簡易檢索 / 詳目顯示

研究生: 蔡松甫
Tsai, Sung-Fu
論文名稱: 應用狩野分析於智慧型手機減碳設計策略之實證研究
Applying KANO Analysis to Develop Carbon Reduction-Oriented Design Strategies for Smartphones: An Empirical Study
指導教授: 林聖倫
Lin, Shen-Lun
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 77
中文關鍵詞: 綠色設計智慧型手機狩野模型系統性文獻回顧問卷調查
外文關鍵詞: Eco-design, smartphone, systematic review, questionnaire survey, KANO model
相關次數: 點閱:21下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究分析產品綠色設計於學術文獻探討、企業策略與消費者需求三個層面的交集與差異,並以智慧型手機為研究對象,建構整合性的綠色設計策略建議。首先,透過系統性文獻回顧整理經綠色設計研究方法提供之綠色設計建議,包括模組化設計、材料選擇、節能表現與產品回收機制等。與此同時,藉由整理綠色設計相關法規與認證,建立一套針對綠色設計策略執行程度的評估系統,分析生產智慧型手機企業之永續報告書與綠色設計策略相關文件,評估企業在不同綠色設計指標之實踐程度與重視方向。最後,針對台灣大學部及研究所學生進行問卷調查,並應用狩野模型與相關統計學方法,分析消費者對綠色設計屬性的需求即與消費者之間的關聯性。
    研究結果顯示,在產品設計方面,文獻重視模組化設計與硬體再製造以延長產品壽命,而消費者與企業對模組化的接受度並不明顯,較重視產品本身的耐用性。在節能構面上,在文獻及企業策略中皆有提及其重要性,消費者對能源效率表現有明顯正向偏好。在材料與包裝方面,文獻強調材料的選擇對環境影響,而企業多有相關策略,但消費者對此部分的好感度較不明顯。至於產品管理,文獻及企業皆明確認為具有回收機制與備品供應是必要的措施,消費者亦認為明確回收計畫是企業的基本責任。
    本研究透過學術、企業與消費者三方面的綜合分析,發現企業目前之綠色設計策略大致符合學術與消費者的期待,但在產品設計上,學術研究及消費者皆認為該項目對永續發展具有正面影響,但企業仍有可以持續改進的地方。並且台灣尚未針對網路通訊及電子電機產品制定政策,未來也可重點針對產品結構進行規範。最後,此研究也可延伸至其他產品類型與族群的研究建議,以建立更全面的綠色設計需求模型,供企業作為永續產品開發之參考依據。

    With the continuous development of information and communication technologies, human life has been significantly enhanced; however, these developments have also brought considerable environmental impacts. Eco-design is regarded as a key strategy for mitigating the environmental impact of the ICT industry. This study explores eco-design strategies from three perspectives: academic, corporate, and consumer. In academic perspective, a systematic literature review is conducted to examine recent recommendations on eco-design for electronic and electrical products. In corporate perspective, eco-design strategies are categorized into five dimensions: product design, energy efficiency, material selection, packaging, and product management. By reviewing regulatory policies and standards relevant to ICT products, we establish evaluation criteria and assess the implementation status within related companies. Finally, on the consumer side, selected green design indicators are examined through a questionnaire survey and the KANO Model to identify consumer needs and provide strategic recommendations for businesses. While current corporate green design strategies generally align with the expectations of both academia and consumers, consumers do not show increased favorability solely due to improvements in modular design. It is recommended that companies carefully evaluate the balance between the environmental benefits of modular design and consumer favorability. Moreover, companies are advised to carefully evaluate such strategies and considered consumer experience into their eco-design efforts to formulate more comprehensive and effective development approaches.

