簡易檢索 / 詳目顯示

研究生: 劉凱崴
Liu, Kai-Wei
論文名稱: 釤鈷磁鐵切削廢汙泥以溶劑冶金分離釤、鈷、銅、鐵
Cutting the waste sludge from samarium-cobalt magnets for solvometallurgical separation of samarium, cobalt, copper, and iron
指導教授: 申永輝
Shen, Yun-Hwei
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 91
中文關鍵詞: 永久磁鐵釤鈷磁鐵溶劑冶金D2EHPAAliquat336 TG
外文關鍵詞: Permanent Magnet, Samarium Cobalt Magnet, SolventMetallurgy, D2EHPA, Aliquat 336 TG
相關次數: 點閱:71下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 永久磁鐵中的釤鈷磁鐵則作為我們永續發展專案的關鍵應用,因此針對釤鈷磁鐵切削廢污泥的資源化處理變得至關重要。2015年,聯合國發佈了2023年永續發展目標(Sustainable Development Goals,SDGs),其中永續的消費和生產模式是當前需要應對的問題。
    本研究對釤鈷磁鐵的切削廢污泥進行了三部分的處理。首先,在第一部分中,廢料經過研磨和乾燥處理,我們通過計算分析得出了最佳的研磨參數,然後使用50目的篩網進行篩分,進行特性分析,並使用王水消化法分析廢料中的金屬濃度。
    第二部分涉及溶劑萃取,我們選用2M鹽酸作為浸漬劑,並以乙二醇(EG)作為溶劑進行浸漬。我們首先與濕法冶金進行比較,分別在不同的浸泡時間下比較了濕法冶金和溶劑冶金的浸出率,並將浸出溫度設置在40°C,固液比為20ml/g。萃取劑方面,我們使用Aliquat336 TG,Aliquat336 TG使用50vol%甲苯進行稀釋。我們的研究得出最佳浸泡時間為60分鐘,鈷的浸出率達到99%,鐵達到99%,銅為96%。再使用鹽酸進行鈷離子反萃取後,我們選擇氨水來實現對銅和鐵離子的選擇性沉澱。透過添加0.5M鹽酸,我們成功地獲得了氯離子的98%回收率,之後再加入10ml氨水,成功分離了鐵和銅離子,鐵離子的沉澱率達到98%,形成Fe(OH)2,銅離子形成Cu(NH3)42+,銅離子的濃度達到99%。釤離子的萃取階段使用D2EHPA作為萃取劑,煤油作為稀釋劑,將釤離子成功地從溶液中萃取到D2EHPA中,然後使用草酸進行沉澱。我們的反萃取實驗參數包括溫度25°C,油水比(O/A ratio)1.25,混合時間30分鐘,進料/萃取劑比為1/2,結果顯示釤反萃取率達到98%,最終形成了Sm2(C2O4)3,其沉澱率也達到了98%。

    The increasing demand for semiconductors, energy, medical, and aerospace technologies has highlighted the importance of samarium-cobalt (SmCo) magnets, a key component in sustainable development projects. This research focuses on the resource recovery from the cutting waste sludge of SmCo magnets, in line with the United Nations' Sustainable Development Goals (SDGs) of 2023, which empHasize sustainable consumption and production patterns.The study comprises three parts. Initially, the waste undergoes grinding and drying, with optimal grinding parameters determined through computational analysis. The ground material is then sieved using a 50-mesh screen for characteristic analysis and aqua regia digestion to analyze metal concentrations in the waste.The second part involves solvent extraction using 2M hydrochloric acid as a leaching agent and ethylene glycol (EG) as the solvent. This process was compared with wet metallurgy under various soaking times, with an optimal soaking duration of 60 minutes identified, achieving cobalt leaching rates of 99%, iron 99%, and copper 96% at 40°C with a solid-liquid ratio of 20ml/g. The extractant used was Aliquat336 TG, diluted with 50vol% toluene. Post-cobalt ion re-extraction with hydrochloric acid, selective precipitation of copper and iron ions was achieved using ammonia water. Adding 0.5M hydrochloric acid resulted in a 98% recovery rate of chloride ions. The subsequent addition of 10ml of ammonia water successfully separated iron and copper ions, with iron precipitating as Fe(OH)3 (98% rate) and copper forming Cu(NH3)42+ (99% concentration).For samarium ion extraction, D2EHPA as the extractant and kerosene as a diluent were used. Samarium ions were effectively extracted into the D2EHPA pHase and then precipitated using oxalic acid. The re-extraction parameters included a temperature of 25°C, an O/A ratio of 1.25, a mixing time of 30 minutes, and a feed/extractant ratio of 1/2. The study concluded with a samarium re-extraction rate of 98%, forming Sm2(C2O4)3 with a precipitation rate of 98%.

