簡易檢索 / 詳目顯示

研究生: 陳岑善
Chen, Cen-Shan
論文名稱: 以非平衡態分子動力學探討氮化硼奈米帶之熱傳導係數
Exploring Thermal Conductivity for Boron Nitride Nanoribbons by Non-Equilibrium Molecular Dynamics
指導教授: 温昌達
Wen, Chang-Da
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 102
中文關鍵詞: 非平衡態分子動力學氮化硼奈米帶鋸齒型扶手椅型熱傳導係數聲子狀態密度
外文關鍵詞: Non-equilibrium molecular dynamics, boron nitride nanoribbons, zigzag, armchair, thermal conductivity, phonon density of state
相關次數: 點閱:100下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氮化硼與石墨烯有著相似的結構並有鋸齒型(zigzag)與扶手椅型(armchair)兩種邊緣結構,具有獨特的物理與化學性質,是一種優良的熱學材料。雖然氮化硼的熱傳導係數低於石墨烯,但卻遠超其他金屬和非金屬材料,由氮化硼與石墨烯相結合的熱電元件受到了越多的關注。
    本研究主要以非平衡態分子動力學模擬方法,探討氮化硼奈米帶在尺度效應、溫度效應、空位缺陷效應、同位素摻雜效應下其熱傳導係數的變化,並以聲子狀態密度分析材料聲子內部碰撞情形,了解在上述效應下其熱傳導係數下降之原因。
    一般而言,氮化硼奈米帶製造過程中,其反應腔室不可避免的會含有微奈米級的顆粒或灰塵,導致其內部產生缺陷,故本文為了模擬此上述情況,建立具有缺陷的氮化硼奈米帶,來更接近現實中的氮化硼奈米帶,提供不同缺陷率以及在溫度效應下的熱傳導係數參考值。
    此外在自然狀態下,氮化硼並不是以純氮化硼而是以同位素的形式存在的,其中以19.9 %的11B以及15N最為常見,故本文為了模擬此上述情況,建立具有同位素摻雜的氮化硼奈米帶,來更接近現實中的氮化硼奈米帶,以提供11B、15N 不同摻雜率以及在溫度效應下的熱傳導係數參考值。
    最後,發現在各種效應下鋸齒型氮化硼奈米帶的傳熱表現都比扶手椅型來的好,因此鋸齒型為氮化硼奈米帶之最佳熱學材料。

    Boron nitride has a similar structure to graphene, both having two edge structures, zigzag and armchair. It has unique physical and chemical properties and is an excellent thermal material. Although the thermal conductivity of boron nitride is lower than that of graphene, it is much higher than other metals and non-metallic materials. Thermoelectric components consisting of boron nitride and graphene received more and more attention.
    In this study, the non-equilibrium molecular dynamics simulation method is mainly used to investigate the changes of thermal conductivity of boron nitride nanoribbons under scale effect, temperature effect, defect effect, and isotopic doping effect. Using the phonon density of state to analyze the internal collision of phonons helps us understand the reasons for the decrease of thermal conductivity under the above effects.
    Generally speaking, in the manufacturing process of boron nitride nanoribbons, the reaction chamber inevitably contains micro/nano-scale particles or dust, which causes defects in its interior. Therefore, in order to simulate the above situation, this study creates a model with the defects. This model provides reference values of thermal conductivity under different defect rates and temperature effects.
    In addition, in the natural state, boron nitride does not exist as pure boron nitride but in the form of isotopes, among which 19.9% 11B and 15N are the most common. Therefore, to simulate the above situation, this paper establishes the isotope-doped boron nitride nanoribbons. This provides the reference values of thermal conductivity under different 11B, 15N doping rates and temperature effects.
    Finally, it is found that the heat transfer performance of the zigzag boron nitride nanoribbons is better than that of the armchair type under various effects, so the zigzag-type is the best type of boron nitride nanoribbons in this paper.

    摘要 i 誌謝 xiii 目錄 xiv 表目錄 xviii 圖目錄 xix 符號說明 xxii 第一章 緒論 1 1-1 前言 1 1-2 氮化硼介紹 2 1-2-1 氮化硼的結構與種類 2 1-2-2 氮化硼的製備 6 1-2-3 氮化硼的特色與應用 7 1-3 微奈米尺度熱傳導研究方法 8 1-3-1 分子動力學介紹 8 1-3-2 波茲曼傳輸方程式介紹 9 1-4 文獻回顧 9 1-4-1 微奈米材料之聲子傳輸行為 9 1-4-2 微奈米材料之尺度效應 12 1-4-3 微奈米材料之溫度效應 14 1-4-4 微奈米材料之缺陷效應 16 1-4-5 微奈米材料之同位素摻雜效應 16 1-5 研究動機與目的 17 1-6 本文架構 18 第二章 理論與方法 19 2-1 分子動力學理論 19 2-1-1 基本理論 19 2-1-2 分子動力學基本假設與限制 20 2-1-3 分子動力學方法 20 2-1-4 分子動力學模擬流程 22 2-2 勢能函數 24 2-2-1 二體勢能 25 2-2-2 多體勢能 26 2-3 邊界條件 28 2-3-1 自由邊界條件 29 2-3-2 固定邊界條件 29 2-3-3 週期性邊界條件 29 2-3-4 最小映像法則 30 2-4 系統平衡控制 32 2-4-1 微正則系綜(microcanonical ensemble,NVE) 33 2-4-2 正則系綜(canonical ensemble,NVT) 33 2-4-3 等溫等壓系綜(isothermal-isobaric ensemble,NPT) 33 2-5 控溫器/控壓器 34 2-5-1 iNosé-Hoover熱浴法 34 2-5-2 iNosé-Hoover調壓法 35 2-6 初始條件 35 2-7 溫度梯度產生 36 2-7-1 局部熱浴法 37 2-7-2 動量交換法 37 2-7-3 速度重標法 38 2-8 有限差分法 39 2-8-1 iVerlet演算法 40 2-8-2 iVelocity-Verlet演算法 41 2-8-3 iGear’s預測演算法 41 2-9 表列法 41 2-9-1 iVerlet鄰近表列法 42 2-9-2 iLinked cells表列法 43 2-9-3 iVerlet鄰近表列法與Linked cells表列法的混用形式 44 第三章 模型建構與模擬方法 45 3-1 模擬工具 45 3-2 氮化硼奈米帶模型設置 46 3-2-1 完美氮化硼奈米帶模型 46 3-2-2 具缺陷氮化硼奈米帶模型 48 3-2-3 具同位素摻雜氮化硼奈米帶模型 49 3-3 非平衡態分子動力學模擬(NEMD) 51 3-3-1 iNEMD熱傳導係數的計算 51 3-3-2 iNEMD模擬流程 53 3-4 聲子狀態密度分析方法 59 3-5 模擬驗證 61 第四章 結果與討論 63 4-1 尺度效應 63 4-1-1 厚度對氮化硼奈米帶熱傳導係數的影響 63 4-1-2 寬度對氮化硼奈米帶熱傳導係數的影響 65 4-1-3 無窮厚度之熱傳導係數與聲子平均自由徑 66 4-2 溫度效應 68 4-2-1 溫度對氮化硼奈米帶熱傳導係數的影響 68 4-2-2 溫度效應下聲子狀態密度 69 4-3 空位缺陷效應 74 4-3-1 空位缺陷對氮化硼奈米帶熱傳導係數的影響 74 4-3-2 空位缺陷效應下聲子狀態密度 76 4-3-2 不同溫度下空位缺陷對氮化硼奈米帶熱傳導係數的影響 81 4-4 同位素摻雜效應 82 4-4-1 i11B摻雜對氮化硼奈米帶熱傳導係數的影響 83 4-4-2 i15N摻雜對氮化硼奈米帶熱傳導係數的影響 84 4-4-3 不同同位素質量對氮化硼奈米帶熱傳導係數的影響 85 4-4-4 同位素摻雜效應下聲子狀態密度 86 4-4-5 不同溫度下同位素對氮化硼奈米帶熱傳導係數的影響 90 第五章 結論與未來展望 93 5-1 結論 93 5-2 未來展望 94 參考文獻 95

    [1] Rafiq, M., Hu, X., Ye, Z., Qayum, A., Xia, H., Hu, L., & Chu, P. K. (2022). Recent advances in structural engineering of 2D hexagonal boron nitride electrocatalysts. Nano Energy, 91, 106661.
    [2] Pakdel, A., Bando, Y., & Golberg, D. (2014). Nano boron nitride flatland. Chemical Society Reviews, 43(3), 934-959.
    [3] Gusynin, V. P., Miransky, V. A., Sharapov, S. G., & Shovkovy, I. A. (2008). Edge states, mass and spin gaps, and quantum hall effect in graphene. Physical Review B, 77(20), 205409.
    [4] Li, L. H., Chen, Y., Behan, G., Zhang, H., Petravic, M., & Glushenkov, A. M. (2011). Large-scale mechanical peeling of boron nitride nanosheets by low-energy ball milling. Journal of Materials Chemistry, 21(32), 11862-11866.
    [5] Han, W. Q., Wu, L., Zhu, Y., Watanabe, K., & Taniguchi, T. (2008). Structure of chemically derived mono-and few-atomic-layer boron nitride sheets. Applied Physics Letters, 93(22), 223103.
    [6] Song, L., Ci, L., Lu, H., Sorokin, P. B., Jin, C., Ni, J., & Ajayan, P. M. (2010). Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Letters, 10(8), 3209-3215.
    [7] Pakdel, A., Zhi, C., Bando, Y., & Golberg, D. (2012). Low-dimensional boron nitride nanomaterials. Materials Today, 15(6), 256-265.
    [8] Pakdel, A., Wang, X., Zhi, C., Bando, Y., Watanabe, K., Sekiguchi, T., & Golberg, D. (2012). Facile synthesis of vertically aligned hexagonal boron nitride nanosheets hybridized with graphitic domains. Journal of Materials Chemistry, 22(11), 4818-4824.
    [9] Dean, C. R., Young, A. F., Meric, I., Lee, C., Wang, L., Sorgenfrei, S., & Hone, J. (2010). Boron nitride substrates for high-quality graphene electronics. Nature Nanotechnology, 5(10), 722-726.
    [10] Ci, L., Song, L., Jin, C., Jariwala, D., Wu, D., Li, Y., & Ajayan, P. M. (2010). Atomic layers of hybridized boron nitride and graphene domains. Nature Materials, 9(5), 430-435.
    [11] Pop, E., Mann, D., Wang, Q., Goodson, K., & Dai, H. (2006). Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Letters, 6(1), 96-100.
    [12] Balandin, A. A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., & Lau, C. N. (2008). Superior thermal conductivity of single-layer graphene. Nano Letters, 8(3), 902-907.
    [13] Ouyang, T., Chen, Y., Xie, Y., Yang, K., Bao, Z., & Zhong, J. (2010). Thermal transport in hexagonal boron nitride nanoribbons. Nanotechnology, 21(24), 245701.
    [14] Golberg, D., Bando, Y., Kurashima, K., & Sato, T. (2001). Synthesis and characterization of ropes made of BN multiwalled nanotubes. Scripta Materialia, 44(8-9), 1561-1565.
    [15] Kudin, K. N., Scuseria, G. E., & Yakobson, B. I. (2001). C 2 F, BN, and C nanoshell elasticity from ab initio computations. Physical Review B, 64(23), 235406.
    [16] Boldrin, L., Scarpa, F., Chowdhury, R., & Adhikari, S. (2011). Effective mechanical properties of hexagonal boron nitride nanosheets. Nanotechnology, 22(50), 505702.
    [17] Andrew, R. C., Mapasha, R. E., Ukpong, A. M., & Chetty, N. (2012). Mechanical properties of graphene and boronitrene. Physical Review B, 85(12), 125428.
    [18] Hsiao, T. K., Chang, H. K., Liou, S. C., Chu, M. W., Lee, S. C., & Chang, C. W. (2013). Observation of room-temperature ballistic thermal conduction persisting over 8.3 µm in SiGe nanowires. Nature Nanotechnology, 8(7), 534-538.
    [19] Lee, J., Lim, J., & Yang, P. (2015). Ballistic phonon transport in holey silicon. Nano Letters, 15(5), 3273-3279.
    [20] Latour, B., & Chalopin, Y. (2017). Distinguishing between spatial coherence and temporal coherence of phonons. Physical Review B, 95(21), 214310.
    [21] Sham, L. J., & Ziman, J. M. (1963). The electron-phonon interaction. In Solid State Physics (Vol. 15, pp. 221-298). Academic Press.
    [22] Bhatnagar, P. L., Gross, E. P., & Krook, M. (1954). A model for collision processes in gases. I. small amplitude processes in charged and neutral one-component systems. Physical Review, 94(3), 511.
