| 研究生: |
黃柏勛 Huang, Po-Hsun |
|---|---|
| 論文名稱: |
使用希爾伯特黃方法分析高空短暫發光現象的早期訊號 The Early ELF Signal of Transient Luminous Events Revealed by Hilbert-Huang Transform |
| 指導教授: |
陳炳志
Chen, Alfred Bing-Chih 許瑞榮 Hsu, Rue-Ron |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 高空短暫發光現象 、希爾伯特黃轉換 、巨大噴流 |
| 外文關鍵詞: | Hilbert-Huang transform, transient luminous events, gigantic jets |
| 相關次數: | 點閱:76 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
高空短暫發光現象在雲層至電離層間的電荷搬運扮演極為重要的角色,通常事件發生的時間長度從小於一毫秒到數百毫秒,由於過程極短,所以使用傳統時頻分析方法對於瞬間過程的細節研究相對較少。希爾伯特·黃方法在近年來已廣泛用於在其他領域的時變頻譜分析,希爾伯特·黃轉換藉由對訊號相位的微分,獲得其瞬時頻率的變化,相較於一般傳統傅立葉頻譜分析,無法針對短時間內,快速的訊號變化給予頻率上良好的定義。本研究對鹿林觀測站極低頻磁場量測系統所記錄到的高空短暫發光現象,進行瞬時頻譜的分析。透過分析2012年到2014年間台灣光學觀測網路所觀測到的巨大噴流在希爾伯特頻譜上的特徵,發現了72%的巨大噴流有早期訊號的存在。經由模擬訊號的分析和光學影像上的比對,證實這些早期訊號是來自於雲層間的放電現象,這也為巨大噴流形成機制的理論模型提供了觀測上的佐證。我們也統計了2012年到2014年間,台灣光學觀測網路所觀測到其他類型高空短暫發光現象與早期訊號的關係,結果顯示其他類型的高空短暫發光現象只有不到30%的事件可以找到疑似早期訊號。因此除了巨大噴流外,其他類型的高空短暫發光現象幾乎無法確認早期訊號的存在,這也間接證實其他類型高空短暫發光現象的觸發機制應該不是來自於雲層間的放電現象。
The conventional Fourier analysis on the sferics at ELF and VLF frequency bands have been explored for decades. Several phenomena, e.g. infrasound and Schumann resonance, have been well studied by the Fourier spectrogram comprehensively. But the core computation of the Fourier analysis is an integration over a window of a specific time length, therefore, the temporal and frequency resolutions are limited not only by the sampling rate but also the length of the integration window. The instantaneous frequency can’t be obtained through this conventional approach precisely.
The Hilbert-Huang transform (HHT) is introduced in this study to analyze the sferics of transient luminous events (TLEs) recorded at the Lulin observatory. The Hilbert–Huang transform decomposes a signal into so-called intrinsic mode functions (IMFs), and derive instantaneous spectrum via the Hilbert transform. The gigantic jets registered by the Taiwan Ground Optical Observation Networks were used in this study and an early signal of frequency-change before the phase of the leading jet is revealed surprisingly. Furthermore this early signal cannot be identified in the conventional Fourier spectrogram. By a simple simulation, this frequency variation is confirmed as a nature of the discharge, not an alias or a false signal generated by the analysis method. The results of the statistics on the TLEs observed from 2012 to 2014 show that this early signal can be discriminated in more than 70% of the gigantic jets, but only less than 30% of other types of the TLEs are able to identify this feature in the HHT spectrogram. This early signal as well as the polarities of the observed gigantic jets strongly agree with the theoretical model proposed by Krehbiel et al. [2008].
[1]Barrington-Leigh, C. P., U. S. Inan, and M. Stanley (2001), Identification of sprites and elves with intensified video and broadband array photometry, J. Geophys. Res., 106(A2), 1741-1750.
[2]Bell, T. F., V. P. Pasko, and U. S. Inan (1995), Runaway electrons as a source of Red Sprites in the mesosphere, Geophys. Res. Lett., 22, 2127-2130.
[3]Bering, E. A. III, J. R. Benbrook, L. Bhusal, J. A. Garrett, A. M. Paredes, E. M. Wescott, D. R. Moudry, D. D. Sentman, H. C. Stenbaek-Nielsen, and W. A. Lyons (2004), Observations of transient luminous events (TLEs) associated with negative cloud-to-ground (-CG) lightning strikes. Geophys. Res. Lett., 31, L05104, doi:10.1029/2003GL018659.
[4]Blanc, E. (1985), Observations in the upper-atmosphere of infrasonicwaves from natural or artificial sources—A summary, Ann. Geophys., 3(6), 673–687.
[5]Boccippio, D. J., Williams, E. R., Heckman, S. J., Lyons, W. A., Baker, I. T., and R. Boldi (1995), Sprites, ELF transients, and positive ground strokes. Science, 269:1088-1091.
[5]Boeck, W. L., O. H. Vaughan Jr., R. J. Blakeslee, B. Vonnegut, M. Brook, and J. McKune (1995), Observations of lightning in the stratosphere, J. Geophys. Res., 100:1465-1475, doi: 10.1029/94JD02432.
[6]Bracewell, R. N., K. G. Budden, J. A. Ratcliffe, T. W. Straker, and K. Weekes (1951), The ionospheric propagation of low- and very-low-frequency radio waves over distances less than 1000 km, Proc. IEE London, 93, part 3, 221-236.
[7]Buck, T. L., N. Amitabh, and J. Martin (2014), Improved Cloud-to-Ground and Intracloud Lightning Detection with the LS7002 Advanced Total Lightning Sensor, Vaisala Inc., Louisville, Colorado, USA.
[8]Burrus, C. Sidney, R. A. Gopinath, and H. Guo (1997), Introduction to Wavelets and Wavelet Transforms: A Primer. Prentice Hall, ISBN: 0-13-489600-9.
[9]Chang, J. C., Huang, M. Y., Lee, J. C., Chang, C. P., Tu, T. M. (2009), Iris Recognition with an Improved Empirical Mode Decomposition Method, Optical Engineering, 48 (4): 047007–047007–15.
[10]Chen, A. B., et al. (2008), Global distributions and occurrence rates of transient luminous events, J. Geophys. Res., 113, A08306, doi: rm10.1029/2008JA013101.
[11]Chen, Y. B. (2015), The Global Distribution of the Discharge Polarity of Lightning and Transient Luminous Events, Master Thesis, Institute of Space and Plasma Sciences, National Cheng Kung University.
[12]Chou, J. K., et al. (2010), Gigantic jets with negative and positive polarity streamers, J. Geophys. Res., 115, A00E45, doi:10.1029/2009JA014831.
[13]Christian, H.J., et al. (2003), Global frequency and distribution of lightning as observed from space by the Optical Transient Detector, J. Geophys. Res., 108 (D1), 4005.
[14]Cohen, L. (1989), Time-frequency distributions -A review: Proceedings of the IEEE, 77, 941-981.
[15]Cummer, S. A. (2006), Measurements of lightning parameters from remote electromagnetic fields, NATO Advanced Study Institute on Sprites, Elves and Intende Lightning Discharges, M. Fullekrug et al., Springer, 191-210.
[16]Cummer, S. A., J. Li, F. Han, G. Lu, N. Jaugey, W. A. Lyons, and T. E. Nelson (2009), Quantification of the troposphere-to-ionosphere charge transfer in a gigantic jet, Nat. Geosci., 2(9), 617–620, doi:10.1038/NGEO607.
[17]Everett, W. H. (1903), Rocket lightning, Nature, 68, 599.
[18]Evers, L. G. and H. W. Haak (2007), Infrasonic forerunners: Exceptionally fast acoustic phases, Geophys. Res. Lett., 34, L10806, doi: 10.1029/2007GL029353.
[19]Franz, R. C., R. J. Nemzek, and J. R. Winckler (1990), Television Image of a large upward electrical discharge above a thunderstrom, Science, 249, 48-51.
[20]Fukunishi, H., Y. Takahashi, M. Kubota, K. Sakanoi, U. S. Inan, and W. A. Lyons, (1996), Elves: Lightning-induced transient luminous events in the lower ionosphere, Geophys. Res. Lett., 23(16):2157-2160.
[21]Gabor, D. (1946), Theory of communication, Proceedings of the IEEE, Vol. 93, pp. 429-457.
[22]Gerken, E. A., U. S. Inan, and C. P. Barrington-Leigh (2000), Telescopic imaging of sprites, Geophys. Res. Lett., 27, 2637-2640.
[23]Heckman S. J., and E. Williams (1998), Total global lightning inferred from Schumann resonance measurements, J. Geophys. Res., 103(D24): 31775–31779.
[24]Holzworth, R. H., M. P. McCarthy, J. N. Thomas, J. Chin, T. M. Chinowsky, M. J. Taylor, and Jr. O. Pinto (2005), Strong electric fields from positive lightning strokes in the stratosphere, Geophys. Res. Lett., 32, L04809.
[25]Hsu, C. L., (2009), Calibration of the BF-4 Magnetic Field Induction Sensor and the Algorithm of Lightning Related Charge Moment, Master Thesis, Institute of Physics, National Cheng Kung University.
[26]Hu, W., Cummer, S., Lyons, W. A., and Nelson, T. E. (2002), Lightning charge moment changes for the initiation of sprites, Geophys. Res. Lett., 29, 1279.
[27]Hu, W., S. A. Cummer, and W. A. Lyons (2007), Testing sprite initiation theory using lightning measurements and modeled electromagnetic fields, J. Geophys. Res. Lett., 112, D13115, doi:10.1029/2006JD007939.
Huang, K.H. (2009), Hilbert-Huang Transform (HHT) Based technique for Identifying Looseness of Rotating Machinery through Marginal Hilbert Spectrum Analysis, Master Thesis, Institute of Opto-Mechatronics Engineering, National Central University.
[28]Huang, N. E., Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N. C. Yen, C. C. Tung, and H. H. Liu (1998), The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis, Proc. R. Soc. London, Ser. A, 454, 903–993.
[29]Huang, P. Y. (2012), Sferic Analysis of 2010 ELF Magnetic Field Measurement and Its Application on The Statistics of The TLE Polarity, Master Thesis, Institute of Space and Plasma Sciences, National Cheng Kung University.
[30]Huang, S. M. (2013), ULF and ELF/VLF Electromagnetic Signatures of Transient Luminous Events, PhD dissertation, Institute of Physics, National Cheng Kung University.
[31]Inan, U. S., C. Barrington-Leigh, S. Hansen, V. S. Glukhov, T. F. Bell, and R. Rairden (1997), Rapid lateral expansion of optical luminosity in lightning-induced ionospheric flashes referred to as 'elves', Geophys. Res. Lett., 24(5), 583-586.
[32]J. Qin, S. Celestin, V. P. Pasko (2011), On the inception of streamers from sprite halo events produced by lightning discharges with positive and negative polarity, J. Geophys. Res., 116, A06305.
[33]Kitagawa, N., and M. Brook (1960), A comparison of intracloud and cloud-to-ground lightning discharges, J. Geophys Res., 65, 1189-1201.
[34]Kitagawa, N., M. Brook, and E. J. Workman (1962), Continuing currents in cloud-to-ground lightning discharges, J. Geophys. Res., 67, 637-647.
[35]Krehbiel, P. R., J. A. Riousset, V. P. Pasko, R. J. Thomas, W. Rison, M. A. Stanley, and H. E. Edens (2008), Upward electrical discharges from thunderstorms, Nat. Geosci., 1(4), 233– 237, doi:10.1038/ngeo162.
[36]Kuo, B. C., A. Rao, J. Lepsien, A. C. Nobre (2009), Searching for targets within the spatial layout of visual short-term memory. J Neurosci, 29:8032– 8038.
[37]Liu, Z. L., (2011), Recent Development of the Hilbert-Huang Transform, Term Paper Tutorial for Time Frequency Analysis and Wavelet Transform, Institute of Digital Image and Signal Processing, National Taiwan University.
Lyons, W. A. (1994), Characteristics of luminous structures in the stratosphere above thunderstorms as imaged by low-light video, Geophys. Res. Lett., 21, 875.
[38]Lyons, W. A. (1996), Sprite observations above the U.S. High Plains in relation to their parent thunderstorm systems, J. Geophys. Res., 101, 29,641–29,652.
[39]Lyons, A. and E. R. Williams (2003), Preliminary investigations of the phenomenology of cloud-to-stratosphere lightning discharges. Preprints, 17th Conf. on Atmospheric Electricity, St. Louis, MO, Amer. Meteor. Soc., 725–732.
[40]MacKenzie, T., and H. Toynbee (1886), Meteorological phenomena, Nature, 33, 246.
[41]Mastin, D. F., J. Bryson, R. Corwyn (2006), Assessment of sleep hygiene using the Sleep Hygiene Index. Journal of Behavioral Medicine, 29, 223–227.
[42]Maxwell, J. C. (1864), Phil. Mag. 27, 294 (Paper XYVI in Collected Papers, Cambridge).
[43]Miranda M. I., G. L. Quirarte, G. R. Garcia, J. L. McGaugh, B. Roozendaal (2008), Glucocorticoids enhance taste aversion memory via actions in the insular cortex and basolateral amygdala, Learn Mem., 15, 468–476.
[44]Nava, B., P. Coïsson, and S. M. Radicella (2008), A new version of the NeQuick ionosphere electron density model, J. Atmos. Sol. Terr. Phys., 70(15), 1856-1862.
[45]Orville, R. E., G. R. Huffines, W. R. Burrows, R. L. Holle, and K. L. Cummins (2002), The North American lightning network (NALDN)- first results: 1998-2000, Mon. Wea. Rev.,130, 2098-2109.
[46]Pasko, V. P. (2009), Mechanism of lightning‐associated infrasonic pulses from thunderclouds, J. Geophys. Res., 114, D08205, doi:10.1029/ 2008JD011145.
[47]Pasko, V. P., and J. J. George (2002), Three-dimensional modeling of bluejets and blue starters, J. Geophys. Res., 107(A12), 1458, doi:10.1029/2002JA009473.
[48]Pasko, V. P., U. S. Inan, and T. F. Bell (1996), Blue jets produced by quasi-electrostatic pre-discharge thundercloud fields, Geophys. Res. Lett., 23(3), 301-304.
[49]Pasko, V. P., U. S. Inan, Y. N. Taranenko, and T. F. Bell (1995), Heating, ionization and upward discharges in the mesosphere due to intense quasi-electrostatic thundercloud fields, Geophys. Res. Lett., 22(4), 365-368.
[50]Popovic, Z, and B. D. Popovic (2000), Introductory Electromagnetics, Integre Technical Publishing Co., Inc., ISBN: 0-201-32678-7
[51]Rairden, R. L., and S. B. Mende (1995), Time resolved sprite imagery, Geophys. Res. Lett., 22, 3465.
[52]Reising, S. C., U. S. Inan, T. F. Bell, and W. A. Lyons (1996), Evidence for continuing current in sprite-producing cloud-to-ground lightning, Geophys. Res. Lett., 23, 3639.
[53]Riousset, J. A., V. P. Pasko, P. R. Krehbiel, R. J. Thomas, and W. Rison (2007), Three-dimensional fractal modeling of intracloud lightning discharge in a New Mexico thunderstorm and comparison with lightning mapping observations, J. Geophys. Res., 112, D15203, doi:10.1029/ 2006JD007621.
[54]Rodger, C. J. (1999), Red sprites, upward lightning, and VLF perturbations. Geophys. Res. Lett., 37(3), 317-336.
[55]Schumann, W. O. (1952), Uber die strahlungslosen Eigenschwingungen einer leitenden Kugel, die von einer Luftshicht und einer Ionosphäirenhulle umgeben ist. Z. Naturforsch.
[56]Sentman, D. D., E. M. Wescott, D. L. Osborne, D. L. Hampton, and M. J. Heavner (1995), Preliminary results from the Sprites94 campaign: Red sprites, Geophys. Res. Lett., 22, 1205-1208.
[57]Smith, D. A., X. M. Shao, D. N. Holden, C. T. Rhodes, M. Brook, P. R. Krehbiel, M. Stanley, W. Rison, and R. J. Thomas (1999), A distinct class of isolated intracloud lightning discharges and their associated radio emissions, J. Geophys. Res., 104(D4), 4189–4212, doi:10.1029/1998JD200045.
[58]Stellingwerf, R. F. (1978), Period determination using phase dispersion minimization, doi: 10.1086/156444.
[59]Strang, G. (1994), Wavelets, American Scientist, 82, 253.
[60]Su, H. T., et al., (2003), Gigantic jets between a thundercloud and the ionosphere, Nature, 423(6943), 974–976, doi:10.1038/nature01759.
[61]Tepley, L. R. (1961), Sferics from intra cloud lightning strokes, J. Geophys. Res., 66(1), 111-123.
[62]Vaughan Jr., O. H., and B. Vonnegut. (1989), Recent observations of lightning discharges from the top of a thundercloud into the air above, J. Geophys. Res., 94, 13179-13182.
[63]Wescott, E. M., H. C. Stenbaek-Nielsen, D. D. Sentman, M. J. Heavner, D. R. Moudry, and F. T. Sao-Sabbas. (2001), Triangulation of sprites, associated halos and their possible relation to causative lightning and micrometeors, J. Geophys. Res., 106, 10467-10477.
[64]Wescott, E. M., D. D. Sentman, D. Osborne, D. Hampton, and M. Heavner (1995), Preliminary results from the Sprites 94 aircraft campaign: Blue jets, Geophys. Res. Lett., 22, 1209-1212.
[65]Winckler, J. R. (1995), Further observations of cloud-ionosphere electrical discharges above thunderstorms, J. Geophys. Res., 100, 14335.
[66]Yukhimuk, V., R. A. Roussel-Dupre, E. M. D. Symbalisty, and Y. Taranenko (1998), Optical characteristics of red sprites produced by runaway air breakdown, J. Geophys. Res., 103, 11473-11482.