| 研究生: |
鄭又豪 Cheng, Yu-Hao |
|---|---|
| 論文名稱: |
光誘導合成金銀合金、氯化銀奈米粒子於覆蓋聚多巴胺的還原氧化石墨烯上,並應用於表面增強拉曼檢測、光催化和抗菌作用 Photoinduced AuAg-AgCl Nanoparticles on Polydopamine-Functionalized Reduced Graphene Oxide for SERS Sensing, Photocatalytic and Antibacterial |
| 指導教授: |
黃志嘉
Huang, Chih-Chia |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 氧化石墨烯 、金銀合金 、氯化銀 、表面增強拉曼散射 、光催化 、抗菌 |
| 外文關鍵詞: | graphene oxide, AuAg alloy, AgCl, SERS, photocatalytic, antibacterial |
| 相關次數: | 點閱:79 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用光合成的方式開發出氧化石墨烯結合金銀合金、氯化銀顆粒的奈米複合材料。以氧化石墨烯基底,利用多巴胺在微鹼性的環境下自聚合的特性,於氧化石墨烯的表面粘附一層具有還原性和穩定性的聚多巴胺薄膜。聚多巴胺表面豐富的兒茶酚和胺基,能夠將金離子還原成金奈米顆粒並同時將氧化石墨烯還原成還原性氧化石墨烯。當金奈米顆粒被還原於聚多巴胺的表面時,藉由局部表面等離子體共振效應吸收532 nm的雷射光,激發產生熱電子,大幅提高金奈米的還原效率。接著加入硝酸銀並同樣進行照光,可以發現金銀合金的形成。除此之外,水中銀離子會和氯離子反應,形成氯化銀。最後製作出氧化石墨烯上佈滿金銀合金以及氯化銀的奈米複合材料(GPAAC)。
金銀合金結合金的穩定性、銀優異的表面等離子體共振效應。兩者協同作用引發的電磁場增強能大幅提升環境污染物的表面增強拉曼散射訊號。以常添加在魚肉中作為消毒殺菌劑的染劑孔雀石綠為例,將孔雀石綠和GPAAC混合後量測的SERS訊號比純孔雀石綠高了160倍。除了應用於SERS檢測外,可利用532 nm雷射照光進行孔雀石綠的光降解。金銀合金吸收532 nm雷射光激發後,會產生大量的電子和電洞,電子快轉移到氧化石墨烯和氯化銀的導帶以防止電子電洞的覆合,並和水中的氧分子反應產生超氧自由基,透過超氧自由基的高氧化性將孔雀石綠分解。另一方面,金銀合金上的電洞會與氯化銀表面的氯離子作用,形成零價氯。零價氯是一種反應性自由基,亦能夠有效氧化孔雀石綠。實驗結果發現GPAAC的添加並搭配照光下,使降解速率相比於純孔雀石綠提高54倍,除此之外,GPAAC亦可應用另一種環境污染物4-NP的光催化,並發現催化速率相比純4-NP提高81倍。最後也探討GPAAC對革蘭氏陰性菌大腸桿菌(E. coli)的最小毒性(MIC)檢測,發現只需要3.125 ppm即可殺死98.4%的大腸桿菌。
綜合以上結果可知,製作出氧化石墨烯上佈滿金銀合金以及氯化銀的奈米複合材料能快速對環境污染物進行檢測,並能有效進行分解,另外還可以同時進行抗菌的效果,未來將有望實際應用於食安、環境污染的快速檢測與清除。
In this study, we demonstrated a rGO@PDA@AuAg-AgCl nanocomposites. Graphene oxide was used as a substrate. Through the self-polymerization properties of dopamine in a slightly alkaline solution, a layer of polydopamine film with excellent reducibility and stability adhered to the surface of GO. The abundant catechol groups of polydopamine could effectively reduce Au ions to Au nanoparticles and reduce GO to rGO. Then, Au NPs were excited by the 532 nm laser due to the local surface plasmon resonance effect and lots of hot electrons were generated, which further improved the reduction efficiency. Further, silver nitrate was added and kept irradiating the 532 nm laser for 15 minutes. It could be found the formation of AuAg alloy. In addition, it's worth noting that Ag ions reacted with chloride ions to form silver chloride. Finally, a GO nanocomposite material with AuAg alloy and AgCl NPs on graphene oxide was produced.
AuAg alloy combined the stability of Au and the excellent surface plasmon resonance effect of Ag. Besides, the electromagnetic field enhancement caused by the synergy effect could further improve the surface-enhanced Raman scattering signal of environmental pollutants. Malachite green which often added in the fish as a disinfectant was utilized as an example. The SERS signal of malachite green mixed with GPAAC was 160 times higher when compared to the normal Raman signal of pure MG. In addition to its application in detection, GPAAC was also an excellent photocatalyst. When the AuAg alloy excited by the 532 nm laser irradiation, a large number of electrons and holes were generated. The electrons were quickly transferred to the conduction band of graphene oxide and silver chloride to prevent the recombination of holes and reacted with oxygen molecules to produce ˙O2-. The high oxidation of ˙O2- could effectively decompose MG. On the other hand, the holes on the AuAg alloy reacted with the Cl- on the surface of the AgCl to form Cl0. Cl0 was a reactive free radical, which could also oxidize the MG. The results showed that the addition of GPAAC increased the photodegradation rate by 54 times when compared to that of pure MG. In addition, GPAAC was applied to photocatalysis of 4-NP, and the photocatalytic rate was higher than that of pure 4-NP by 81 times. Finally, we explored the minimum toxicity (MIC) of GPAAC against Gram-negative bacteria E. coli. It could be found the concentration of 3.125 ppm GPAAC inhibited 98.4 % of E. coli.
Based on the above results, graphene oxide nanocomposite covered with AuAg alloy and AgCl NPs could quickly detect, decompose malachite green and had effectively antibacterial effects. In the future, it will be practically applied to the rapid detection and food safety and removal of environmental pollution.
[1] S. Pang, T. Yang, L. He, Review of surface enhanced Raman spectroscopic (SERS) detection of synthetic chemical pesticides, TrAC Trends in Analytical Chemistry 85 (2016) 73-82.
[2] J. Reguera, J. Langer, D.J. de Aberasturi, L.M. Liz-Marzán, Anisotropic Metal Nanoparticles for Surface-Enhanced Raman Scattering, Colloidal Synthesis of Plasmonic Nanometals (2020) 713-754.
[3] J.T. Lowe, M.D. Lee IV, L.B. Akella, E. Davoine, E.J. Donckele, L. Durak, J.R. Duvall, B. Gerard, E.B. Holson, A. Joliton, Synthesis and profiling of a diverse collection of azetidine-based scaffolds for the development of CNS-focused lead-like libraries, The Journal of organic chemistry 77 (2012) 7187-7211.
[4] M.E. Koivunen, S. Gee, E.-K. Park, K. Lee, M.B. Schenker, B.D. Hammock, Application of an enzyme-linked immunosorbent assay for the analysis of paraquat in human-exposure samples, Archives of environmental contamination and toxicology 48 (2005) 184-190.
[5] S.-Y. Ding, E.-M. You, Z.-Q. Tian, M. Moskovits, Electromagnetic theories of surface-enhanced Raman spectroscopy, Chemical Society Reviews 46 (2017) 4042-4076.
[6] K. Wang, S. Li, M. Petersen, S. Wang, X. Lu, Detection and characterization of antibiotic-resistant bacteria using surface-enhanced Raman spectroscopy, Nanomaterials 8 (2018) 762.
[7] A. Hakonen, P.O. Andersson, M.S. Schmidt, T. Rindzevicius, M. Käll, Explosive and chemical threat detection by surface-enhanced Raman scattering: A review, Analytica chimica acta 893 (2015) 1-13.
[8] S. Cong, X. Liu, Y. Jiang, W. Zhang, Z. Zhao, Surface enhanced Raman scattering revealed by interfacial charge-transfer transitions, The Innovation (2020) 100051.
[9] R. Ferrando, J. Jellinek, R.L. Johnston, Nanoalloys: from theory to applications of alloy clusters and nanoparticles, Chemical reviews 108 (2008) 845-910.
[10] R. Jiang, H. Chen, L. Shao, Q. Li, J. Wang, Unraveling the evolution and nature of the plasmons in (Au core)–(Ag shell) nanorods, Advanced Materials 24 (2012) OP200-OP207.
[11] S. Bharadwaj, A. Pandey, B. Yagci, V. Ozguz, A. Qureshi, Graphene nano-mesh-Ag-ZnO hybrid paper for sensitive SERS sensing and self-cleaning of organic pollutants, Chemical Engineering Journal 336 (2018) 445-455.
[12] M. Fan, F.-J. Lai, H.-L. Chou, W.-T. Lu, B.-J. Hwang, A.G. Brolo, Surface-enhanced Raman scattering (SERS) from Au: Ag bimetallic nanoparticles: the effect of the molecular probe, Chemical Science 4 (2013) 509-515.
[13] T. Wu, L. Zhang, J. Gao, Y. Liu, C. Gao, J. Yan, Fabrication of graphene oxide decorated with Au–Ag alloy nanoparticles and its superior catalytic performance for the reduction of 4-nitrophenol, Journal of materials chemistry A 1 (2013) 7384-7390.
[14] F. Xu, S. Xie, R. Cao, C. Ren, L. Wang, Prepare poly-dopamine coated graphene@ silver nanohybrid for improved surface enhanced Raman scattering detection of dyes, Sensors and Actuators B: Chemical 243 (2017) 609-616.
[15] H. Chen, Z. Liu, S. Li, C. Su, X. Qiu, H. Zhong, Z. Guo, Fabrication of graphene and AuNP core polyaniline shell nanocomposites as multifunctional theranostic platforms for SERS real-time monitoring and chemo-photothermal therapy, Theranostics 6 (2016) 1096.
[16] X. Liang, B. Liang, Z. Pan, X. Lang, Y. Zhang, G. Wang, P. Yin, L. Guo, Tuning plasmonic and chemical enhancement for SERS detection on graphene-based Au hybrids, Nanoscale 7 (2015) 20188-20196.
[17] G. Ding, S. Xie, Y. Liu, L. Wang, F. Xu, Graphene oxide-silver nanocomposite as SERS substrate for dye detection: Effects of silver loading amount and composite dosage, Applied Surface Science 345 (2015) 310-318.
[18] W. Ren, Y. Fang, E. Wang, A binary functional substrate for enrichment and ultrasensitive SERS spectroscopic detection of folic acid using graphene oxide/Ag nanoparticle hybrids, ACS nano 5 (2011) 6425-6433.
[19] Y.-K. Yang, C.-E. He, W.-J. He, L.-J. Yu, R.-G. Peng, X.-L. Xie, X.-B. Wang, Y.-W. Mai, Reduction of silver nanoparticles onto graphene oxide nanosheets with N, N-dimethylformamide and SERS activities of GO/Ag composites, Journal of Nanoparticle Research 13 (2011) 5571-5581.
[20] W. Fan, Y.H. Lee, S. Pedireddy, Q. Zhang, T. Liu, X.Y. Ling, Graphene oxide and shape-controlled silver nanoparticle hybrids for ultrasensitive single-particle surface-enhanced Raman scattering (SERS) sensing, Nanoscale 6 (2014) 4843-4851.
[21] M. Zhang, Z. Zheng, H. Liu, D. Wang, T. Chen, J. Liu, Y. Wu, Rationally designed graphene/bilayer silver/Cu hybrid structure with improved sensitivity and stability for highly efficient SERS sensing, ACS omega 3 (2018) 5761-5770.
[22] Z. Li, S.C. Xu, C. Zhang, X.Y. Liu, S.S. Gao, L.T. Hu, J. Guo, Y. Ma, S.Z. Jiang, H.P. Si, High-performance SERS substrate based on hybrid structure of graphene oxide/AgNPs/Cu film@ pyramid Si, Scientific reports 6 (2016) 1-10.
[23] J. Li, H. Heng, J. Lv, T. Jiang, Z. Wang, Z. Dai, Graphene Oxide‐Assisted and DNA‐Modulated SERS of AuCu Alloy for the Fabrication of Apurinic/Apyrimidinic Endonuclease 1 Biosensor, Small 15 (2019) 1901506.
[24] G. Cabello, K.C. Nwoko, J.F. Marco, M. Sánchez-Arenillas, A.M. Méndez-Torres, J. Feldmann, C. Yáñez, T.A. Smith, Cu@ Au self-assembled nanoparticles as SERS-active substrates for (bio) molecular sensing, Journal of Alloys and Compounds 791 (2019) 184-192.
[25] J. Yu, Y. Ma, C. Yang, H. Zhang, L. Liu, J. Su, Y. Gao, SERS-active composite based on rGO and Au/Ag core-shell nanorods for analytical applications, Sensors and Actuators B: Chemical 254 (2018) 182-188.
[26] L. Kong, J. Chen, M. Huang, GO/Au@ Ag nanobones decorated membrane for simultaneous enrichment and on-site SERS detection of colorants in beverages, Sensors and Actuators B: Chemical (2021) 130163.
[27] Q. Han, Z. Lu, W. Gao, M. Wu, Y. Wang, Z. Wang, J. Qi, J. Dong, Three-dimensional AuAg alloy NPs/graphene/AuAg alloy NP sandwiched hybrid nanostructure for surface enhanced Raman scattering properties, Journal of Materials Chemistry C 8 (2020) 12599-12606.
[28] H. Lee, S.M. Dellatore, W.M. Miller, P.B. Messersmith, Mussel-inspired surface chemistry for multifunctional coatings, science 318 (2007) 426-430.
[29] Y. Liu, K. Ai, L. Lu, Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields, Chemical reviews 114 (2014) 5057-5115.
[30] B. Shang, X. Zhang, R. Ji, Y. Wang, H. Hu, B. Peng, Z. Deng, Preparation of colloidal polydopamine/Au hollow spheres for enhanced ultrasound contrast imaging and photothermal therapy, Materials Science and Engineering: C 106 (2020) 110174.
[31] A. Ma, Y. Xie, J. Xu, H. Zeng, H. Xu, The significant impact of polydopamine on the catalytic performance of the carried Au nanoparticles, Chemical Communications 51 (2015) 1469-1471.
[32] C. Wu, G. Zhang, T. Xia, Z. Li, K. Zhao, Z. Deng, D. Guo, B. Peng, Bioinspired synthesis of polydopamine/Ag nanocomposite particles with antibacterial activities, Materials Science and Engineering: C 55 (2015) 155-165.
[33] A.-J. Wang, Q.-C. Liao, J.-J. Feng, Z.-Z. Yan, J.-R. Chen, In situ synthesis of polydopamine–Ag hollow microspheres for hydrogen peroxide sensing, Electrochimica acta 61 (2012) 31-35.
[34] J. Zhou, B. Duan, Z. Fang, J. Song, C. Wang, P.B. Messersmith, H. Duan, Interfacial assembly of mussel‐inspired Au@ Ag@ polydopamine core–shell nanoparticles for recyclable nanocatalysts, Advanced Materials 26 (2014) 701-705.
[35] W. Ye, J. Yu, Y. Zhou, D. Gao, D. Wang, C. Wang, D. Xue, Green synthesis of Pt–Au dendrimer-like nanoparticles supported on polydopamine-functionalized graphene and their high performance toward 4-nitrophenol reduction, Applied Catalysis B: Environmental 181 (2016) 371-378.
[36] H.Y. Son, J.H. Ryu, H. Lee, Y.S. Nam, Bioinspired templating synthesis of metal–polymer hybrid nanostructures within 3D electrospun nanofibers, ACS applied materials & interfaces 5 (2013) 6381-6390.
[37] X. Wen, S. Yang, Cu2S/Au core/sheath nanowires prepared by a simple redox deposition method, Nano Letters 2 (2002) 451-454.
[38] K.R. Kim, J. Kim, J.W. Kim, C.T. Yavuz, M.Y. Yang, Y.S. Nam, Light-activated polydopamine coatings for efficient metal recovery from electronic waste, Separation and Purification Technology 254 (2021) 117674.
[39] M.L. Brongersma, N.J. Halas, P. Nordlander, Plasmon-induced hot carrier science and technology, Nature nanotechnology 10 (2015) 25-34.
[40] C. Xue, J.E. Millstone, S. Li, C.A. Mirkin, Plasmon‐Driven Synthesis of Triangular Core–Shell Nanoprisms from Gold Seeds, Angewandte Chemie International Edition 46 (2007) 8436-8439.
[41] G. Sharma, V.K. Gupta, S. Agarwal, A. Kumar, S. Thakur, D. Pathania, Fabrication and characterization of Fe@ MoPO nanoparticles: ion exchange behavior and photocatalytic activity against malachite green, Journal of Molecular Liquids 219 (2016) 1137-1143.
[42] R.A. Halvorson, P.J. Vikesland, Surface-enhanced Raman spectroscopy (SERS) for environmental analyses, ACS Publications, 2010.
[43] M. Li, D. Li, Z. Zhou, P. Wang, X. Mi, Y. Xia, H. Wang, S. Zhan, Y. Li, L. Li, Plasmonic Ag as electron-transfer mediators in Bi2MoO6/Ag-AgCl for efficient photocatalytic inactivation of bacteria, Chemical Engineering Journal 382 (2020) 122762.
[44] W. Wijaya, S. Pang, T.P. Labuza, L. He, Rapid detection of acetamiprid in foods using Surface‐Enhanced Raman Spectroscopy (SERS), Journal of food science 79 (2014) T743-T747.
[45] Y. Zhou, L. Zhang, Z. Cheng, Removal of organic pollutants from aqueous solution using agricultural wastes: a review, Journal of Molecular Liquids 212 (2015) 739-762.
[46] D.M. Alrousan, P.S. Dunlop, T.A. McMurray, J.A. Byrne, Photocatalytic inactivation of E. coli in surface water using immobilised nanoparticle TiO2 films, Water research 43 (2009) 47-54.
[47] L. Collado, A. Reynal, J. Coronado, D. Serrano, J. Durrant, V. De la Peña O'Shea, Effect of Au surface plasmon nanoparticles on the selective CO2 photoreduction to CH4, Applied Catalysis B: Environmental 178 (2015) 177-185.
[48] S.J. Moniz, S.A. Shevlin, D.J. Martin, Z.-X. Guo, J. Tang, Visible-light driven heterojunction photocatalysts for water splitting–a critical review, Energy & Environmental Science 8 (2015) 731-759.
[49] L. Collado, P. Jana, B. Sierra, J. Coronado, P. Pizarro, D. Serrano, V. de la Peña O’Shea, Enhancement of hydrocarbon production via artificial photosynthesis due to synergetic effect of Ag supported on TiO2 and ZnO semiconductors, Chemical engineering journal 224 (2013) 128-135.
[50] J.-J. Chen, J.C. Wu, P.C. Wu, D.P. Tsai, Improved photocatalytic activity of shell-isolated plasmonic photocatalyst Au@ SiO2/TiO2 by promoted LSPR, The Journal of Physical Chemistry C 116 (2012) 26535-26542.
[51] J. Zeng, T. Song, M. Lv, T. Wang, J. Qin, H. Zeng, Plasmonic photocatalyst Au/gC 3 N 4/NiFe 2 O 4 nanocomposites for enhanced visible-light-driven photocatalytic hydrogen evolution, RSC Advances 6 (2016) 54964-54975.
[52] Q. Xiang, J. Yu, B. Cheng, H. Ong, Microwave‐hydrothermal preparation and visible‐light photoactivity of plasmonic photocatalyst Ag‐TiO2 nanocomposite hollow spheres, Chemistry–An Asian Journal 5 (2010) 1466-1474.
[53] Y. Bao, K. Chen, AgCl/Ag/gC 3 N 4 hybrid composites: preparation, visible light-driven photocatalytic activity and mechanism, Nano-micro letters 8 (2016) 182-192.
[54] D. Wang, Y. Li, G.L. Puma, C. Wang, P. Wang, W. Zhang, Q. Wang, Mechanism and experimental study on the photocatalytic performance of Ag/AgCl@ chiral TiO2 nanofibers photocatalyst: The impact of wastewater components, Journal of hazardous materials 285 (2015) 277-284.
[55] D. Xu, W. Shi, C. Song, M. Chen, S. Yang, W. Fan, B. Chen, In-situ synthesis and enhanced photocatalytic activity of visible-light-driven plasmonic Ag/AgCl/NaTaO3 nanocubes photocatalysts, Applied Catalysis B: Environmental 191 (2016) 228-234.
[56] M. Muniz-Miranda, SERS monitoring of the catalytic reduction of 4-nitrophenol on Ag-doped titania nanoparticles, Applied Catalysis B: Environmental 146 (2014) 147-150.
[57] N. Li, M. Echeverría, S. Moya, J. Ruiz, D. Astruc, “Click” synthesis of nona-PEG-branched triazole dendrimers and stabilization of gold nanoparticles that efficiently catalyze p-nitrophenol reduction, Inorganic chemistry 53 (2014) 6954-6961.
[58] J. Li, C.-y. Liu, Y. Liu, Au/graphene hydrogel: synthesis, characterization and its use for catalytic reduction of 4-nitrophenol, Journal of Materials Chemistry 22 (2012) 8426-8430.
[59] C. Berberidou, I. Poulios, N. Xekoukoulotakis, D. Mantzavinos, Sonolytic, photocatalytic and sonophotocatalytic degradation of malachite green in aqueous solutions, Applied Catalysis B: Environmental 74 (2007) 63-72.
[60] A.G. Prado, L.L. Costa, Photocatalytic decouloration of malachite green dye by application of TiO2 nanotubes, Journal of hazardous materials 169 (2009) 297-301.
[61] N. Hidayah, F.A. Bakar, N. Mahyudin, S. Faridah, M. Nur-Azura, M. Zaman, Detection of malachite green and leuco-malachite green in fishery industry, International Food Research Journal 20 (2013) 1511.
[62] S.K. Ray, D. Dhakal, S.W. Lee, Insight Into Malachite Green Degradation, Mechanism and Pathways by Morphology‐Tuned α‐NiMoO4 Photocatalyst, Photochemistry and photobiology 94 (2018) 552-563.
[63] S. Fateixa, H.I. Nogueira, T. Trindade, Hybrid nanostructures for SERS: materials development and chemical detection, Physical Chemistry Chemical Physics 17 (2015) 21046-21071.
[64] W. Wang, W. Wang, L. Liu, L. Xu, H. Kuang, J. Zhu, C. Xu, Nanoshell-enhanced Raman spectroscopy on a microplate for staphylococcal enterotoxin B sensing, ACS applied materials & interfaces 8 (2016) 15591-15597.
[65] R. Jin, Y.C. Cao, E. Hao, G.S. Métraux, G.C. Schatz, C.A. Mirkin, Controlling anisotropic nanoparticle growth through plasmon excitation, Nature 425 (2003) 487-490.
[66] Y. Zhou, Q. Bao, L.A.L. Tang, Y. Zhong, K.P. Loh, Hydrothermal dehydration for the “green” reduction of exfoliated graphene oxide to graphene and demonstration of tunable optical limiting properties, Chemistry of Materials 21 (2009) 2950-2956.
[67] Y. Jing, X. Yuan, Q. Yuan, K. He, Y. Liu, P. Lu, H. Li, B. Li, H. Zhan, G. Li, Determination of nicotine in tobacco products based on mussel-inspired reduced graphene oxide-supported gold nanoparticles, Scientific reports 6 (2016) 1-8.
[68] X. Zhang, X. Nan, W. Shi, Y. Sun, H. Su, Y. He, X. Liu, Z. Zhang, D. Ge, Polydopamine-functionalized nanographene oxide: a versatile nanocarrier for chemotherapy and photothermal therapy, Nanotechnology 28 (2017) 295102.
[69] H. Li, L. Peng, Y. Luo, P. Yu, Enhancement in membrane performances of a commercial polyamide reverse osmosis membrane via surface coating of polydopamine followed by the grafting of polyethylenimine, RSC advances 5 (2015) 98566-98575.
[70] J. Liao, S. He, S. Guo, P. Luan, L. Mo, J. Li, Antibacterial Performance of a Mussel-Inspired Polydopamine-Treated Ag/Graphene Nanocomposite Material, Materials 12 (2019) 3360.
[71] S. Wang, J. Zhu, Y. Rao, B. Li, S. Zhao, H. Bai, J. Cui, Polydopamine Modified Graphene Oxide-TiO2 Nanofiller for Reinforcing Physical Properties and Anticorrosion Performance of Waterborne Epoxy Coatings, Applied Sciences 9 (2019) 3760.
[72] F. Wei, J. Liu, Y.-N. Zhu, X.-S. Wang, C.-Y. Cao, W.-G. Song, In situ facile loading of noble metal nanoparticles on polydopamine nanospheres via galvanic replacement reaction for multifunctional catalysis, Science China Chemistry 60 (2017) 1236-1242.
[73] S.E. Bell, M.R. McCourt, SERS enhancement by aggregated Au colloids: effect of particle size, Physical Chemistry Chemical Physics 11 (2009) 7455-7462.
[74] J.D. Driskell, R.J. Lipert, M.D. Porter, Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering, The journal of physical chemistry B 110 (2006) 17444-17451.
[75] Y. Zhai, J.S. DuChene, Y.-C. Wang, J. Qiu, A.C. Johnston-Peck, B. You, W. Guo, B. DiCiaccio, K. Qian, E.W. Zhao, Polyvinylpyrrolidone-induced anisotropic growth of gold nanoprisms in plasmon-driven synthesis, Nature materials 15 (2016) 889-895.
[76] S. Krishnamurthy, A. Esterle, N.C. Sharma, S.V. Sahi, Yucca-derived synthesis of gold nanomaterial and their catalytic potential, Nanoscale research letters 9 (2014) 1-9.
[77] T. Zeng, H.-y. Niu, Y.-r. Ma, W.-h. Li, Y.-q. Cai, In situ growth of gold nanoparticles onto polydopamine-encapsulated magnetic microspheres for catalytic reduction of nitrobenzene, Applied Catalysis B: Environmental 134 (2013) 26-33.
[78] R. Dong, B. Tian, C. Zeng, T. Li, T. Wang, J. Zhang, Ecofriendly synthesis and photocatalytic activity of uniform cubic Ag@ AgCl plasmonic photocatalyst, The Journal of Physical Chemistry C 117 (2013) 213-220.
[79] C. Han, L. Ge, C. Chen, Y. Li, Z. Zhao, X. Xiao, Z. Li, J. Zhang, Site-selected synthesis of novel Ag@ AgCl nanoframes with efficient visible light induced photocatalytic activity, Journal of Materials Chemistry A 2 (2014) 12594-12600.
[80] V.R. Raja, D.R. Rosaline, A. Suganthi, M. Rajarajan, Ultrasonic assisted synthesis with enhanced visible-light photocatalytic activity of NiO/Ag3VO4 nanocomposite and its antibacterial activity, Ultrasonics sonochemistry 44 (2018) 73-85.
[81] S. Afshar, H.S. Jahromi, N. Jafari, Z. Ahmadi, M. Hakamizadeh, Degradation of malachite green oxalate by UV and visible lights irradiation using Pt/TiO2/SiO2 nanophotocatalyst, Scientia Iranica 18 (2011) 772-779.
校內:2026-07-25公開