    [23] Pawula, R. F. (1967). Approximation of the linear Boltzmann equation by the Fokker-Planck equation. Physical Review, 162(1), 186.
    [24] C.-Y. Lin and M.-C. Lu. (2013). Molecular dynamics simulations of heat transfer on
    polyethylene chains.
    [25] Majumdar, A. S. M. E. (1993). Microscale heat conduction in dielectric thin films.
    [26] Alvarez, F. X., & Jou, D. (2007). Memory and nonlocal effects in heat transport: from diffusive to ballistic regimes. Applied Physics Letters, 90(8), 083109.
    [27] Z. H. Fu and J. J. Leu. (2005).The study of copper thin film resistivity for applications beyond 65 nm technology node..
    [28] C.-W. Wu and C.-D. Wen. (2020). The study on thermal conductivity of perfect and defective silicon carbide nanofilms and the influence of phonon transport behavior using non-equilibrium molecular dynamics, degree thesis of department of mechanical engineering, Chenggong University, pp. 1-135.
    [29] Harris, G. L. (Ed.). (1995). Properties of silicon carbide (No. 13). Iet.
    [30] Asheghi, M., Leung, Y. K., Wong, S. S., & Goodson, K. E. (1997). Phonon-boundary scattering in thin silicon layers. Applied Physics Letters, 71(13), 1798-1800.
    [31] Yamamoto, T., & Watanabe, K. (2006). Nonequilibrium green’s function approach to phonon transport in defective carbon nanotubes. Physical Review Letters, 96(25), 255503.
    [32] Ren, C., Xu, Z., Zhang, W., Li, Y., Zhu, Z., & Huai, P. (2010). Theoretical study of heat conduction in carbon nanotube hetero-junctions. Physics Letters A, 374(17-18), 1860-1865.
    [33] X. Zhang and Z. SUN. (2011). Molecular dynamics simulation of vacancy defect effects on the thermal conductivities of silicon thin films.Materials Review,no. 12, pp. 2.
    [34] Chang, C. W., Fennimore, A. M., Afanasiev, A., Okawa, D., Ikuno, T., Garcia, H., & Zettl, A. (2006). Isotope effect on the thermal conductivity of boron nitride nanotubes. Physical Review Letters, 97(8), 085901.
    [35] Savić, I., Mingo, N., & Stewart, D. A. (2008). Phonon transport in isotope-disordered carbon and boron-nitride nanotubes: Is localization observable? Physical Review Letters, 101(16), 165502.
    [36] Sevik, C., Kinaci, A., Haskins, J. B., & Çağın, T. (2012). Influence of disorder on thermal transport properties of boron nitride nanostructures. Physical Review B, 86(7), 075403.
    [37] Alder, B. J., & Wainwright, T. E. (1959). Studies in molecular dynamics. I.general method. The Journal of Chemical Physics, 31(2), 459-466.
    [38] Galamba, N., Nieto de Castro, C. A., & Ely, J. F. (2004). Thermal conductivity of molten alkali halides from equilibrium molecular dynamics simulations. The Journal of Chemical Physics, 120(18), 8676-8682.
    [39] Arima, T., Yamasaki, S., Inagaki, Y., & Idemitsu, K. (2005). Evaluation of thermal properties of UO2 and PuO2 by equilibrium molecular dynamics simulations from 300 to 2000 K. Journal of Alloys and Compounds, 400(1-2), 43-50.
    [40] Ikeshoji, T., & Hafskjold, B. (1994). Non-equilibrium molecular dynamics calculation of heat conduction in liquid and through liquid-gas interface. Molecular Physics, 81(2), 251-261.
    [41] Schelling, P. K., Phillpot, S. R., & Keblinski, P. (2002). Comparison of atomic-level simulation methods for computing thermal conductivity. Physical Review B, 65(14), 144306.
    [42] Lennard-Jones, J. E. (1931). Cohesion. Proceedings of the Physical Society (1926-1948), 43(5), 461.
    [43] Hasiguti, R. R. (Ed.). (1967). Lattice defects and their interactions. Gordon and Breach Science Publishers.
    [44] Daw, M. S., & Baskes, M. I. (1984). Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals. Physical Review B, 29(12), 6443.
    [45] Tersoff, J. J. P. R. B. (1989). Modeling solid-state chemistry: interatomic potentials for multicomponent systems. Physical Review B, 39(8), 5566.
    [46] Haile, J. M., Johnston, I., Mallinckrodt, A. J., & McKay, S. (1993). Molecular dynamics simulation: elementary methods. Computers in Physics, 7(6), 625-625.
    [47] Gibbs, J. W. (1878). ART. LII.--On the equilibrium of heterogeneous substances. American Journal of Science and Arts (1820-1879), 16(96), 441.
    [48] Bussi, G., Donadio, D., & Parrinello, M. (2007). Canonical sampling through velocity rescaling. The Journal of Chemical Physics, 126(1), 014101.
    [49] Berendsen, H. J., Postma, J. V., van Gunsteren, W. F., DiNola, A. R. H. J., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81(8), 3684-3690.
    [50] Adelman, S. A., & Doll, J. D. (1976). Generalized langevin equation approach for atom/solid‐surface scattering: general formulation for classical scattering off harmonic solids. The Journal of Chemical Physics, 64(6), 2375-2388.
    [51] Hoover, W. G. (2012). Computational statistical mechanics. Elsevier.
    [52] Berendsen, H. J., Postma, J. V., van Gunsteren, W. F., DiNola, A. R. H. J., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81(8), 3684-3690.
    [53] Andersen, H. C. (1980). Molecular dynamics simulations at constant pressure and/or temperature. The Journal of Chemical Physics, 72(4), 2384-2393.
    [54] Parrinello, M., & Rahman, A. (1981). Polymorphic transitions in single crystals: a new molecular dynamics method. Journal of Applied Physics, 52(12), 7182-7190.
    [55] Parrinello, M., & Rahman, A. (1982). Strain fluctuations and elastic constants. The Journal of Chemical Physics, 76(5), 2662-2666.
    [56] Nosé, S. (1984). A unified formulation of the constant temperature molecular dynamics methods. The Journal of Chemical Physics, 81(1), 511-519.
    [57] Müller-Plathe, F. (1997). A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity. The Journal of Chemical Physics, 106(14), 6082-6085.
    [58] Ikeshoji, T., & Hafskjold, B. (1994). Non-equilibrium molecular dynamics calculation of heat conduction in liquid and through liquid-gas interface. Molecular Physics, 81(2), 251-261.
    [59] Ren, C., Xu, Z., Zhang, W., Li, Y., Zhu, Z., & Huai, P. (2010). Theoretical study of heat conduction in carbon nanotube hetero-junctions. Physics Letters A, 374(17-18), 1860-1865.
    [60] Verlet, L. (1967). Computer experiments on classical fluids. I. thermodynamical properties of lennard-jones molecules. Physical Review, 159(1), 98.
    [61] Swope, W. C., Andersen, H. C., Berens, P. H., & Wilson, K. R. (1982). A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: application to small water clusters. The Journal of Chemical Physics, 76(1), 637-649.
    [62] Gear, C. W. (1971). The automatic integration of ordinary differential equations. Communications of the ACM, 14(3), 176-179.
    [63] Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33-38.
    [64] Tabarraei, A. (2015). Thermal conductivity of monolayer hexagonal boron nitride nanoribbons. Computational Materials Science, 108, 66-71.
    [65] Khan, A. I., Navid, I. A., Noshin, M., & Subrina, S. (2017). Thermal transport characterization of hexagonal boron nitride nanoribbons using molecular dynamics simulation. AIP Advances, 7(10), 105110.
    [66] Gu, X., & Yang, R. (2016). Phonon transport and thermal conductivity in two-dimensional materials. Annual Review of Heat Transfer, 19.
    [67] Liu, J. D., Wang, M. S., & Yang, P. (2021). Thermal property of graphene/silicon carbide heterostructure by molecular dynamics simulation. Acta Phys. Sin., 70(18), 187302.
    [68] Yang, L., & Minnich, A. J. (2017). Thermal transport in nanocrystalline Si and SiGe by ab initio based monte carlo simulation. Scientific Reports, 7(1), 1-11.
    [69] Klemens, P. G. (1981). Theory of lattice thermal conductivity: role of low-frequency phonons. International Journal of Thermophysics, 2(1), 55-62.

    無法下載圖示 校內:2027-07-01公開
    校外:2027-07-01公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE