| 研究生: |
高有志 Kao, Yu-Chih |
|---|---|
| 論文名稱: |
直接轉印製程技術開發與微奈米元件製作應用 Development of Direct Printing Process for the Fabrication of Micro- and Nano-devices |
| 指導教授: |
洪昭南
Hong, Chau-Nan Franklin |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 英文 |
| 論文頁數: | 224 |
| 中文關鍵詞: | 奈米壓印 、直接印刷 、殘留層 、偏光膜 、微透鏡陣列 、電阻式隨機存取記憶體 |
| 外文關鍵詞: | nanoimprint, direct printing, residual layer, polarizer, microlens array, resistive random access memory |
| 相關次數: | 點閱:134 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為了製造半導體與光電元件在軟性基板上,簡單、快速、低成本的圖案化技術日益重要。在眾多技術當中,網版印刷、噴墨印刷及奈米壓印技術具有捲對捲印刷的潛力,然而奈米壓印技術不像噴墨或網版印刷可以直接印刷無殘留層的圖案,奈米壓印技術有殘留層形成的問題。在本論文中,我們發展不同的直接印刷技術,印刷無殘留層的高分子及金屬圖案技術,並應用於製作微奈米元件。
在第四章,我們研究自組裝分子(SAM)膜相關的印刷技術,為了印刷無殘留層的高分子圖案且簡化無殘留層的去除製程,我們發展了一種新的直接印刷技術,選用具有適當滑動角的溶液可選擇性地填入經SAM修飾過的模具之模穴中。利用此法,成功地直接印刷epoxy圖案與導電性PPy/PMMA圖案。由於無殘留層,可以不需進行去除殘留層的步驟。接著,我們在4.2節中,分析不同自組裝分子膜,並研究如何控制此膜的表面疏水特性,發現利用混合兩種不同矽烷分子所得到的SAM膜,可藉由調整混合比例,得到不同的疏水表面。最後,在4.3節中,我們結合奈米壓印及微接觸印刷,先利用壓印技術製作高分子奈米圖案,並在圖案的凸面印刷上疏水SAM膜,同時選擇性敏化凹槽,使得無電鍍的銀能選擇性沉積於模板的凹槽中,利用此一技術製備的金屬柵欄偏光膜,在波長範圍635-650 nm的極化率為130。
在第五章,為了解決PDMS模具的使用上的問題,我們使用對奈米粒子懸浮液親和性佳,並容易轉印的agarose做為模具,發展無殘留層的金屬圖案印刷技術。agarose為一種親水且具有奈米孔洞的材料,利用此模具,可直接印刷銀奈米材料於平面與結構化基板。奈米銀粒子所組成的次微米級無殘留層圖案能成功地印刷在平面基板上,最小線寬達800 nm,同時在300 °C,經30分鐘燒結可得到電阻率40 μΩcm 的導電圖案,然而考慮到軟性高分子基板經過此高溫製程會融化或變形,因此,我們在5.2節中開發出兩種銀奈米線的熔接技術,分別是無電鍍沉積法與濕式蝕刻法。這兩種方法都能使銀奈米線網狀膜的片電阻由數千ohm/sq降到數十ohm/sq。在此研究中,發現銀奈米線上所鍵結之PVP的存在與否,造成不同的結果。最後在5.3節中,我們利用agarose模具進行銀奈米線的直接印刷,做為TiO2型電阻式隨機存取記憶體(RRAM)的電極,同時整個製程為全溶液製程。此RRAM 結構為Ag NWs/ TiO2/ Ag NWs,具有電阻切換特性,施加-1.4 V下,電阻會由高電阻態(HRS)轉變成低電阻態(LRS);-1 V下,LRS/HRS比值為1100。在施加1.6 V下,電阻會從LRS轉變成HRS。
在第六章中,為了解決無法製作出無縫的微透徑陣列(MLA)的困難,我們開發了一種連續注射法用以製造自組裝的微球矩陣,利用此微球矩陣可用來複製並製造PDMS模具,利用PDMS模具可成功將微透鏡陣列印刷於PET上,我們並在PET背面的ITO上以熱蒸鍍方式製作OLED元件,同時驗證我們所做的自組裝微球矩陣具有增亮的效果,與無MLA之OLED元件相比,亮度多了1.15倍。利用此法可成功製作出直徑達30公分,具有無縫半凹球矩陣結構的滾筒模具,可應用於印刷無縫、連續的MLA圖案。
To manufacture semiconductor and optoelectronic devices on flexible substrates, a simple, fast, and low-cost patterning technology is urgently required. Screen printing, inkjet printing and imprint lithography are all potential technologies for roll-to-roll printing. However, unlike inkjet and screen printings, which print the residual-layer-free patterns directly, imprint lithography suffers from the problem of forming a residual layer after imprint. In this dissertation, we achieved residual-layer-free polymeric and metallic pattern by different printing method.
In chapter 4, we focused on the self-assembled monolayer (SAM) related printing method. To print the residual-layer-free polymeric patterns and eliminate residual layer removal process, we developed a residual-layer-free patterning method by selectively filling the concavity of the SAM-treated mold with the liquid with suitable dynamic contact angle. By using this method, residual- layer-free epoxy and conductive PPy/PMMA patterns can be achieved without the need of an extra step to remove residual layer. Next, in section 4.2, the morphologies and surface properties of different SAMs were studied. SAM surfaces with tunable hydrophobicity were further achieved by using mixed SAMs. In section 4.3, selective deposition of the silver in the grooves of the template can be achieved by using the template with OTS-sealed protrusion. By using this method, metal wire grid polarizer, with extinction ratio of 130 at the range of 635-650 nm, can be successfully obtained.
In chapter 5, to solve the problems related with PDMS stamp, a hydrophilic agarose stamp, with good wetting to aqueous suspension of metal nanoparticles and the ability to transfer metal nanoparticles, was used to directly print metal patterns for applications to flexible devices. Sub-micro-patterns comprising Ag nanoparticles could be printed on planar substrates without the formation of residual layers. The minimum line width of the patterns was about 800 nm. Ag nanoparticle patterns were further annealed at 300 °C for 30 min to exhibit the resistivity around 40 μΩcm. However, flexible polymeric substrate will melt or shrink during annealing process. As a result, in section 5.2, two welding methods for Ag nanowires such as electroless deposition method and wet etching method were investigated to reduce the contact resistance of nanowires. The sheet resistance of Ag nanowires film can be reduced from several thousand to several ten ohm/sq by either electroless deposition method or wet etching method. It was found that the absence or presence of PVP bonded on the Ag wire leads to different results. The patterning of electrodes by printing Ag nanowires directly on TiO2 was also demonstrated to fabricate the resistive random access memory (RRAM) devices by all-solution-processing methods. For the RRAM device with sandwiched structure of Ag NWs/ TiO2/ Ag NWs, a high-resistance state (HRS) was switched into a low-resistance state (LRS) at a negative set voltage (VSET) of -1.4 V, and a LRS was switched into a HRS at a positive VRESET of 1.6 V. The ratio of resistance between HRS and LRS was approximately 1,100 at −1 V.
In chapter 6, we proposed a method to fabricate a self-organized packed microsphere array by continuous injecting method. The microlens array (MLA) polymeric patterns on PET side of ITO-PET were fabricated by using the PDMS replica from this array. OLED was further built on the opposite side of MLA. It showed the brightness of the OLED with this MLA structure is greater than the OLED without MLA by 1.15 times at 17.5 V. By using this method, roller-type mold, with 30 cm in diameter, with seamless concave hemisphere array can be obtained.
1. D. Erath, A. Filipović, M. Retzlaff, A. K. Goetz, F. Clement, D. Biro, R. Preu, Sol. Energy Mater. Sol. Cells 2010, 94, 57.
2. B. Derby, Annu. Rev. Mater. Res. 2010, 40, 395.
3. H. Sirringhaus, T. Kawase, R.H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, E.P.Woo, Science 2010, 290, 2123.
4. S. Y. Chou, P. R. Krauss, and P. J. Restrom, J. Appl. Phys. Lett. 1995, 67, 3114.
5. M. D. Austin, H. Ge, W. Wu, M. Li, Z. Yu, D. Wasserman, S. A. Lyon, and S. Y. Chou, Appl. Phys. Lett. 2004, 84, 5299.
6. M. Colburn, A. Grot, B. J. Chio, M. Amistoso, T. Bailey, S. V. Sreenivasan, J. G. Ekerdt, C. G. Willson, J. Vac .Sci. Technol. B 2001, 19, 2162.
7. B. Tian, X. Liu, H. Yang, S. Xie, C. Yu, Bo Tu and D. Zhao, Adv. Mater. 2003, 15, 1367.
8. X. D. Huang, L. R. Bao, X. Cheng, L. J. Guo, , S. W. Pang, and A. F. Yee, J. Vac. Sci. Technol. B 2002, 20, 2872.
9. L. R. Bao, X. Cheng, X. D. Huang, L. J. Guo, S. W. Pang, and A. F. Yee, J. Vac. Sci. Technol. B 2002, 20, 2881.
10. Y. Xu, W. Zhao, and H. Y. Low, Microelectron. Eng. 2006, 83, 542.
11. E. A. Costner, M. W. Lin, W.-L. Jen, and C. G. Willson, Annu. Rev. Mater. Res. 2009, 39, 155.
12. A. Kumar, H. A. Biebuyck, G. M. Whitesides, Langmuir 1994, 10, 1498.
13. B. D. Gates, Q. Xu, M. Stewart, D. Ryan, C. G. Willson, G. M. Whitesides, Chem. Rev. 2005, 105, 1171.
14. B. D. Gates., Mater. Today 2005, 8, 44.
15. M. Colburn, S. Johnson, M. Stewart, S. Damle, T. Bailey, B. Choi, M. Wedlake, T. Michaelson, S. V. Sreenivasan, J. Ekerdt, C. G. Willson, Proc. SPIE 1999, 3676, 379.
16. M. D. Stewart, S. C. Johnson, S. V. Sreenivasan, D. J. Resnick, C. G. Willson, J. Microlithogr. Microfabr. Microsyst. 2005, 4, 011002.
17. H. Schift, L.J. Heyderman, M. Auf der Maur, J. Gobrecht, Nanotechnology 2001, 12, 173.
18. L. J. Heyderman, H. Schift, C. David, J. Gobrecht, T. Schweizer, Microelectron. Eng. 2000, 54, 229.
19. M. Otto, M. Bender, B. Hadam, B. Spangenberg, H. Kurz, Microelectron. Eng. 2001, 57–58, 361.
20. X. Cheng and L. J. Guo, Microelectron. Eng. 2004, 71, 288.
21. L. R. Bao, L. Tan, X. D. Huang, Y. P. Kong, L. J. Guo, S. W. Pang,, A. F. Yee J. Vac. Sci. Technol. B 2003, 21, 2749.
22. J. Dumond, H. Y. Low, Advanced Materials 2008, 20, 1291.
23. H. Park and X. Cheng, Nanotechnology 2009, 20, 245308.
24. H. Liu, W. Jiang, Y. Ding, Y. Shi, and L. Yin, J. Vac. Sci. Technol. B 2010, 28, 104.
25. H. Miguez, F. Meseguer, C. Lo´pez, A. Blanco, J. Moya, J. Requena, A. Mifsud and V. Fornes, Adv. Mater. 1998, 10, 480.
26. J. X. Zhu, M. Li, R. Rogers, W. Meyer, R. H. Ottewill, W. B. Russell and P. M. Chaikin, Nature 1997, 387, 883.
27. M. Holgado, F. Garcı´a-Santamarı´a, A. Blanco, M. Ibisate, A. Cintas, H. Mı´guez, C. J. Serna, C. Molpeceres, J. Requena, A. Mifsud, F. Meseguer and C. Lo´pez, Langmuir 1999, 15, 4701.
28. S. H. Park, D. Qin and Y. Xia, Adv. Mater. 1998, 10, 1028.
29. B. Gates, D. Qin and Y. Xia, Adv. Mater. 1999, 11, 466.
30. N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura and K. Nagayama, Nature 1993, 361, 26.
31. P. Jiang, J. F. Bertone, K. S. Hwang and V. L. Colvin, Chem. Mater., 1999, 11, 2132.
32. J. P. Hoogenboom, C. Rétif, E. de Bres, M. van de Boer, A. K. van Langen-Suurling, J. Romijn, and A. van Blaaderen, Nano Lett. 2004, 4, 205.
33. J. Sun, Y. Y. Li, H. Dong, P. Zhan, C. J. Tang, M. W. Zhu, Z. L. Wang, Advanced Materials 2008, 20, 123.
34. X. Yu, H. Zhang, J. K. Oliverio and P. V. Braun, Nano Lett. 2009, 9, 4424.
35. S.-M. Yang, S. G. Jang, D.-G. Choi, S. Kim, and H. K. Yu, small 2006, 2, 458.
36. O.D. Velev, N.D. Denkov, V. N. Paunov, P.A. Kralchevsky and K. Nagayama, J. Colloid Interface Sci. 1994, 166, 66.
37. P. A. Kralchevsky, N.D. Denkov, V. N. Paunov, O.D. Velev, I.B. Ivanov, H. Yoshimura and K. Nagayama, J. Phys. Cond. Matter 1994, 6, 1.
38. O. D. Velev, N.D. Denkov, V. N. Paunov, P.A. Kralchevsky and K. Nagayama, Langmuir 1993, 9, 3702.
39. N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura, K. Nagayama, Langmuir 1992, 8, 3183.
40. M. Kondo, K. Shinozaki, L. Bergstrom, N. Mizutani, Langmuir 1995, 11, 394.
41. Y. A. Vlasov, X. Z. Bo, J. C. Sturm and D. J. Norris, Nature 2001, 414, 289.
42. Y. Xia, Y. Yin, Y. Lu, J. McLellan, Adv. Funct. Mater. 2003, 13, 907.
43. D. Wang, H. Mchwald, Adv. Mater. 2004, 16, 244.
44. Y. Solomentsev, M. Bohmer, J. L. Anderson, Langmuir 1997, 13, 6058.
45. E. Kim, Y. Xia, G. M. Whitesides, Adv. Mater. 1996, 8, 245.
46. J. Aizenberg, P. V. Braun, P. Wiltzius, Phys. Rev. Lett. 2000, 84, 2997.
47. F. Fan, K. J. Stebe, Langmuir 2004, 20, 3062.
48. H. Y. Koo, D. K. Yi, S. J. Yoo, D.-Y. Kim, Adv. Mater. 2004, 16, 274.
49. A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lo´pez, F. Meseguer, H. Mı´guez, J. P. Mondia, G. A. Ozin, O. Toader and H. M. van Driel, Nature 2000, 405, 437.
50. A. L. Rogach, N. A. Kotov, D. S. Koktysh, J. W. Ostrander, and G. A. Ragoisha, Chem. Mater. 2000, 12 , 2721.
51. C.-A. Fustin, G. Glasser, H.W. Spiess, U. Jonas, Adv. Mater. 2003, 15, 1025.
52. S.-H. Kim, S.-H. Kim, W. C. Jeong and S.-M. Yang, Chem. Mater. 2009, 21, 4993.
53. Q. Yan, L. K. Teh, Q. Shao, C. C. Wong, and Y.-M. Chiang, Langmuir 2008, 24, 1796.
54. S. Arpiainen, F. Jonsson, J. R. Dekker, G. Kocher, W. Khunsin, C. M. S. Torres, J. Ahopelto, Adv. Funct. Mater. 2009, 19, 1247.
55. Q. Yan, F. Liu, L. Wang, J. Y. Lee and X. S. Zhao, J. Mater. Chem. 2006, 16, 2132.
56. A. Manzke, C. Pfahler, O. Dubbers, A. Plettl, P. Ziemann, D. Crespy, E. Schreiber, U. Ziener, K. Landfester, Adv. Mater. 2007, 19, 1337.
57. Y.-S. Cho, G.-R. Yi, J. H. Moon, D.-C. Kim, B.-J. Lee and S.-M. Yang, Langmuir 2005, 21, 770.
58. Y. Lu, G. L. Liu, J. Kim, Y. X. Meija and L. P. Lee, Nano Lett. 2005, 5, 119.
59. P. Jiang, J. F. Bertone and V. L. Colvin, Science 2001, 291, 453.
60. H. J. Nam, D.-Y. Jung, G.-R. Yi and H. Choi, Langmuir 2006, 22, 7358.
61. O. J. Cayre and V. N. Paunov, J. Mater. Chem. 2004, 14, 3300.
62. R. Danzebrink, M. A. Aegerter, Thin Solid Films 2001, 392, 223.
63. Y. Lu, Y. Yin, Y. Xia, Adv. Mater. 2001, 13, 34.
64. Z. D. Popovic, R. A. Sprague, G. A. N. Connell, Appl. Opt. 1988,27, 1281.
65. M.-H. Wu, G. M. Whitesides, Appl. Phys. Lett. 2001, 78, 2273.
66. M.-H. Wu, K. E.Paul, G. M. Whitesides, Appl. Opt. 2002, 41, 2575.
67. M.-H. Wu, G. M.Whitesides, AdV. Mater. 2002, 14, 1502.
68. M.-H. Wu, C. Park, G. M. Whitesides, Langmuir 2002, 18, 9312.
69. V. N. Paunov, Langmuir 2003, 19, 7970.
70. V. N. Paunov, O. J. Cayre, Adv. Mater. 2004, 16, 788.
71. C. D. Jones, M. J. Serpe, L. Schroeder, L. A. Lyon, J. Am. Chem. Soc. 2003, 125, 5292.
72. H. Yabu,; M. Shimomura, Langmuir 2005, 21, 1709.
73. L. A. Porter Jr., H. C. Choi, J. M. Schmeltzer, A. E. Ribbe, L. C. C Elliot, J. M. Buriak, Nano Lett. 2002, 2, 1369.
74. H. Xu, R. Hong, X. Wang, R. Arvizo, C. You, B. Samanta, D. Patra, M. T. Tuominen, and V. M. Rotello, Adv. Mater. 2007, 19, 1383.
75. H. Asoh, S. Sakamoto, S. Ono, J. Colloid Interface Sci. 2007, 316, 547.
76. K. Miyoshi, Y. Aoki, T. Kunitake, and S. Fujikawa, Langmuir 2008, 24, 4205.
77. D. W. Carr, M. J. Lercel, C. S. Whelan, H. G. Craighead, K. Seshadri, D. L. Allara, J. Vac. Sci. Technol. A 1997, 15, 1446.
78. C.-H. Hsu, M.-C. Yeh, K.-L. Lo, and L.-J. Chen, Langmuir 2007, 23, 12111.
79. S.-C. Huang, T.-C. Tsao, and L.-J. Chen, J. Electrochem. Soc. 2010, 157, D222.
80. C. B. Gorman, H. A. Biebuyck, and G. M. Whitesides, Chem. Mater. 1995, 7, 252.
81. I. Lee, Chem. Mater. 2003, 15, 4583.
82. M. S. Miller, G. J. E. Davidson, B. J. Sahli, C. M. Mailloux, and T. B. Carmichael, Adv. Mater. 2008, 20, 59.
83. S.S. Yoon, D.O. Kim, S.C. Park, Y.K. Lee, H.Y. Chae, S.B. Jung, J.-D. Nam, Microelectron Eng 2008, 85, 136.
84. D. Aldakov, Y. Bonnassieux, B. Geffroy, and S. Palacin, ACS Appl. Mater. Inter. 2009, 1, 584.
85. M. S. Miller, H. L. Filiatrault, G. J. E. Davidson, M. Luo, and T. B. Carmichael, J. Am. Chem. Soc. 2010, 132, 765.
86. T. B. Carmichael, S. J. Vella, A. Afzali, Langmuir 2004, 20, 5593.
87. T. R. Hendricks, I. Lee, Thin Solid Films 2006, 515, 2347.
88. F. Guan, M. Chen, W. Yang, J. Wang, S. Yong, Q. Xue, Appl. Surf. Sci. 2005, 240, 24.
89. S.-H. Hur, D.-Y. Khang, C. Kocabas and J. A. Rogers, Appl. Phys. Lett. 2004, 85, 5730.
90. V. Santhanam, R. P. Andres, Nano Lett. 2004, 4, 41.
91. E. J. Wilhelm and J. M. Jacobson, Appl. Phys. Lett. 2004, 84, 3507.
92. J.-W. Kim, K.-Y. Yang, S.-H. Hong and L. Heon, Appl. Surf. Sci. 2008, 254, 5607.
93. M. Morra, E. Occhiello, F. Garbassi, D. Johnson, J Colloid Interface Sci. 1990, 137, 11.
94. Y. Xia, G. M. Whitesides, Angew. Chem. Int. Ed., 1998, 37, 550.
95. J. N. Lee, C. Park, and G. M. Whitesides, Anal. Chem. 2003, 75, 6544.
96. J. Sagiv, J. Am. Chem. Soc. 1980, 102, 92.
97. J. B. Brzoska, I. Ben Azouz, F. Rondelez, Langmuir 1994, 10, 4367.
98. H. O. Finklea, L. R. Robinson, A. Blackburn, B. Richter, D. Allara, T. Bright, Langmuir 1986, 2, 239.
99. D. L. Allara, A. N. Parikh, F. Rondelez, Langmuir 1995, 11, 2357.
100. P. Silberzan, L. Leger, D. Ausserre, J. J. Benattar, Langmuir 1991, 7, 1647.
101. D. L. Angst, G. W. Simmons, Langmuir 1991, 7, 2236.
102. Y. L. Wang, M. Lieberman, Langmuir 2003, 19, 1159.
103. R. Maoz, J. Sagiv, J. Colloid Interface Sci. 1984, 100, 465.
104. S. R. Cohen, R. Naaman, J. Sagiv, J. Phys. Chem. 1986, 90, 3054.
105. T. Ohtake, N. Mino, K. Ogawa, Langmuir 1992, 8, 2081.
106. R. Banga, J. Yarwood, A. M. Morgan, B. Evans, J. Kells, Langmuir 1995, 11, 4393.
107. K. Bierbaum, M. Grunze, A. A. Baski, L. F. Chi, W. Schrepp, H. Fuchs, Langmuir 1995, 11, 2143.
108. N. Rozlosnik, M. C. Gerstenberg, N. B. Larsen, Langmuir 2003, 19, 1182.
109. T. Vallant, H. Brunner, U. Mayer, H. Hoffmann, T. Leitner, R. Resch, G. Friedbacher, J. Phys. Chem. B 1998, 102, 7190.
110. T. Leitner, G. Friedbacher, T. Vallant, H. Brunner, U. Mayer, H. Hoffmann, Mikrochim. Acta 2000, 133, 331.
111. M. Reiniger, B. Basnar, G. Friedbacher, M. Schleberger, Surf. Interface Anal. 2002, 25, 85.
112. Y. Liu, L. K. Wolf, M. C. Messmer, Langmuir 2001, 17, 4329.
113. T. Balgar, R. Bautista, N. Hartmann, E. Hasselbrink, Surf. Sci. 2003, 532, 963.
114. J. V. Davidovits, V. Pho, P. Silberzan, M. Goldmann, Surf. Sci. 1996, 352, 369.
115. C. Carraro, O. W. Yauw, M. M. Sung, R. Maboudian, J. Phys. Chem. B 1998, 102, 4441.
116. M. M. Sung, C. Carraro, O. W. Yauw, Y. Kim, R. Maboudian, J. Phys. Chem. B 2000, 104, 1556.
117. A. Glaser, J. Foisner, G. Friedbacher, H. Hoffmann, Anal. Bioanal. Chem. 2004, 379, 653.
118. Y. S. Chi, Y. H. Jung, I. S. Choi, Y. G. Kim, Langmuir 2005, 21, 4669.
119. J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, G. M. Whitesides, Chem. Rev. 2005, 105, 1103.
120. S. Semal, C. Bauthier, M. Voue´, J. J. Vanden Eynde, R. Gouttebaron, and J. De Coninck, J. Phys. Chem. B 2000, 104, 6225.
121. S.-i. Imabayashi, N. Gon, T. Sasaki, D. Hobara, and T. Kakiuchi, Langmuir 1998, 14, 2348.
122. T. Hasunuma, S. Kuwabata, E.-i. Fukusaki, and A. Kobayashi, Anal. Chem. 2004 ,76, 1500.
123. C. Ayela, F. Roquet, L. Valera, C. Granier, L. Nicu, M. Pugni`ere, Biosens. Bioelectron. 2007, 22, 3113.
124. S. Pan and L. Rothberg, Langmuir 2005, 21, 1022.
125. M. Satjapipat, R. Sanedrin, and F. Zhou, Langmuir 2001, 17, 7637.
126. M. Riepl, K. Enander, and B. Liedberg, Langmuir 2002, 18, 7016.
127. E. Briand, M. Salmain, C. Comp`ere, C.-M. Pradier, Colloid Surface B 2006, 53, 215.
128. N. V. Venkataraman, S. Zu¨rcher, and N. D. Spencer, Langmuir 2006, 22, 4184.
129. R. Maboudian, W. R. Ashurst, C. Carraro, Sens. Actuat. 2000, 82, 219.
130. S. S. Shah, J. Y. Lee, S. Verkhoturov, N. Tuleuova, E. A. Schweikert, E. Ramanculov, and A. Revzin, Langmuir 2008, 24, 6837.
131. J. Zheng, Z. Zhu, H. Chen, and Z. Liu, Langmuir 2000, 16, 4409.
132. W.-F. Kuan and L.-J. Chen, Nanotechnology 2009, 20, 035605.
133. Q. Ke, G. Li, Y. Liu, T. He, and X.-M. Li, Langmuir 2010, 26, 3579.
134. Y. Song, R. P. Nair, M. Zou, and Y.A. Wang, Thin Solid Films 2010, 518, 3801.
135. E. Martines, K. Seunarine, H. Morgan, N. Gadegaard, C. D. W. Wilkinson, and M. O. Riehle, Nano Lett. 2005, 5, 2097.
136. P. Maury, M. Péter, V. Mahalingam, D. N. Reinhoudt, J. Huskens, Adv. Func. Mater. 2005, 15, 451.
137. W. Zhou, J. Zhang, Y. Liu, X. Li, X. Niu, Z. Song, G. Min, Y.Z. Wan, L. Shi, and S. Feng, Appl. Surf. Sci. 2008, 255, 2885.
138. I. Choi, Y. Kim, S. K. Kang, J. Lee, and J. Yi, Langmuir 2006, 22, 4885.
139. A. Heise, M. Stamm, M. Rauscher, H. Duschner, H. Menzel, Thin Solid Films 1998, 327–329, 199.
140. M. B. Smith, K. Efimenko, D. A. Fischer, S. E. Lappi, P. K. Kilpatrick, and J. Genzer, Langmuir 2007, 23, 673.
141. J. Fang and C. M. Knobler, Langmuir 1996, 12, 1368.
142. G. O. Mallory, J. B. Hajdu, American Electroplaters and Surface Finishers Society, Electroless plating: fundamentals and applications, p441.
143. B. Liebig, Ann. Chem. Phar. XlV, 1835, 140.
144. S. B. Fuller, E. J. Wilhelm, J. A. Jacobson, J. Microelectromech. Syst. 2002, 11, 54.
145. S. Joo, D. F. Baldwin, Elec. Comp. C 2007, 212.
146. J. B.Szczech, C. M. Megaridis, J. Zhang, D. R. Gamota, Microscale Therm. Eng. 2004, 8, 327.
147. D. Kim, J. Moon, Electrochem. Solid State 2005, 8, J30.
148. J. Perelaer, B. J. de Gans, U. S. Schubert, Adv. Mater. 2006, 18, 2101.
149. S. H. Ko, H. Pan, C. P. Grigoropoulos, C. K. Luscombe, J. M. J. Frechet, D. Poulikakos, Appl. Phys. Lett. 2007, 90, 141103.
150. N. R. Bieri, J. Chung, D. Poulikakos, C. P. Grigoropoulos, Superlattice Microstruct. 2004, 35, 437.
151. K.-S. Moon, H. Dong, R. Maric, S. Pothukchi, A. Hunt, Y. Li, and C. P. Wong, J. Electron. Mater. 2005, 34, 168.
152. S. Magdassi, M. Grouchko, O. Berezin, and A. Kamyshny, ACS Nano 2010, 4, 1943.
153. M. L Allen, M. Aronniemi, T. Mattila, A. Alastalo,K. Ojanper¨a, M. Suhonen and H. Sepp¨,Nanotechnology 2008, 19, 175201.
154. I. Reinhold, C. E. Hendriks, R. Eckardt, J. M. Kranenburg, J. Perelaer, R. R. Baumann and U. S. Schubert, J. Mater. Chem. 2009, 19, 3384.
155. L. Hu, H. S. Kim, J.-Y. Lee, P. Peumans, and Y. Cui, ACS Nano 2010, 4, 2955
156. S. De, T. M. Higgins, P. E. Lyons, E. M. Doherty, P. N. Nirmalraj, W. J. Blau, J. J. Boland and J. N. Coleman, ACS Nano 2009, 3, 1767.
157. Y. C. Lu and K. S. Chou, Nanotechnology 2010, 21, 215707.
158. J.-Y. Lee, S. T. Connor, Y. Cui, and P. Peumans, Nano Lett. 2008, 8, 689.
159. J.-Y. Lee, S. T. Connor, Y. Cui, and P. Peumans, Nano Lett. 2010, 10, 1276.
160. X.-Y. Zeng , Q.-K. Zhang, R.-M. Yu, and C.-Z. Lu, Adv. Mater. 2010, 22, 4484.
161. H.-H. Lee, K.-S. Chou and K.-C. Huang, Nanotechnology 2005, 16, 436.
162. K. W. Chien and H. P. D. Shieh, Appl. Opt. 2004, 43, 1830.
163. S. H. Ahn, J.-S. Kim and L. J. Guo, J. Vac. Sci. Technol. B 2007, 25, 2388.
164. L. Chen, J. J. Wang, F. Walters, X. Deng, M. Buonanno, S. Tai, and X. Liu, Appl. Phys. Lett. 2007, 90, 063111.
165. S.-W. Ahn, K.-D. Lee, J.-S. Kim, S. H. Kim, J.-D. Park, S.-H. Lee and P.-W. Yoon, Nanotechnology 2005, 16, 1874.
166. K. Nagashima, T. Yanagida, K. Oka, and T. Kawai, Appl. Phys. Lett. 2009, 94, 242902.
167. H. Y. Jeong, Y. I. Kim, J. Y. Lee, and S.-Y. Choi, Nanotechnology 2010, 21, 115203.
168. S. Seo, M. J. Lee, D. H. Seo, S. K. Choi, D.-S. Suh, Y. S. Joung, I. K. Yoo, I. S. Byun, I. R. Hwang, S. H. Kim, and B. H. Park, Appl. Phys. Lett. 2005, 86, 093509.
169. Y. C. Yang, F. Pan, Q. Liu, M. Liu and F. Zeng, Nano Lett. 2009, 9 1636.
170. R. S. Potember, T. O. Poehler, and D. O. Cowan, Appl. Phys. Lett. 1979, 34, 405.
171. R. Waser and M. Aono, Nat. Mater. 2007, 6, 833.
172. B. J. Choi, D. S. Jeong, and S. K. Kim, J. Appl. Phys. 2005, 98, 033715.
173. A. Sawa, Materials Today 2008, 11, 28.
174. K. Kinoshita, T. Tamura, M. Aoki, Y. Sugiyama, and H. Tanaka,, Appl. Phys. Lett. 2006, 89, 103509.
175. K. M. Kim, B. J. Choi, and C. S. Hwang, Appl. Phys. Lett. 2007, 90, 242906.
176. K. Fujiwara, T. Nemoto, M. J. Rozenberg, Y. Nakamura, and H. Takagi, Jpn. J. Appl. Phys. 2008, 47, 6266.
177. M. J. Rozenberg, I. H. Inoue, and M. J. Sanchez, Phys. Rev. Lett. 2004, 92, 4.
178. A. Baikalov, Y. Q. Wang, B. Shen, B. Lorenz, S. Tsui, Y. Y. Sun, Y. Y. Xue, and C. W. Chu, Appl. Phys. Lett. 2003, 83, 957.
179. X. Chen, N. J. Wu, J. Strozier, and A. Ignatiev, Appl. Phys. Lett. 2005, 87, 233506.
180. S. Tsui, A. Baikalov, J. Cmaidalka, Y. Y. Sun, Y. Q. Wang, Y. Y. Xue, C. W. Chu, L. Chen, and A. J. Jacobson, Appl. Phys. Lett. 2004, 85, 317.
181. Y. B. Nian, J. Strozier, N. J. Wu, X. Chen, and A. Ignatiev, Phys. Rev. Lett. 2007, 98, 146403.
182. A. Sawa, T. Fujii, M. Kawasaki, and Y. Tokura, Appl. Phys. Lett. 2004, 85, 4073.
183. T. Fujii, M. Kawasaki, A. Sawa, H. Akoh, Y. Kawazoe, and Y. Tokura, Appl. Phys. Lett. 2005, 86, 012107.
184. M. J. Rozenberg, I. H. Inoue, and M. J. Sánchez, Phys. Rev. Lett. 2004, 92, 178302.
185. M. J. Rozenberg, I. H. Inoue, and M. J. Sánchez, Appl. Phys. Lett.2006, 88, 033510.
186. K. Terabe, T. Hasegawa, T. Nakayama, M. Aono, Nature 2005, 433, 47.
187. R. Waser, IEDM Techn. Dig. 2008, 289.
188. R. Waser, Microelectron. Eng. 2009, 86, 1925.
189. S. Kim and Y.-K. Choi, IEEE Trans. Electr. Dev. 2009, 56, 3049.
190. J. Yun, K. Cho, B. Park, B. H. Park and S. Kim, J. Mater. Chem., 2009, 19, 2082.
191. S. Kim, H. Moon, D. Gupta, S. Yoo, and Y.-K. Choi, IEEE Trans. Electr. Dev. 2009, 56, 696.
192. T. A. Assis,F. Borondo, R. M. Benito and R. F. S. Andrade, Phys. Rev. B 2008, 78, 235427.
193. P. Zhang, Y. Y. Lau and R. M. Gilgenbach, J. Appl. Phys. 2009, 105, 114908.
194. K.-S. Yun, and C.-J. Kim, 2007 in Digest Tech. Papers, IEEE MEMS 2007 Conference, 21-25, 139.
195. C. B. Gorman, H. A. Biebuyck, and G. M. Whitesides, Chem. Mater. 1995, 7, 526.
196. Z. Huang, P.-C. Wang, A. G. MacDiarmid, Y. Xia, and G. M. Whitesides, Langmuir 1997, 13, 6480.
197. N. Kehagias, M. Zelsmann, C. M. Sotomayor Torres, K. Pfeiffer, G. Ahrens, and G Gruetzner, J. Vac. Sci. Technol. B 2005, 23, 2954.
198. C. Decker, and A. D. Jenkins, Macromolecules 1985, 18, 1241.
199. M. J. Pellerite, E. J. Wood, and V. W. Jones, J. Phys. Chem. B 2002, 106, 4746.
200. T. M. Mayer, M. P. de Boer, N. D. Shinn, P. J. Clews, and T. A. Michalske, J. Vac. Sci. Technol. B 2000, 48, 2433.
201. A. Y. Fadeev, O. A. Soboleva, and B. D. Summ, Colloid J. 1997, 59, 222.
202. B. C. Bunker, R. W. Carpick, R. A. Assink, M. L. Thomas, M. G. Hankins, J. A. Voigt, D. Sipola, M. P. de Boer, and G. L. Gulley, Langmuir 2000, 16, 7742.
203. V. DePalma and N. Tillman, Langmuir 1989, 5, 868.
204. A. Menawat, J. Henry, and R. Siriwardane, J. Colloid Interface Sci. 1984, 101, 110.
205. M. J. Stevens, Langmuir 1999, 15, 2773.
206. S. Ge, A. Takahara, T. Kajiyama, J. Vac. Sci. Technol. A 1994, 12, 2530.
207. H. Xu, X. Y. Ling, J. van Bennekom, X. Duan, J. W. M. Ludden, D. N. Reinhoudt, M. Wessling, R. G. H. Lammertink, and J. Huskens J. Am. Chem. Soc. 2009, 131, 797.
208. H.-H. Lee, K.-S. Chou and K.-C. Huang, Nanotechnology 2005, 16, 2436.
209. Q. Guo, X. Teng, S. Rahman, H. Yang, J. Am. Chem. Soc. 2002, 125, 630.
210. S. H. Ko, I. Park, H. Pan, C. P. Grigoropoulos, A. P. Pisano, C. K. Luscombe, and J. M. J. Fréchet Nano Lett. 2007, 7 1869.
211. Y. Sun, B. Mayers, T. Herricks, Y. Xia, Nano Lett. 2003, 3, 955.
212. B. Wiley, Y. Sun, B. Mayers, Y. Xia, Chem Eur J 2005, 11, 454.
213. M. J. Mulvihill, X. Y. Ling, J. Henzie, and P. Yang, J. Am. Chem. Soc. 2010, 132, 268.
214. M. Kao, Mater. Sci. Eng., A, 1991, 146, 205.
215. A. R. Madaria, A. Kumar, F. N. Ishikawa, and C. Zhou, Nano Res. 2010, 3, 564.
216. S. M. Sze, Physica of Semiconductor Device s (Wiley, New York, 1981).
217. D. F. Williams and J. C. Berg, J. Colloid Interface Sci., 1992, 152, 218.
218. J. N. Israelachvili, Intermolecular and surface Forces, 2nd ed.; Academic Press: London, U.K., 1992, p183.
219. G.Y. Onoda, Phys. Rev. Lett. 1985, 55, 226.
220. A. S. Dimitrov, C.D. Dushkin, H. Yoshimura, K. Nagayama, Langmuir, 1994, 10, 432.
221. S.-I. Chang and J.-B. Yoon, OPTICS LETTERS, 2006, 31, 3016.
222. H. Urey and K. D. Powell, Appl. Opt. 2005, 44, 4930.
校內:2016-04-15公開