    目錄XII 圖目錄XV 表目錄XVII 第一章 緒論1 1.1 前言1 1.2 研究動機與目的2 第二章 文獻回顧5 2.1 釤鈷磁鐵簡介5 2.2 釤、鈷、銅、鐵物理性質與資源現況6 2.2.1 釤物理性質與資源現況6 2.2.2 鈷物理性質與資源現況7 2.2.3 銅物理性質與資源現況10 2.2.4 鐵物理性質與資源現況11 2.3 冶金資源化技術12 2.3.1 火法冶金(Pyrometallurgy)12 2.3.2 濕法冶金(Hydrometallurgy)15 2.3.3 電冶金(Electrometallurgy)16 2.3.4 溶劑冶金(Solvometallurgy)17 2.4 釤鈷磁鐵特性分析處理與理論20 2.4.1 自體研磨機(Autogenous grinding, AG)20 2.5 濕法冶金資源化技術與理論24 2.5.1 預處理25 2.5.2 浸漬25 2.5.3 固液分離/純化27 2.5.4 純化28 2.5.5 金屬採取31 第三章 實驗方法與步驟32 3.1 實驗流程 32 3.2 實驗器材與實驗藥品 33 3.2.1 實驗藥品33 3.2.2 實驗器材34 3.3 實驗方法34 3.3.1 樣品預處理34 3.3.2 廢棄釤鈷磁鐵切削廢棄汙泥特性分析35 3.3.3 溶劑冶金萃取率36 3.3.4 金屬分離純化37 第四章 結果與討論40 4.1 球磨破碎40 4.2 廢棄釤鈷磁鐵切削廢棄汙泥特性分析42 4.2.1 粒徑分析結果42 4.2.2 XRF分析結果44 4.2.3 XRD分析結果45 4.2.4 AAS分析結果46 4.3 溶劑冶金與濕法冶金浸漬影響47 4.4 氯離子(HCl)對萃取率之影響51 4.5 進料/萃取劑比與溫度之間影響52 4.6 HCl-A336/甲苯萃取劑中金屬濃度54 4.7 鈷離子分離55 4.7.1 HCl反萃取CoCl255 4.8 鐵離子分離57 4.8.1 不同氨水濃度沉澱之鐵離子分離57 4.8.2 不同pH值沉澱之影響58 4.9 銅離子分離59 4.10 釤離子分離61 4.10.1 D2EHPA進行釤萃取-萃取劑濃度61 4.10.2 D2EHPA進行釤萃取-油水比(O/A ratio)62 4.10.3 草酸H2C2O4選擇性沉澱釤63 第五章 結論與建議65 5.1 結論65 5.2 建議66 參考文獻67

    1.Nayak, A. K.; Behera, B.; Sarangi, K.; Ghosh, M. K.; Basu, S. Process flowsheet development for separation of Sm, Co, Cu, and Fe from magnet scrap. ACS omega 2020, 6 (1), 188-196.