    摘要 i Applying KANO Analysis to Develop Carbon Reduction-Oriented Design Strategies for Smartphones: An Empirical Study ii 致謝 v 目錄 vi 表目錄 ix 圖目錄 x 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 1 1.3 論文架構 2 第二章 文獻探討 5 2.1 綠色設計定義 5 2.2 綠色設計政策與法規 5 2.2.1 歐盟 6 2.2.2 美國 6 2.2.3 中國 7 2.2.4 臺灣 7 2.3 企業的綠色產品設計 8 2.3.1 生命週期思維與評估 8 2.3.2 創意問題解決理論 9 2.3.3 綠色設計的挑戰 10 2.4 消費者的綠色產品看法 11 2.4.1 綠色消費 11 2.4.2 綠色購買意願 11 2.5 文獻探討結論 13 第三章 研究方法 15 3.1 學術研究層面 15 3.2 企業策略層面 17 3.3 消費者需求層面 22 3.3.1 研究問題與對象 22 3.3.2 問卷架構 24 3.3.2.1 大學生手機使用與體驗調查 24 3.3.2.2 手機設計偏好 25 3.3.2.3 手機綠色設計偏好 25 3.3.2.4 基本資料 25 3.3.3 統計方法 25 3.3.3.1 信度分析 26 3.3.3.2 單因子變異數分析 26 3.3.3.3 斯皮爾曼相關係數 27 3.3.3.4 狩野模型 27 第四章 研究結果 30 4.1 學術研究結果 30 4.1.1 文獻蒐集結果及分布 30 4.1.2 文獻所使用綠色設計方法介紹 31 4.1.2.1 生命週期評估及情境模擬 31 4.1.2.2 消費者及公司回饋 33 4.1.2.3 回收階段反思產品設計 34 4.1.2.4 文獻統整並制定策略 36 4.1.3 綠色設計策略建議統整 37 4.2 企業評估結果 41 4.2.1 產品設計 41 4.2.2 產品節能 41 4.2.3 材質使用 42 4.2.4 產品包裝 42 4.2.5 產品管理 43 4.2.6 小節結論 44 4.3 消費者調查結果 45 4.3.1 信度分析 45 4.3.2 問題一 46 4.3.3 問題二 47 4.3.4 問題三 49 4.3.4.1 使用時間與能源效率 49 4.3.4.2 手機使用年限與耐久性設計 50 4.4 整合結果 50 第五章 結論 53 5.1 結論 53 5.2 研究限制 54 參考文獻 55 英文文獻 55 參考網頁 59 附錄 61 附錄一 檢視的標章與國際法規 61 附錄二 參考企業文獻 61 附錄三 問卷內容 62

    Alonso Movilla, N., Zwolinski, P., Dewulf, J., & Mathieux, F. (2016). A method for manual disassembly analysis to support the ecodesign of electronic displays. Resources, Conservation and Recycling, 114, 42–58.
    Ardente, F., Calero Pastor, M., Mathieux, F., & Talens Peiró, L. (2015). Analysis of end-of-life treatments of commercial refrigerating appliances: Bridging product and waste policies. Resources, Conservation and Recycling, 101, 42–52.
    Balkenende, A. R., & Bakker, C. A. (2015). Developments and Challenges in Design for Sustainability of Electronics. Transdisciplinary Lifecycle Analysis of Systems : Proceedings of the 22nd ISPE Inc. International Conference on Concurrent Engineering, CE 2015 (Vol. 2, 3–13).
    Bereketli Zafeirakopoulos, I., & Erol Genevois, M. (2015). An Analytic Network Process approach for the environmental aspect selection problem—A case study for a hand blender. Environmental Impact Assessment Review, 54, 101–109.
    Berger, C., Blauth, R., & Boger, D. (1993). Kano’s methods for understanding customer-defined quality. Center for Quality of Management Journal, 2(4), 3–36
    Boell, S. K., & Cecez-Kecmanovic, D. (2015). On being ‘Systematic’ in Literature Reviews in IS. Journal of Information Technology, 30(2), 161–173.
    Bong Ko, S., & Jin, B. (2017). Predictors of purchase intention toward green apparel products: A cross-cultural investigation in the USA and China. Journal of Fashion Marketing and Management: An International Journal, 21(1), 70–87.
    Bovea, M. D., & Pérez-Belis, V. (2018). Identifying design guidelines to meet the circular economy principles: A case study on electric and electronic equipment. Journal of Environmental Management, 228, 483–494.
    Brunnhuber, N., Windsperger, A., Perdomo Echenique, E. A., & Hesser, F. (2023). Implementing Ecodesign During Product Development: An Ex-Ante Life Cycle Assessment of Wood-Plastic Composites. Progress in Life Cycle Assessment 2021, 23–40.
    Casalegno, C., Candelo, E., & Santoro, G. (2022). Exploring the antecedents of green and sustainable purchase behaviour: A comparison among different generations. Psychology & Marketing, 39(5), 1007–1021.
    Chatti, W. (2021). Moving towards environmental sustainability: Information and communication technology (ICT), freight transport, and CO2 emissions. Heliyon, 7(10).
    Chaudhary, R., & Bisai, S. (2018). Factors influencing green purchase behavior of millennials in India. Management of Environmental Quality: An International Journal, 29(5), 798–812.
    Chen, C.-C., Chen, C.-W., & Tung, Y.-C. (2018). Exploring the Consumer Behavior of Intention to Purchase Green Products in Belt and Road Countries: An Empirical Analysis. Sustianability, 10(3).
    Chen, W. C., & Rau, H. (2023). A product evaluation and innovation process based on the circular design degree and patents evolution. Journal of Cleaner Production, 405, 136888.
    Chen, Y.-S. (2008). The Driver of Green Innovation and Green Image – Green Core Competence. Journal of Business Ethics, 81(3), 531–543.
    Chu, J., Zhou, Y., Cai, Y., Wang, X., Li, C., & Liu, Q. (2022). A life-cycle perspective for analyzing carbon neutrality potential of polyethylene terephthalate (PET) plastics in China. Journal of Cleaner Production, 330, 129872.
    Chuang, H.-K., & Liao, C.-S. (2018). Consumer preferences for green digital camera attributes to inform electrical and electronic equipment design and development. Journal of Environmental Planning and Management, 61(12), 2186–2206.
    Dangelico, R. M., & Pujari, D. (2010). Mainstreaming Green Product Innovation: Why and How Companies Integrate Environmental Sustainability. Journal of Business Ethics, 95(3), 471–486.
    De Azua Lahidalga, I. R., Valor, E. M., Lozano, D. J., & Mendoza, J. M. F. (2024). Circular Power Electronics: Exploring the Scope and Suitability of Ecodesign Criteria for the Power Electronics Industry. 2024 Electronics Goes Green 2024+ (EGG), 1–8.
    Debnath, B., Baidya, R., Biswas, N. T., Kundu, R., & Ghosh, S. K. (2015a). E-Waste Recycling as Criteria for Green Computing Approach: Analysis by QFD Tool. Computational Advancement in Communication Circuits and Systems, 139–144, Springer India.
    Dong, X., Jiang, Q., & Wang, J. (2021). Assessing Embodied Carbon Emission and Its Intensities in the ICT Industry: The Global Case. Frontiers in Energy Research, 9, 685021.
    Favi, C., Germani, M., Mandolini, M., & Marconi, M. (2016). Includes Knowledge of Dismantling Centers in the Early Design Phase: A Knowledge-based Design for Disassembly Approach. Procedia CIRP, 48, 401–406.
    Favi, C., Germani, M., Mandolini, M., & Marconi, M. (2018). Implementation of a software platform to support an eco-design methodology within a manufacturing firm. International Journal of Sustainable Engineering, 11(2), 79–96.
    Global e-Sustainability Initiative & Accenture Strategy. (2015). SMARTer2030: ICT solutions for 21st century challenges.
    Grobe, K. (2018). Environmental Aspects of WDM Equipment. Photonic Networks; 19th ITG-Symposium, Leipzig, Germany, 1-5.
    Horani, L. F., & Dong, L. (2023). Understanding sustainable purchase intention of smartphone users interface: Evidence from China. Frontiers in Psychology, 14.
    Hossain, A. A. (2023). Green Information and Communication Technologies Strategies for Sustainable Agriculture. Eurasian Journal of Agricultural Economics, 3(1) 16–33.
    Hoveling, T., Jin, Y., Faludi, J., & Bakker, C. (2024). Redesigning Health Devices for the Circular Economy: A Case Study on Smart Pillboxes. 2024 Electronics Goes Green 2024+ (EGG), 1–12.
    Ilevbare, I. M., Probert, D., & Phaal, R. (2013). A review of TRIZ, and its benefits and challenges in practice. Technovation, 33(2–3), 30–37.
    ISO 14040:2006(en). (2006). Environmental management--Life cycle assessment--Principles and framework. International Organization for Standardization.
    ITU & World Bank. (2024). Measuring the Emissions and Energy Footprint of the ICT Sector.
    Johannisson, W., Zackrisson, M., Jönsson, C., Zenkert, D., & Lindbergh, G. (2019). Modelling and design of strucutral batteries with life cycle assessment. TWENTY-SECOND INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS (ICCM22)
    Jun, Q., & Shin, D.-L. (2013). TRIZ Propagation Strategies in SAMSUNG Electronics Co.
    Kamalanon, P., Chen, J.-S., & Le, T.-T.-Y. (2022). “Why Do We Buy Green Products?” An Extended Theory of the Planned Behavior Model for Green Product Purchase Behavior. Sustainability, 14(2), 689.
    Khor, K.-S., Ramayah, T., & Fouladgaran, H. R. P. (2020). Managing eco-design for reverse logistics. Int. J. Environment and Waste Management, 26(2), 125–146
    Kim, J., & Kim, H. M. (2020). Impact of Generational Commonality of Short Life Cycle Products in Manufacturing and Remanufacturing Processes. Journal of Mechanical Design, 142(12), 122001.
    Ko, Y.-T. (2020). Modeling an Innovative Green Design Method for Sustainable Products. Sustainability, 12(8), 3351.
    Koscielski, M., Stobbe, L., Mager, T., Jokinen, T., Schulz, A., & Kiernich, A. (2024). ALU4CED - New Concept for Circular Electronic Design Based on Aluminium. 2024 Electronics Goes Green 2024+ (EGG), 1–7.
    Lacasa, E., Pena, M., Valero, J. I., Fernández, A., & Santolaya, J. L. (2024). Application of Sustainability Strategies in the Design of an Electric Scooter. Advances in Design Engineering IV , 722–729.
    Le Brun, G., & Raskin, J.-P. (2020). Material and manufacturing process selection for electronics eco-design: Case study on paper-based water quality sensors. Procedia CIRP, 90, 344–349.
    Luttropp, C., & Lagerstedt, J. (2006). EcoDesign and The Ten Golden Rules: Generic advice for merging environmental aspects into product development. Journal of Cleaner Production, 14(15–16), 1396–1408.
    Maichum, K., Parichatnon, S., & Peng, K.-C. (2016). Application of the Extended Theory of Planned Behavior Model to Investigate Purchase Intention of Green Products among Thai Consumers. Sustainability, 8(10), 1077.
    Mandolini, M., Marconi, M., Rossi, M., Favi, C., & Germani, M. (2019). A standard data model for life cycle analysis of industrial products: A support for eco-design initiatives. Computers in Industry, 109, 31–44.
    Margallo, M., Ruiz-Salmón, I., Laso, J., Bala, A., Colomé, R., Gazulla, C., Fullana-i-Palmer, P., & Aldaco, R. (2021). Combining technical, environmental, social and economic aspects in a life-cycle ecodesign methodology: An integrated approach for an electronic toy. Journal of Cleaner Production, 278, 123452.
    Mohd Suki, N. (2016). Green product purchase intention: Impact of green brands, attitude, and knowledge. British Food Journal, 118(12), 2893–2910.
    Ortego, A., Valero, A., Valero, A., & Iglesias, M. (2018). Toward Material Efficient Vehicles: Ecodesign Recommendations Based on Metal Sustainability Assessments. SAE International Journal of Materials and Manufacturing, 11(3), 213–228.
    Pollock, A., & Berge, E. (2018). How to do a systematic review. International Journal of Stroke, 13(2), 138–156.
    Qiao, L., & Zhang, Y. (2022). Analysis of MOOC Quality Requirements for Landscape Architecture Based on the KANO Model in the Context of the COVID-19 Epidemic. Sustainability, 14(23), 15775.
    Rau, H., Wu, J.-J., & Procopio, K. M. (2023). Exploring green product design through TRIZ methodology and the use of green features. Computers & Industrial Engineering, 180, 109252.
    Reuter, M. A., & Van Schaik, A. (2015). Product-Centric Simulation-Based Design for Recycling: Case of LED Lamp Recycling. Journal of Sustainable Metallurgy, 1(1), 4–28.
    Rio, M., Khannoussi, K., Crebier, J.-C., & Lembeye, Y. (2020). Addressing Circularity to Product Designers: Application to a Multi-Cell Power Electronics Converter. Procedia CIRP, 91, 134–139.
    Rodrigues, C., Almeida, J., Santos, M. I., Costa, A., Além, S., Rufo, E., Tadeu, A., & Freire, F. (2021). Environmental Life-Cycle Assessment of an Innovative Multifunctional Toilet. Energies, 14(8), 2307.
    Russo, D., Rizzi, C., & Montelisciani, G. (2014). Inventive guidelines for a TRIZ-based eco-design matrix. Journal of Cleaner Production, 76, 95–105.
    Russo, D., & Spreafico, C. (2015). TRIZ 40 Inventive Principles Classification through FBS Ontology. Procedia Engineering, 131, 737–746.
    Schwarz, T. E., Rübenbauer, W., Rutrecht, B., & Pomberger, R. (2018). Forecasting Real Disassembly Time of Industrial Batteries Based on Virtual MTM-UAS Data. Procedia CIRP, 69, 927–931
    Sharma, K., Aswal, C., & Paul, J. (2023). Factors affecting green purchase behavior: A systematic literature review. Business Strategy and the Environment, 32(4), 2078–2092.
    Shi, L., Mach, K. J., Suh, S., & Brandt, A. (2022). Functionality‐based life cycle assessment framework: An information and communication technologies (ICT) product case study. Journal of Industrial Ecology, 26(3), 782–800.
    Sihvonen, S., & Partanen, J. (2017). Eco-design practices with a focus on quantitative environmental targets: An exploratory content analysis within ICT sector. Journal of Cleaner Production, 143, 769–783.
    Sun, Y., Luo, B., Wang, S., & Fang, W. (2021). What you see is meaningful: Does green advertising change the intentions of consumers to purchase eco‐labeled products? Business Strategy and the Environment, 30(1), 694–704.
    Suppipat, S., & Hu, A. H. (2022). Achieving sustainable industrial ecosystems by design: A study of the ICT and electronics industry in Taiwan. Journal of Cleaner Production, 369, 133393.
    Vanegas, P., Peeters, J. R., Cattrysse, D., Tecchio, P., Ardente, F., Mathieux, F., Dewulf, W., & Duflou, J. R. (2018). Ease of disassembly of products to support circular economy strategies. Resources, Conservation and Recycling, 135, 323–334.
    Wagner, E., Benecke, S., Winzer, J., Nissen, N. F., & Lang, K.-D. (2016). Evaluation of Indicators Supporting the Sustainable Design of Electronic Systems. Procedia CIRP, 40, 469–474.
    Wang, T., & Ji, P. (2010). Understanding customer needs through quantitative analysis of Kano’s model. International Journal of Quality & Reliability Management, 27(2), 173–184.
    World Commission on Environment and Development. (1987). Our common future. Oxford University Press.
    Xiu, G., & Min, D. (2025). Carbon reduction in green ICT development: The impact of energy consumption and productivity. International Journal of Hydrogen Energy, 102, 94–106
    Xuan, Y., Zhang, L., Bao, H., & Hu, J. (2024). How to obtain product green design requirements based on sentiment analysis and topic analysis: Using washing machine online reviews as an example. Journal of Environmental Management, 365, 121454
    Zhang, F., Rio, M., & Zwolinski, P. (2018). Dynamic Eco-design Strategic Options for Electric-Electronic Industry. International Conference on Eco-Design in Electrical Engineering, APIME, 440, 29–40.
    Zhu, Q., & Geng, Y. (2013). Drivers and barriers of extended supply chain practices for energy saving and emission reduction among Chinese manufacturers. Journal of Cleaner Production, 40, 6–12
    Zhuang, W., Luo, X., & Riaz, M. U. (2021). On the Factors Influencing Green Purchase Intention: A Meta-Analysis Approach. Frontiers in Psychology, 12.
    Zwolinski, P., & Tichkiewitch, S. (2019). An agile model for the eco-design of electric vehicle Li-ion batteries. CIRP Annals, 68(1), 161–164.
    Barry, K., Domb, E., & Slocum, M. S. (2008). TRIZ - What is TRIZ? The TRIZ Journal.http://www.triz-journal.com/404.asp?action=print&404;http://www.triz
    European Commission. (2020). Circular economy action plan: For a cleaner and more competitive Europe. Publications Office of the European Union.https://op.europa.eu/en/publication-detail/-/publication/45cc30f6-cd57-11ea-adf7-01aa75ed71a1
    European Environment Agency. (2024). Eco-design.https://www.eea.europa.eu/help/glossary/eea-glossary/eco-design
    Navarro, R. (2024). The Average Screen Time and Usage by Country in 2024. ElectronicsHub.https://goodmenproject.com/featured-content/the-average-screen-time-and-usage-by-country-in-2024/
    Regulation (EU) 2024/1781 of the European Parliament and of the Council of 13 June 2024 establishing a framework for the setting of ecodesign requirements for sustainable products, amending Directive (EU) 2020/1828 and Regulation (EU) 2023/1542 and repealing Directive 2009/125/ECText with EEA relevance https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32024R1781
    Smartphone Market Recovers In 2024 After Two Years Of Decline. (nd). https://www.counterpointresearch.com/insight/post-insight-research-notes-blogs-smartphone-market-recovers-in-2024-after-two-years-of-decline
    UN Environment Programme, Life Cycle Initiative. (nd). What is life cycle thinking? https://www.lifecycleinitiative.org/activities/what-is-life-cycle-thinking/
    國務院新聞辦公室. (2023). 新時代的中國綠色發展. https://www.gov.cn/zhengce/2023-01/19/content_5737923.htm
    國家發展委員會國土區域離島發展處. (2017). 都市及區域發展統計彙編。https://www.ndc.gov.tw/Content_List.aspx?n=5A2D326B69DD0112
    行政院環境部. (2025). 回收及廢棄物處理https://www.ey.gov.tw/state/4AC21DC94B8E19A8/aea35f1b-0fe3-4ca9-8ab9-6579fd30a8f3
    環境部資源循環署. (2024). 為解決國內手機回收困境,循環署預告「應標示分類回收標誌之行動電話製造、輸入業範圍及其他應遵行事項」草案. 資源回收網. https://recycle.moenv.gov.tw/News/NewInfo/2390
    循環台灣基金會. (n.d.). 循環案例. https://circular-taiwan.org/case/
    張卿卿 (2019)。第二期第二次 (2018):媒介使用與社會互動 (D00176). 中央研究院人文社會科學研究中心調查研究專題中心學術調查研究資料庫。https://srda.sinica.edu.tw/search/metadata/detail/D00176
    中國質量認證中心 (2016年3月24日) 。《電子電氣產品環保等級標識評價:評價方法及指標》。中國質量認證中心。https://www.cqc.com.cn/www/chinese/c/2016-03-24/524523.shtml

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE