Facile combustion synthesis of Ag2O nanoparticles using cantaloupe seeds and their multidisciplinary applications," Applied Organometallic Chemistry, 34(10), (2020).
36. A.-T. Le, P. T. Huy, P. D. Tam, T. Q. Huy, P. D. Cam, A. A. Kudrinskiy, and Y. A. Krutyakov, "Green synthesis of finely-dispersed highly bactericidal silver nanoparticles via modified Tollens technique," Current Applied Physics, 10(3), 910-916, (2010).
37. Z. Fan, B. Liu, J. Wang, S. Zhang, Q. Lin, P. Gong, L. Ma, and S. Yang, "A Novel Wound Dressing Based on Ag/Graphene Polymer Hydrogel: Effectively Kill Bacteria and Accelerate Wound Healing," Advanced Functional Materials, 24(25), 3933-3943, (2014).
38. G. Wang, Y. Ren, G. J. Zhou, J. P. Wang, H. F. Cheng, Z. Y. Wang, J. Zhan, B. B. Huang, and M. H. Jiang, "Synthesis of highly efficient visible light Ag@Ag3VO4 plasmonic photocatalysts," Surface and Coatings Technology, 228, S283-S286, (2013).
39. Y. Chen, W. H. Tse, L. Chen, and J. Zhang, "Ag nanoparticles-decorated ZnO nanorod array on a mechanical flexible substrate with enhanced optical and antimicrobial properties," Nanoscale Res Lett, 10, 106, (2015).
40. V. Selvamani, Stability studies on nanomaterials used in drugs, in Characterization and biology of nanomaterials for drug delivery. 2019, Elsevier. p. 425-444.
41. S. Gulati, M. Sachdeva, and K. Bhasin. Capping agents in nanoparticle synthesis: Surfactant and solvent system. in AIP Conference Proceedings. 2018. AIP Publishing LLC.
42. Y. Zhou, S. H. Yu, C. Y. Wang, X. G. Li, Y. R. Zhu, and Z. Y. J. a. M. Chen, "A novel ultraviolet irradiation photoreduction technique for the preparation of single‐crystal Ag nanorods and Ag dendrites," 11(10), 850-852, (1999).
43. I. Halaciuga, S. Laplante, and D. V. Goia, "Precipitation of dispersed silver particles using acetone as reducing agent," J Colloid Interface Sci, 354(2), 620-623, (2011).
44. D. Kong, J. Z. Y. Tan, F. Yang, J. Zeng, and X. Zhang, "Electrodeposited Ag nanoparticles on TiO2 nanorods for enhanced UV visible light photoreduction CO2 to CH4," Applied Surface Science, 277, 105-110, (2013).
45. X. Luan and Y. Wang, "Plasmon-enhanced Performance of Dye-sensitized Solar Cells Based on Electrodeposited Ag Nanoparticles," Journal of Materials Science & Technology, 30(1), 1-7, (2014).
46. K. I. Park, S. Xu, Y. Liu, G. T. Hwang, S. J. Kang, Z. L. Wang, and K. J. Lee, "Piezoelectric BaTiO(3) thin film nanogenerator on plastic substrates," Nano Lett, 10(12), 4939-4943, (2010).
47. Y. Jin, Z. Dai, F. Liu, H. Kim, M. Tong, and Y. Hou, "Bactericidal mechanisms of Ag(2)O/TNBs under both dark and light conditions," Water Res, 47(5), 1837-1847, (2013).
48. W. Zhou, H. Liu, J. Wang, D. Liu, G. Du, and J. Cui, "Ag2O/TiO2 nanobelts heterostructure with enhanced ultraviolet and visible photocatalytic activity," ACS Appl Mater Interfaces, 2(8), 2385-2392, (2010).
49. F. Chen, X. Yang, F. Xu, Q. Wu, and Y. Zhang, "Correlation of photocatalytic bactericidal effect and organic matter degradation of TiO2. Part I: observation of phenomena," Environ Sci Technol, 43(4), 1180-1184, (2009).
50. Y. Yao, F. Ji, M. Yin, X. Ren, Q. Ma, J. Yan, and S. F. Liu, "Ag Nanoparticle-Sensitized WO3 Hollow Nanosphere for Localized Surface Plasmon Enhanced Gas Sensors," ACS Appl Mater Interfaces, 8(28), 18165-18172, (2016).
51. Y. Yang, S. W. Niu, D. D. Han, T. Y. Liu, G. M. Wang, and Y. Li, "Progress in Developing Metal Oxide Nanomaterials for Photoelectrochemical Water Splitting," Advanced Energy Materials, 7(19), (2017).
52. A. Fujishima, T. N. Rao, and D. A. Tryk, "Titanium dioxide photocatalysis," Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 1(1), 1-21, (2000).
53. C. Li, T. Fang, H. Hu, Y. Wang, X. Liu, S. Zhou, J. Fu, and W. Wang, "Synthesis and enhanced bias-free photoelectrochemical water-splitting activity of ferroelectric BaTiO3/Cu2O heterostructures under solar light irradiation," Ceramics International, 47(8), 11379-11386, (2021).
54. K. Wei, B. Wang, J. Hu, F. Chen, Q. Hao, G. He, Y. Wang, W. Li, J. Liu, and Q. He, "Photocatalytic properties of a new Z-scheme system BaTiO3/In2S3 with a core-shell structure," RSC Adv, 9(20), 11377-11384, (2019).
55. S. Xu, L. Guo, Q. Sun, and Z. L. Wang, "Piezotronic Effect Enhanced Plasmonic Photocatalysis by AuNPs/BaTiO3 Heterostructures," Advanced Functional Materials, 29(13), (2019).
56. S. Joshi, S. J. Ippolito, S. Periasamy, Y. M. Sabri, and M. V. Sunkara, "Efficient Heterostructures of Ag@CuO/BaTiO3 for Low-Temperature CO2 Gas Detection: Assessing the Role of Nanointerfaces during Sensing by Operando DRIFTS Technique," ACS Appl Mater Interfaces, 9(32), 27014-27026, (2017).
57. X. L. Li, H. B. Lu, M. Li, Z. Mai, H. Kim, and Q. J. Jia, "Characteristics of the low electron density surface layer on BaTiO[sub 3] thin films," Applied Physics Letters, 92(1), (2008).
58. İ. C. Kaya, V. Kalem, and H. Akyildiz, "Hydrothermal synthesis of pseudocubic BaTiO3 nanoparticles using TiO2 nanofibers: Study on photocatalytic and dielectric properties," International Journal of Applied Ceramic Technology, 16(4), 1557-1569, (2019).
59. H. Karimi-Maleh, B. G. Kumar, S. Rajendran, J. Qin, S. Vadivel, D. Durgalakshmi, F. Gracia, M. Soto-Moscoso, Y. Orooji, and F. Karimi, "Tuning of metal oxides photocatalytic performance using Ag nanoparticles integration," Journal of Molecular Liquids, 314, (2020).
60. M.-H. Zhao, Z.-L. Wang, and S. X. Mao, "Piezoelectric Characterization of Individual Zinc Oxide Nanobelt Probed by Piezoresponse Force Microscope," Nano Letters, 4(4), 587-590, (2004).
61. P. H. Hsiao, T. C. Li, and C. Y. Chen, "ZnO/Cu2O/Si Nanowire Arrays as Ternary Heterostructure-Based Photocatalysts with Enhanced Photodegradation Performances," Nanoscale Res Lett, 14(1), 244, (2019).
62. W. Ding, L. Zhao, H. Yan, X. Wang, X. Liu, X. Zhang, X. Huang, R. Hang, Y. Wang, X. Yao, and B. Tang, "Bovine serum albumin assisted synthesis of Ag/Ag2O/ZnO photocatalyst with enhanced photocatalytic activity under visible light," Colloids and Surfaces A: Physicochemical and Engineering Aspects, 568, 131-140, (2019).
63. H. Sim, J. Lee, S. Cho, E. S. Cho, and S. J. Kwon, "A Study on the Band Structure of ZnO/CdS Heterojunction for CIGS Solar-Cell Application," Journal of Semiconductor Technology and Science, 15(2), 267-275, (2015).
64. "The absolute electrode potential: an explanatory note (Recommendations 1986)," Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 209(2), 417-428, (1986).
65. M. F. Abdel Messih, M. A. Ahmed, A. Soltan, and S. S. Anis, "Facile approach for homogeneous dispersion of metallic silver nanoparticles on the surface of mesoporous titania for photocatalytic degradation of methylene blue and indigo carmine dyes," Journal of Photochemistry and Photobiology A: Chemistry, 335, 40-51, (2017).
66. C. Jiang, S. J. A. Moniz, A. Wang, T. Zhang, and J. Tang, "Photoelectrochemical devices for solar water splitting - materials and challenges," Chem Soc Rev, 46(15), 4645-4660, (2017).
67. S. Thangavel, P. Pazhamalai, K. Krishnamoorthy, Y. Sivalingam, D. Arulappan, V. Mohan, S. J. Kim, and G. Venugopal, "Ferroelectric-semiconductor BaTiO3-Ag2O nanohybrid as an efficient piezo-photocatalytic material," Chemosphere, 292, 133398, (2022).
68. S. Xu, Z. Liu, M. Zhang, and L. Guo, "Piezotronics enhanced photocatalytic activities of Ag-BaTiO3 plasmonic photocatalysts," Journal of Alloys and Compounds, 801, 483-488, (2019).
69. M. a. M. Khan, S. Kumar, J. Ahmed, M. Ahamed, and A. Kumar, "Influence of silver doping on the structure, optical and photocatalytic properties of Ag-doped BaTiO3 ceramics," Materials Chemistry and Physics, 259, (2021).
70. Y. Wang, R. Li, X. Sun, T. Xian, Z. Yi, and H. Yang, "Photocatalytic Application of Ag-Decorated CuS/BaTiO3 Composite Photocatalysts for Degrading RhB," Journal of Electronic Materials, 50(5), 2674-2686, (2021).
71. Y. Zhou, Y. Wang, X. Ouyang, L. Liu, and W. Zhu, "TiO2nanofibers coated with rGO and Ag2O for promoting visible light photocatalytic performance," Semiconductor Science and Technology, 32(3), (2017).
72. H. Fan, H. Li, B. Liu, Y. Lu, T. Xie, and D. Wang, "Photoinduced charge transfer properties and photocatalytic activity in Bi2O3/BaTiO3 composite photocatalyst," ACS Appl Mater Interfaces, 4(9), 4853-4857, (2012).
73. I. Kuzniarska-Biernacka, B. Garbarz-Glos, E. Skiba, W. Maniukiewicz, W. Bak, M. Antonova, S. L. H. Rebelo, and C. Freire, "Evaluation of Rhodamine B Photocatalytic Degradation over BaTiO3-MnO2 Ceramic Materials," Materials (Basel), 14(12), (2021).
74. S. Yang, D. Xu, B. Chen, B. Luo, X. Yan, L. Xiao, and W. Shi, "Synthesis and visible-light-driven photocatalytic activity of p–n heterojunction Ag2O/NaTaO3 nanocubes," Applied Surface Science, 383, 214-221, (2016).