| 研究生: |
陳昱穎 Chen, Yu-Ying |
|---|---|
| 論文名稱: |
閉迴路震盪式熱管應用於建物整合太陽能熱水器可行性之研究 Feasibility Studies of Closed Loop Oscillating Heat Pipe Applied on Building Integrated Solar Thermal Systems |
| 指導教授: |
呂宗行
Leu, Tzong-Shyng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | 建物整合 、震盪式熱管 、填充率 、太陽能熱水器 |
| 外文關鍵詞: | Building Integrated Solar Thermal Systems, Oscillating Heat Pipe, Filling Ratio, Solar Water Heater |
| 相關次數: | 點閱:69 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在探討利用閉迴路震盪式熱管,作為收集太陽熱能集熱器之方法,並以雨遮做為建物整合應用為例之可行性研究。由於震盪式熱管具有良好熱傳性能,且內部無毛細結構,有利於在熱管製作完成後,再對外形做出變化,因此若欲在建物上整合太陽熱水器,可較易做出特殊形狀與建物達到嵌合效果。實驗中建物整合雨遮太陽熱能集熱器之設計係參照中華民國建築法中雨遮尺度法令設計,再根據文獻找出所處緯度最佳太陽能熱水器傾斜角度,新設計之建物整合雨遮太陽熱能集熱器使用丙酮作為工作流體,由內徑 2 mm、外徑 3.175 mm 之銅管製作而成,本研究探討在不同工作流體填充率、冷卻水體積流率以及熱通量下,系統效率、熱阻與啟動熱通量。結果顯示在不同的熱通量,工作流體填充率於50 %(v./v.)時具有最佳效率;此外冷卻水體積流率上升時,效率將隨之提升,直至0.75 LPM後不再有明顯變化;啟動熱通量則是模擬太陽光由弱漸強變化,從200 W/m2至1000 W/m2,找出不同填充率下的啟動熱通量,由實驗結果得知,當填充率在40%與50%具有最低的啟動熱通量。
In this study, closed loop oscillating heat pipe (OHP) is applied to building integrated solar thermal (BIST) system for collecting solar heat. The performance of OHP system is proved very good in transferring heat. Since BIST OHP system has no wicking structures; thus, BIST OHP system is configurable after manufacturing. This advantage is good for OHP for BIST application.
The design of testing model in this study complies with Taiwanese Law of Architecture, and the inclined angle of BIST OHP system is aligned with the latitude of Tainan city. The working fluid is acetone, and BIST OHP system is made by cooper tubes with outer dimeter (OD) and inner diameter (ID) are 3.175 mm and 2 mm respectively.
The experimental results show that BIST OHP system with 50% filling ratio has the best efficiency in different heat fluxes; furthermore, the efficiency of BIST OHP system increases when the cooling water volume flow rate increases before it reaches 0.75 LPM. Beyond cooling water volume flow rate 0.75 LPM, no more system efficiency is noticeable. From the experimental results, BIST OHP system has the lowest starting heat flux when the filling ratio is 40% and 50%.
[1] 謝智宸、林唐裕等, 住商部門能源消費調查, 財團法人台灣綜合研究院執行經濟部能源局委託研究報告, 2010.
[2] W. M. Lin, K. C. Chang and K. M. Chung, Payback period for residential solar water heaters in Taiwan, Renewable and Sustainable Energy Reviews, Vol. 41, pp. 901-906, 2015.
[3] K.-C. Chang, W.-M. Lin and K.-M. Chung, Solar thermal market in Taiwan, Energy Policy, Vol. 55, pp. 477-482, 2013.
[4] K. C. Chang, W. M. Lin, T. S. Lee and K. M. Chung, Local market of solar water heaters in Taiwan: Review and perspectives, Renewable and Sustainable Energy Reviews, Vol. 13, (9), pp. 2605-2612, 2009.
[5] M. S. Buker and S. B. Riffat, Building integrated solar thermal collectors – A review, Renewable and Sustainable Energy Reviews, Vol. 51, pp. 327-346, 2015.
[6] J. Han, L. Lu, J. Peng and H. Yang, Performance of ventilated double-sided PV façade compared with conventional clear glass façade, Energy and Buildings, Vol. 56, pp. 204-209, 2013.
[7] D. Kamthania, S. Nayak and G. N. Tiwari, Performance evaluation of a hybrid photovoltaic thermal double pass facade for space heating, Energy and Buildings, Vol. 43, (9), pp. 2274-2281, 2011.
[8] X. Zhang, X. Zhao, J. Xu and X. Yu, Characterization of a solar photovoltaic/loop-heat-pipe heat pump water heating system, Applied Energy, Vol. 102, pp. 1229-1245, 2013.
[9] X. Zhang, X. Zhao, S. Smith, J. Xu and X. Yu, Review of R&D progress and practical application of the solar photovoltaic/thermal (PV/T) technologies, Renewable and Sustainable Energy Reviews, Vol. 16, (1), pp. 599-617, 2012.
[10] H. Akachi, “Structure of a heat pipe”, US Patent No. 4921041, 1990.
[11] S. Khandekar, N. Dollinger and M. Groll, Understanding operational regimes of closed loop pulsating heat pipes: an experimental study, Applied Thermal Engineering, Vol. 23, (6), pp. 707-719, 2003.
[12] H. Akachi, F. Polášek and P. Stulc, Pulsating heat pipes. Proceedings of the 5th International Heat Pipe Symposium,Melbourne, Australia, pp.208-217, 1996.
[13] E. T. White and R. H. Beardmore, The velocity of rise of single cylindrical air bubbles through liquids contained in vertical tubes, Chemical Engineering Science, Vol. 17, (5), pp. 351-361, 1962.
[14] G. Karimi and J. R. Culham, Review and assessment of Pulsating Heat Pipe mechanism for high heat flux electronic cooling. Thermal and Thermomechanical Phenomena in Electronic Systems, 2004. ITHERM '04. The Ninth Intersociety Conference, pp.52-59, 2004.
[15] J. Qu, H. Wu and P. Cheng, Start-up, heat transfer and flow characteristics of silicon-based micro pulsating heat pipes, International Journal of Heat and Mass Transfer, Vol. 55, (21–22), pp. 6109-6120, 2012.
[16] S. Khandekar, and Manfred Groll., On the definition of pulsating heat pipes: an overview, Proceedings of the Fifth Minsk International Seminar, 2003.
[17] P. Charoensawan, S. Khandekar, M. Groll and P. Terdtoon, Closed loop pulsating heat pipes: Part A: parametric experimental investigations, Applied Thermal Engineering, Vol. 23, (16), pp. 2009-2020, 2003.
[18] T. Hudakorn, P. Terdtoon and P. Sakulchangsatjatai, Effect of inclination angle on performance limit of a closed-end oscillating heat pipe, American Journal of Engineering and Applied Sciences, Vol. 1, (3), pp. 174-180, 2008.
[19] K.-B. Nguyen, S.-H. Yoon and J. H. Choi, Effect of working-fluid filling ratio and cooling-water flow rate on the performance of solar collector with closed-loop oscillating heat pipe, Journal of Mechanical Science and Technology, Vol. 26, (1), pp. 251-258, 2012.
[20] M. Mameli, M. Marengo and S. Zinna, Numerical model of a multi-turn Closed Loop Pulsating Heat Pipe: Effects of the local pressure losses due to meanderings, International Journal of Heat and Mass Transfer, Vol. 55, (4), pp. 1036-1047, 2012.
[21] X. Han, X. Wang, H. Zheng, X. Xu and G. Chen, Review of the development of pulsating heat pipe for heat dissipation, Renewable and Sustainable Energy Reviews, Vol. 59, pp. 692-709, 2016.
[22] A. Faghri, Heat Pipe Science And Technology, Taylor & Francis, pp. pp. 21-22, 1995.
[23] C. D. Patel, G. R. Selokar and A. Paul, Pulsating Heat Pipe Based Heat Exchanger, International Journal of Engineering Research and Science & Technology, Vol. 1, (1), pp. 11-18, 2012
[24] X. Tang, L. Sha, H. Zhang and Y. Ju, A review of recent experimental investigations and theoretical analyses for pulsating heat pipes, Frontiers in Energy, Vol. 7, (2), pp. 161-173, 2013.
[25] S. Khandekar, A. P. Gautam and P. K. Sharma, Multiple quasi-steady states in a closed loop pulsating heat pipe, International Journal of Thermal Sciences, Vol. 48, (3), pp. 535-546, 2009.
[26] S. Khandekar, Pulsating Heat Pipe Based Heat Exchangers. The 21st International Symposium on Transport Phenomena, Kaohsiung City, Taiwan, 2010.
[27] S. Khandekar, M. Schneider, P. Schäfer, R. Kulenovic and M. Groll, Thermofluid Dynamic Study of Flat-Plate Closed-Loop Pulsating Heat Pipes, Microscale Thermophysical Engineering, Vol. 6, (4), pp. 303-317, 2003.
[28] 建築技術規則建築設計施工編第一條第三款及第一百六十二條第一項第一款.
[29] 建築技術規則建築設計施工編第四十五條第五款.
[30] V. M. Patel, Gaurav and H. B. Mehta, Influence of working fluids on startup mechanism and thermal performance of a closed loop pulsating heat pipe, Applied Thermal Engineering, Vol. 110, pp. 1568-1577, 2017.
[31] D. H. W. Li and T. N. T. Lam, Determining the Optimum Tilt Angle and Orientation for Solar Energy Collection Based on Measured Solar Radiance Data, International Journal of Photoenergy, Vol. 2007, p. 9, 2007.
[32] R. C. Neville, Solar energy collector orientation and tracking mode, Solar Energy, Vol. 20, (1), pp. 7-11, 1978.
[33] R. K. Sarangi and M. V. Rane, Experimental Investigations for Start up and Maximum Heat Load of Closed Loop Pulsating Heat Pipe, Procedia Engineering, Vol. 51, pp. 683-687, 2013.
校內:2022-07-31公開