| 研究生: |
林螢駿 Lin, Ying-Jun |
|---|---|
| 論文名稱: |
利用資料融合提高災難決策系統可靠度 Using Data Fusion to Improve Reliability of Disaster Decision Support System |
| 指導教授: |
蔡佩璇
Tsai, Pei-Hsuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 製造資訊與系統研究所 Institute of Manufacturing Information and Systems |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 29 |
| 中文關鍵詞: | 群眾資訊 、資料融合方法 、最大期望值演算法 |
| 外文關鍵詞: | Crowdsourcing, Data Fusion, Neyman-Pearson Test, Expectation Maximization Algorithm |
| 相關次數: | 點閱:98 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
群眾資訊近幾年被廣泛的使用在各種應用中,尤其是在災難警告與訊息回報上。利用群眾資訊可幫助災難緊急應變中心在實體感測器遭受損害時,即時獲得當地真實情況資訊,以有效做出應變決策。但是,群眾資訊的資訊來源在無法驗證可靠度的情況下,會因為資料中夾雜許多未知的錯誤訊息,影響災難緊急應變中心的判讀,導致決策的不確定性。目前災難緊急應變中心主要採用的資料處理方法,為最大概似期望值演算法(Expectation Maximization Algorithm)簡稱EM演算法,此方法透過概似估計不斷重複迭代感測資訊集合,直到函數收斂得到資訊來源可靠度。然而EM演算法的缺點包含了過程繁瑣、時間複雜度高以及需要大量的資料量才能得到具一定可靠度的結果,由此可知,EM演算法在回報資訊不足的情況下會降低災難緊急應變中心做決策的可靠度。因此,本論文的研究問題為:在實體感測器資料量不足的情況下,如何融合最少的群眾資訊,達到具一定可靠度的決策結果。為此,我們提出一個結合二進制檢定與NP檢定的資料融合方法來解決此問題。為驗證資料融合方法之效果,我們與Dong Wang[5]等人提出的EM演算法做效能比較,採相同情境與設定下進行比較分析。實驗結果顯示,本論文所提出的資料融合方法在已知群眾資訊可靠度的情況下,利用較少的群眾資訊仍然可以達到與使用EM演算法相同的可靠度。
In recent years, crowdsourcing is widely used in the application of disaster decision support system. In this paper, we present data fusion methods which enable a crowdsourcing enhanced system to use human sensor data and physical sensor data synergistically to improve its sensor coverage and the quality of its decisions. The data fusion methods are built based on the Neyman-Pearson Test (NP Test). They are building blocks of a central unit in a crowdsourcing support system for disaster surveillance.
Recently, a statistic method “Expectation Maximization Algorithm” using likelihood estimation to calculate data reliability iteratively is adopted to solve unobserved latent problem. However, EM Algorithm not only has high time complexity but also requires large data volume. Accordingly, emergency operation center cannot provide the best decision when data volume is small.
In this paper, we identify the problem as Trustworthiness problem, i.e., conformity to truth, which studies how to make highly reliable decision when data volume is limited. To solve the Trustworthiness problem, we propose a data fusion method, which outputs highly reliable decision from crowdsourcing data. Compared with EM algorithm, our method achieves better performance than EM Algorithm according to the performance data.
[1] E. T. H. Chu, Y. L. Chen, J. Y. Lin and J. W. S. Liu, “Crowdsourcing support system for disaster surveillance and response,” in Proceedings of the 15th International Conference on Wireless Personal Multimedia Communication, pp.21-25, 2011.
[2] V. Naroditskiy, I. Rahwan, M. Cebrian, and N. R. Jennings, “Verification in referral-based crowdsourcing” in Proceedings of the PloS, 2012.
[3] M. Venanzi, A. Rogers, and N. R. Jennings, “Trust-Based Fusion of Untrustworthy Information in Crowdsourcing Applications” in Proceedings of the 12th International Conference on Autonomous Agents and Multiagent Systems, 2013.
[4] G. Xing, R. Tan, B. Liu, J. Wang, and X. Jia, “Data fusion improves the coverage of wireless sensor networks,” in Proceedings of the MibiCom, pp.157-168, 2009.
[5] D. Wang, H. Le, L. Kaplan, and T. Abdelzaher, “On truth discovery in social sensing: a maximum likelihood estimation approach” in Proceedings of the 11th international conference on Information Processing in Sensor Networks, pp.233-244. 2012.
[6] B. N. Vo, N. T. Pham and D. Suter, “Joint detection and estimation of multiple objects from image observations”, in Proceedings of the IEEE Transactions on Signal Process., Vol. 58, No. 10, pp.5129-5241, 2010.
[7] S. C. A. Thomopoulos, R, Viswanathan, and D. C. Bougoulias, “Optimal decision fusion in multiple sensor systems,” in Proceedings of the IEEE Transactions on Aerospace and Electronic Systems, Vol.23, No. 5, pp. 644-653, 1987.
[8] X. Yin, H. Han, and P. S. Yu, “Truth discovery with multiple conflicting information providers on the Web,” in Proceedings of the IEEE Transactions on Knowledge and Data Engineering, Vol.20, No.6, pp.796-808, 2008.
[9] D. Wang, T. Abdelzaher, H. Ahmadi, J. Pasternack, D. Roth, M. Gupta, J. Han, and O. Fatemieh, “On Bayesian interpretation of fact-finding in information networks,” in Proceedings of the International Conference on Information Fusion, 2011,
[10] G. V. Moustakides, G. H. Jajamovich, A. Tajer, and X. Wang, “Joint detection and estimation: optimum tests and applications,” in Proceedings of the IEEE Transactions on Information Theory, Vol. 58, No. 7, pp.4215-4229, 2012.
[11] A. S. Willsky, G. W. Wornell, and J. H. Shapiro, “Stochastic processes, detection and estimation,” MIT 6.432 Course Note, 2005.
[12] M. R. Gupta, and Y. Chen, “Theory and use of EM algorithm,” in Proceedings of the Foundation and Trends in Signal Processing, Vol. 4, No. 2, 2010.
[13] Wergen, and Gregor, “Records in stochastic processes—theory and applications” in Proceedings of the Journal of Physics A: Mathematical and Theoretical, 2013.
[14] N. Katenka, E. Levina, and G. Michailidis, “Local vote decision fusion for target detection in wireless sensor networks,” in Proceedings of the IEEE Transactions on Signal Processing, Vol. 56, No. 1, pp.329-338, 2008.
[15] T. Clouqueur, V. Phipatanasuphorn, P. Ramanathan and K. K. Saluja, “Sensor deployment strategy for detection of targets traversing a region”, in Proceedings of the ACM Mobile, Vol. 8, No. 4, pp.453-461, 2003.
[16] Castanedo, and Federico, “A Review of Data Fusion Techniques” in Proceedings of the Scientific World Journal, 2013.
[17] T. Clouqueur, P. Ramanathan, K.K. Saluja, and K. C. Wang, “Value-Fusion versus Decision-Fusion for Fault-Tolerance in Collaborative Target Detection in Sensor Networks” in Proceedings of the Fourth Ann. Conference Information Fusion, 2001.
[18] F. Alt, A. S. Shirazi, A. Schmidt, U. Kramer, and Z. Nawax, “Location-based Crowdsourcing: Extending Crowdsourcing to the Real World”, in Proceedings of the ACM Nordic Conference on Human Computer Interactions, Reykjavik (IC), 2010.
[19] P. H. Tsai, Y. J. Lin, Y. Z. Ou, E. T.-H. Chu, and J. W. S. Lin, “A Framework for Fusion of Human Sensor and Physical Sensor Data” in Proceedings of the IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2014.
[20] L. P. Cox, “Truth in Crowdsourcing” in Proceedings of the IEEE journal of Security and privacy, Vol. 9, No. 3, pp.74-76, 2011.
[21] M. Demiabas, M. A. Bayir, C. G. Akcora, Y. S. Yilmaz, and H. Ferhatosmanoglu, “Crowd-sourced sensing and collaboration using twitter” in Proceedings of the IEEE International Symposium on World of Wireless Mobile and Multimedia Networks, 2010.
[22] Y. L. Hou, and K. H. Pang, “People Counting and Human Detection in a Challenging Situation” in Proceedings of the IEEE Transactions on Systems, Man, and Cybernetics: Systems, Vol. 41, pp.24-23, 2011.
[23] S. Boutoille, S. Reboul, and M. Benjelloum, “A hybrid fusion system applied to off-line detection and change-points estimation” in Proceedings of the Information Fusion Journal, Vol. 11, pp.325-337, 2010.
[24] B. Baygun and A. O. Hero, “Optimal simultaneous detection and estimation under a false alarm constraint” in Proceedings of the IEEE Transactions on Information Theory, Vol. 41, pp.688-703, 1995.
[25] A. Tajer, G. Jajamovich, X. Wang, and G. B. Moustakides, “Optimal Joint Target Detection and Parameter Estimation by MIMO Radar” in Proceedings of the IEEE journal of Selected Topics in Signal Processing, Vol.4, pp.127-145, 2010.
校內:2016-08-29公開