研究生: |
林恒裕 Lin, Heng-Yu |
---|---|
論文名稱: |
具奈米金屬網電極之氧化鎂鋅金屬-半導體-金屬紫外光檢測器之研究 Investigation of MgZnO-based metal-semiconductor-metal ultraviolet photodetectors with nanomesh electrode |
指導教授: |
李清庭
Lee, Ching-Ting |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 80 |
中文關鍵詞: | 氧化鎂鋅 、金屬-半導體-金屬光檢測器 、奈米金屬網 、奈米球微影術 、斜向蒸鍍方法 、紫外光檢測器 、氣相冷凝系統 |
外文關鍵詞: | Magnesium zinc oxide, Metal-semiconductor-metal photodetectors, Nanomesh electrode, Nanosphere lithography, Oblique evaporation method |
相關次數: | 點閱:120 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究結合傳統奈米球微影技術(Nanosphere lithography)及斜向蒸鍍方法(Oblique evaporation method)製作高穿透率且低片電阻值之奈米金屬網(Nanomesh electrode),並以低溫氣相冷凝系統蒸鍍高品質之氧化鎂鋅(Magnesium zinc oxide, MgZnO)材料以製備氧化鎂鋅金屬-半導體-金屬紫外光檢測器(Metal-Semiconductor-Metal ultraviolet Photodetectors, MSM UV PDs)。相較於透明導電膜與薄金屬在紫外光波段具有高吸收特性,奈米金屬網之金屬覆蓋範圍僅占整體紫外光檢測器元件面積約10%,因此奈米金屬網在紫外光波段具有較高之穿透率及較低之片電阻。為進一步研究奈米金屬網的功能,不同尺寸之奈米金屬網被應用於氧化鎂鋅金屬-半導體-金屬紫外光檢測器,依據實驗結果以1500nm奈米球尺寸製作之奈米金屬網具有最佳響應度(Responsivity)。在偏壓5伏特條件,相較於薄金屬薄膜元件在330nm波長之響應度僅0.135 A/W,奈米金屬網元件在330nm波長之響應度則提升至0.248 A/W,而外部量子效率(External Quantum Efficiency)與內部增益(Internal Gain)之相對應乘積也由50.75 %增加為93.23 %,相較於薄金薄膜元件之紫外光-可見光拒斥比(Rejection ratio)為1748,應用奈米金屬網元件之紫外光-可見光拒斥比則可提升至2380,其等效功率(Noise equivalent power)則由3.19×10-10 W降至2.33×10-10 W,歸一化檢測度(Normalized detectivity)由1.78×1010 cmHz0.5W-1增加至2.43×1010 cmHz0.5W-1。
In this study, the nanosphere lithography technique and the oblique evaporation method were utilized to fabricate the high transmittance and low sheet resistance nanomesh electrode, and the high quality MgZnO-based films were deposited as the absorption layer using the vapor cooling condensation system to complete the MgZnO-based metal-semiconductor-metal ultraviolet photodetectors (MSM-UV-PDs). Compared with the high absorption property in the UV wavelength range of the transparent conductive films and the thin metal films, the nanomesh electrode possessed the advantages of the higher transmittance at the UV wavelength range owing to the about 10% of the metal coverage region of the nanomesh electrode on the MSM-UV-PDs device. To further investigate the function of nanomesh electrode, the various-size nanomesh electrode were applied on the MgZnO-based MSM-UV-PDs. Under the operating voltage of 5V, the responsivity at the wavelength of 330nm and the UV-visible rejection of the MgZnO-based MSM-UV-PDs with the nanomesh electrode were respectively promoted from 0.135 A/W and 1748 to 0.248 A/W and 2380 compared with the MgZnO-based MSM-PDs with the thin metal films.
第一章
[1] S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner, “Recent progress in processing and properties of ZnO,” Prog. Mater. Sci., vol. 50, pp. 293-340, 2005.
[2] G. Heiland, E. Mollwo, and F. Stöckmann, “Electronic processes in zinc oxide,” Solid State Physics, vol. 8, pp. 191-323, 1959.
[3] Y. J. Zeng, Z. Z. Ye, F. Liu, D. Y. Li, Y. F. Lu, W. Jaeger, H. P. He, L. P. Zhu, J. Y. Huang, and B. H. Zhao, “Controllable growth and characterization of ZnO/MgO quasi core-shell quantum dots,” Cryst. Growth Des., vol. 9, pp. 263-266, 2009.
[4] A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai Y. Yoshida, T. Yasuda, and Y. Segawa, “MgxZn1-xO as a II–VI widegap semiconductor alloy,” Appl. Phys. Lett., vol. 72, pp. 2466-2468, 1998.
[5] H. A. Chin, I. C. Cheng, C. I. Huang, Y. R. Wu, W. S. Lu, W. L. Lee, J. Z. Chen, K. C. Chiu, and T. S. Lin, “Two dimensional electron gases in polycrystalline MgZnO/ZnO heterostructures grown by rf-sputtering process,” J. Appl. Phys., vol. 108, pp. 054503-1-054503-4, 2010.
[6] D.C. Look, “Recent advances in ZnO materials and devices,” Mater. Sci. Eng. B, vol. 80, pp. 383-387-4, 2001.
[7] M. Liao, and Y. Koide, “High-performance metal-semiconductor-metal deep-ultraviolet photodetectors based on homoepitaxial diamond thin film,” Appl. Phys. Lett., vol. 89, pp. 113509-1-113509-3, 2006.
[8] W.W. Liu, B. Yaoa, B.H. Li , Y.F. Li, J. Zheng , Z.Z. Zhang, C.X. Shan, J.Y. Zhang, D.Z. Shen, and X.W. Fan, “MgZnO/ZnO p-n junction UV photodetector fabricated on sapphire substrate by plasma-assisted molecular beam epitaxy,” Solid State Sci., vol. 12, pp. 1567-1569, 2010.
[9] H. Y. Lee, M. Y. Wang, K. J. Chang, and W. J. Lin, “Ultraviolet Photodetector Based on MgxZn1-xO Thin Films Deposited by Radio Frequency Magnetron Sputtering,” IEEE Photonics Techno. Lett., vol. 20, pp. 2108-2110, 2008.
[10] Q. Chen, J. W. Yang, A. Osinsky, S. Gangopadhyay, B. Lim, M. Z. Anwar,and M. Asif Khan, “Schottky barrier detectors on GaN for visible–blind ultraviolet detection,” Appl. Phys. Lett. vol. 70, pp. 2277-2279, 1997
[11] L. Li, Y. Ryu, H. W. White, and P. Yu, “Characterization of ZnO UV photoconductors on the 6H-SiC substrate,” Proc. SPIE, vol. 7603, pp. 760310-1-760310-8, 2010.
[12] K. Lee, K. T. Kim, J. M. Choi, M. S. Oh, D. K. Hwang, S. Jang, E. Kim and S. Im, “Improved dynamic properties of ZnO-based photo-transistor with polymer gate dielectric by ultraviolet treatment,” J. Phys. D: Appl. Phys., vol. 41, pp. 135102-1-135102-5, 2008.
[13] K. Wang, Y. Vygranenko, and A. Nathan, “ZnO-based p-i-n and n-i-p heterostructure ultraviolet sensors: a comparative study,” J. Appl. Phys., vol. 101, pp. 114508-1-114508-5, 2007.
[14] X. Wang, C. J. Summers, and Z. L. Wang, “Large-scale hexagonal-patterned growth of aligned ZnO nanorods for nano-optoelectronics and nanosensor arrays,” Nano Lett., vol. 4, pp. 423-426, 2004.
[15] Y. K. Su, W. C. Cheng, R. W. Chuang, S. H. Hsu, and B. Y. Chen, “InGaAsN metal-semiconductor-metal photodetectors with transparent indium tin oxide Schottky contact,” Jpn. J. Appl. Phys., vol. 46, pp. 2373-2376, 2007
[16] S. K. Zhang, W. B. Wang, I. Shtau, F. Yun, L. He, H. Morkoc¸ X. Zhou, M. Tamargo, and R. R. Alfano, “Backilluminated GaN/AlGaN heterojunction ultraviolet photodetector with high internal gain,” Appl. Phys. Lett., vol. 81, pp. 4862-4864, 2002.
[17] L. Abelmann and C. Lodder, “Oblique evaporation and surface diffusion,” Thin Solid Films, vol. 305, pp. 1-21, 1997.
第二章
[1] C. Vieu, F. Carcenac , A. Pe´pin, Y. Chen, M. Mejias, A. Lebib, L. Manin-Ferlazzo,L. Couraud, and H. Launois, “Electron beam lithography: resolution limits and applications,” Appl. Surf. Sci., vol. 164, pp. 111-117, 2000.
[2] John Meingaiiis, “Focused ion beam technology and applications,” J. Vac. Sci. Technol. B, vol. 469, pp. 469-495, 1987.
[3] Christy L. Haynes and Richard P. Van Duyne, “Nanosphere lithography: A versatile nanofabrication tool for studies of size-dependent nanoparticle optics,” J. Phys. Chem. B, vol. 105, pp. 5599-5611, 2001.
[4] N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura, and K. Nagayama, “Two-dimensional crystallization,” Nature, vol. 361, p. 26, 1993.
[5] R. Micheletto, H. Fukuda, and M. Ohtsut, “A simple method for the production of a two-dimensional, ordered array of small latex particles,” Langmuir, vol. 11, pp. 3333-3336, 1995.
[6] J. Rybczynski, U. Ebels, and M. Giersig, “Large-scale, 2D arrays of magnetic nanoparticles,” Colloid Surf. A Physicochem. Eng. Asp., vol. 219, pp. 1-6, 2003.
[7] H. W. Deckman and J. H. Dunsmuir, “Natural lithography,” Appl. Phys. Lett., vol. 41, pp. 377-379, 1982.
[8] S. M. Sze, “Physics of semiconductor devices 2nd,” 1987.
[9] S. M. Sze, “Semiconductor device physics and technology,” 2002.
[10] Neamen, “Semiconductor Photonics Principles and Practices,” 2003.
[11] K. Lee, M. Shur, T. A. Fjeldly, and T. Ytterdal, “Semiconductor devices modeling for VLSI,” 1997.
[12] S. M. Sze, D. J. Coleman, JR. and A. Loya, “Current transport in metal-semiconductor-metal (MSM) structures,” Solid-State Electron., vol. 14, pp. 1209-1218, 1971.
[13] S. O. Kasap, “Optoelectronics and photonics principles and practices,” 2001.
[14] J. C. Carrano, T. Li, P. A. Grudowski, C. J. Eiting, R. D. Dupuis, and J. C. Campbell, “Comprehensive characterization of metal–semiconductor–metal ultraviolet photodetectors fabricated on single-crystal GaN,” J. Appl. Phys., vol. 83, pp. 6148-6160, 1998.
[15] S. F. Soares, ”Photoconductive gain in a Schottky barrier photodiode,” Jpn. J. Appl. Phys., vol. 31, pp. 210-216, 1992.
[16] O. Katz, V. Garber, B. Meyler, G. Bahir, and J. Salzman, “Gain mechanism in GaN Schottky ultraviolet detectors,” Appl. Phys. Lett., vol. 79, pp. 1417-1419, 2001.
[17] F. N. Hooge, “l/f Noise sources,” IEEE Trans. Electr. Dev., vol. 41, pp. 1926-1935, 1994.
[18] A. A. Balandin, “Noise and fluctuations control in electronics devices,” California, USA, 2002.
第四章
[1] G. B. Smith, G. A. Niklasoon, J. S. E. M. Svensson, and C. G. Granqvist, “Noble-metal-based transparent infrared reflectors: Experiments and theoretical analyses for very thin gold films,” J. Appl. Phys., vol. 59, pp. 571-581, Jul. 1986.
[2] M. L. Theye “Investigation of the optical properties of Au by means of thin semitransparent films,” Phy. Rev. B, vol. 2, pp. 3060-3078, 1970.
[3] L. He and Z. Q. Shi, “Thin metal films deposited at low temperature for optoelectronic device application,” J. Vac. Sci. Technol. A, vol. 14, pp. 704-708, 1996.