    2.Yoon, H.-S.; Kim, C.-J.; Chung, K. W.; Lee, S.-J.; Joe, A.-R.; Shin, Y.-H.; Lee, S.-I.; Yoo, S.-J.; Kim, J.-G. Leaching kinetics of neodymium in sulfuric acid from E-scrap of NdFeB permanent magnet. Korean Journal of Chemical Engineering 2014, 31, 706-711.
    3.Li, X. H.; Li, Z.; Orefice, M.; Binnemans, K. Metal Recovery from Spent Samarium-Cobalt Magnets Using a Trichloride Ionic Liquid. ACS Sustain. Chem. Eng. 2019, 7 (2), 2578-2584, Article. DOI: 10.1021/acssuschemeng.8b05604.
    4.Onoda, H.; Kurioka, Y. Recovery of samarium from cobalt–samarium solution using phosphoric acid. Journal of Environmental Chemical Engineering 2015, 3 (4), 2825-2828.
    5.Onoda, H.; Kurioka, Y. Selective removal and recovery of samarium from mixed transition metal solution using phosphoric acid. Journal of Environmental Chemical Engineering 2016, 4 (4), 4536-4539.
    6.Gutfleisch, O.; Willard, M. A.; Brück, E.; Chen, C. H.; Sankar, S. G.; Liu, J. P. Magnetic Materials and Devices for the 21st Century: Stronger, Lighter, and More Energy Efficient. Advanced Materials 2011, 23 (7), 821-842.
    7.Liu, J.; Chinnasamy, C. Rare earth magnet recycling. In Rare Earth Element workshop. EPA-Colorado, 2012.
    8.Prodius, D.; Gandha, K.; Mudring, A.-V.; Nlebedim, I. C. Sustainable urban mining of critical elements from magnet and electronic wastes. ACS Sustain. Chem. Eng. 2019, 8 (3), 1455-1463.
    9.Summaries, M. C. Mineral commodity summaries. US Geological Survey: Reston, VA, USA 2021, 200.
    10.Eldosouky, A.; Škulj, I. Recycling of SmCo5 magnets by HD process. Journal of Magnetism and Magnetic Materials 2018, 454, 249-253.
    11.Orefice, M.; Audoor, H.; Li, Z.; Binnemans, K. Solvometallurgical route for the recovery of Sm, Co, Cu and Fe from SmCo permanent magnets. Sep. Purif. Technol. 2019, 219, 281-289.
    12.Zhou, X.; Chen, Y.; Yin, J.; Xia, W.; Yuan, X.; Xiang, X. Leaching kinetics of cobalt from the scraps of spent aerospace magnetic materials. Waste Management 2018, 76, 663-670.
    13.Su, X.; Wang, Y.; Guo, X.; Dong, Y.; Gao, Y.; Sun, X. Recovery of Sm (III), Co (II) and Cu (II) from waste SmCo magnet by ionic liquid-based selective precipitation process. Waste Management 2018, 78, 992-1000.
    14.Binnemans, K.; Jones, P. T. Solvometallurgy: An Emerging Branch of Extractive Metallurgy. Journal of Sustainable Metallurgy 2017, 3 (3), 570-600. DOI: 10.1007/s40831-017-0128-2.
    15.Strnat, K.; Hoffer, G.; Olson, J.; Ostertag, W.; Becker, J. J. A Family of New Cobalt‐Base Permanent Magnet Materials. Journal of Applied Physics 2004, 38 (3), 1001-1002. DOI: 10.1063/1.1709459 (acccessed 9/19/2023).
    16.Zijlstra, H. Permanent magnets; theory. Handbook of Ferromagnetic Materials 1982, 3, 37-105.
    17.Yi, J.-H. Development of samarium–cobalt rare earth permanent magnetic materials. Rare Metals 2014, 33 (6), 633-640.
    18.Gutfleisch, O. High-temperature samarium cobalt permanent magnets. Nanoscale magnetic materials and applications 2009, 337-372.
    19.林志森. 臺灣稀有資源循環發展策略. 2013, 21*29.7, 83.
    20.Holden, N. E.; Coplen, T. B.; Böhlke, J. K.; Tarbox, L. V.; Benefield, J.; de Laeter, J. R.; Mahaffy, P. G.; O’Connor, G.; Roth, E.; Tepper, D. H.; et al. IUPAC Periodic Table of the Elements and Isotopes (IPTEI) for the Education Community (IUPAC Technical Report). 2018, 90 (12), 1833-2092. DOI: doi:10.1515/pac-2015-0703 (acccessed 2023-09-19).
    21.Shi, N.; Fort, D. Preparation of samarium in the double hexagonal close packed form. Journal of the Less Common Metals 1985, 113 (2), 21-23.
    22.Emsley, J. Nature's building blocks: an AZ guide to the elements; Oxford University Press, USA, 2011.
    23.Thenmozhi, G.; Radhika, A.; Mithun, B.; Dhineesh, M.; Abissek, B. A simulation-based investigation on the Performance of BLDC motor used in Electric Vehicles for varied magnetic materials. In 2022 8th International Conference on Advanced Computing and Communication Systems (ICACCS), 2022; IEEE: Vol. 1, pp 875-879.
    24.Nordelof, A.; Grunditz, E.; Lundmark, S.; Tillman, A. M.; Alatalo, M.; Thiringer, T. Life cycle assessment of permanent magnet electric traction motors. Transportation Research Part D-Transport and Environment 2019, 67, 263-274. DOI: 10.1016/j.trd.2018.11.004.
    25.Haynes, W. M. CRC handbook of chemistry and physics; CRC press, 2014.
    26.Coursey, J. S.; Dragoset, R. A. Atomic Weights and Isotopic Compositions (Version 2.0). 2000.
    27.Cottrell, T. L. The strengths of chemical bonds. (No Title) 1954.
    28.Liang, X.; Zeng, Q. Recovery of samarium(III) and cobalt(II) in synthetic nitric acid solutions using carboxyl functionalized ionic liquids and application to recycling SmCo permanent magnets. Hydrometallurgy 2023, 216, 106016. DOI:
    29.Barceloux, D. G.; Barceloux, D. Cobalt. Journal of Toxicology: Clinical Toxicology 1999, 37 (2), 201-216. DOI: 10.1081/CLT-100102420.
    30.Paustenbach, D. J.; Tvermoes, B. E.; Unice, K. M.; Finley, B. L.; Kerger, B. D. A review of the health hazards posed by cobalt. Critical Reviews in Toxicology 2013, 43 (4), 316-362. DOI: 10.3109/10408444.2013.779633.
    31.Roberts, S.; Gunn, G. Cobalt. In Critical Metals Handbook, 2014; pp 122-149.
    32.Mineral commodity summaries 2023; Reston, VA, 2023.
    33.copper. (accessed September 8 ).
    34.Cornwall, H. R. A summary of ideas on the origin of native copper deposits. Economic Geology 1956, 51 (7), 615-631. DOI: 10.2113/gsecongeo.51.7.615 (acccessed 9/21/2023).
    35.Koleini, S. J.; Aghazadeh, V.; Sandström, Å. Acidic sulphate leaching of chalcopyrite concentrates in presence of pyrite. Miner. Eng. 2011, 24 (5), 381-386.
    36.Raymond, O. L. Pyrite composition and ore genesis in the Prince Lyell copper deposit, Mt Lyell mineral field, western Tasmania, Australia. Ore Geology Reviews 1996, 10 (3-6), 231-250.
    37.Peng, Y.; Grano, S.; Fornasiero, D.; Ralston, J. Control of grinding conditions in the flotation of chalcopyrite and its separation from pyrite. International journal of mineral processing 2003, 69 (1-4), 87-100.
    38.Cullity, B. D.; Graham, C. D. Introduction to Magnetic Materials; Wiley, 2009.
    39.Greenwood, N. N.; Earnshaw, A. Chemistry of the Elements; Elsevier, 2012.
    40.Bramfitt, B. L.; Benscoter, A. O. Metallographer's guide: practice and procedures for irons and steels; Asm International, 2001.
    41.Berns, H.; Theisen, W. Eisenwerkstoffe Stahl und Gusseisen; Springer Berlin, 2008.
    42.Encyclopaedia, E. o. iron. 2023.
    43.Mineral commodity summaries 2022; Reston, VA, 2022.
    44.南条道夫. 都市鉱山開発--包括的資源観によるリサイクルシステムの位置付け. 東北大学選鉱製錬研究所彙報 1987, 43 (2), p239-251.
    45.SASTRI, V. SELECTIVE LEACHING OF METALS FROM ORES WITH ORGANIC SOLVENTS & CHELATING AGENTS. 1975.
    46.Marcus, Y. Ion solvation Wiley. New York 1985.
    47.Chekmarev, A.; Chizhevskaya, S.; Buchikhin, E. Solvometallurgy as a novel trend in XXI century metallurgy. Khim Tekhnol 2000, 2-7.
    48.Mining, I. o.; Metallurgy; Industry, t. S. o. C.; Chizhevskaya, S.; Chekmarev, A.; Klimenko, O.; Povetkina, M.; Sinegribova, O.; Cox, M. Non-traditional methods of treating high-silicon ores containing rare elements. In Hydrometallurgy’94: Papers presented at the international symposium ‘Hydrometallurgy’94’organized by the Institution of Mining and Metallurgy and the Society of Chemical Industry, and held in Cambridge, England, from 11 to 15 July, 1994, 1994; Springer: pp 219-228.
    49.Chekmarev, A.; Chizhevskaya, S.; Buchikhin, E.; Cox, M. Solvometallurgical methods in the treatment of rare and non-ferrous metal raw materials. In Proceedings VI Southern Hemisphere Meeting on Mineral Technology/XVIII Encontro Nacional de Tratamento de Minérios e Metalurgia Extrativa (VI SHMMT/XVIII ENTMM), 2001; pp 441-444.
    50.Trost, B. The Atom Economy—A Search for Synthetic Efficiency. Science 1991, 254 (5037), 1471-1477. DOI: doi:10.1126/science.1962206.
    51.Alfonsi, K.; Colberg, J.; Dunn, P. J.; Fevig, T.; Jennings, S.; Johnson, T. A.; Kleine, H. P.; Knight, C.; Nagy, M. A.; Perry, D. A.; et al. Green chemistry tools to influence a medicinal chemistry and research chemistry based organisation. Green Chemistry 2008, 10 (1), 31-36, 10.1039/B711717E. DOI: 10.1039/B711717E.
    52.Monhemius, A. Precipitation diagrams for metal hydroxides, sulphides, arsenates and phosphates. 1977.
    53.佐貫須美子; 杉山明夫; 門町清隆; 宮田敬介; 新井甲一. Sm-Co 磁石スクラップからの有価金属の湿式回収. 日本金属学会誌 1995, 59 (2), 169-176.
    54.Wellens, S.; Vander Hoogerstraete, T.; Möller, C.; Thijs, B.; Luyten, J.; Binnemans, K. Dissolution of metal oxides in an acid-saturated ionic liquid solution and investigation of the back-extraction behaviour to the aqueous phase. Hydrometallurgy 2014, 144-145, 27-33.
    55.Bulakhe, R. N.; Sahoo, S.; Nguyen, T. T.; Lokhande, C. D.; Roh, C.; Lee, Y. R.; Shim, J.-J. Chemical synthesis of 3D copper sulfide with different morphologies for high performance supercapacitors application. RSC advances 2016, 6 (18), 14844-14851.
    56.須美子, 佐.; 杉山, 明.; 常川, 稔.; 門町, 清.; 新井, 甲. Sm(III)を担持した酸性抽出剤からのしゅう酸による晶析逆抽出. Journal of The Japan Institute of Metals 1994, 58, 1271-1278.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE