| 研究生: |
賴吉村 Lai, Ji-Tsuen |
|---|---|
| 論文名稱: |
側鏈二次非線性光學發色團聚亞醯胺
之合成與性質 Synthesis and Properties of Second Order Nonlinear Optical Polyimides with Side-Chain Chromophores |
| 指導教授: |
郭人鳳
Kuo, Jen-Feng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 115 |
| 中文關鍵詞: | 聚亞醯胺 、發色團 、非線性光學材料 |
| 外文關鍵詞: | Chromophore, Polyimide, Nonlinear optical materials |
| 相關次數: | 點閱:66 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以自行合成的DABA以及DHTM兩種二胺類單體,和二酸酐ODPA縮合聚合,成功的合成出三種可溶性聚亞醯胺。再利用較溫和的Mitsunobu reaction將所合成的單官能基發色團4-(N-2-hydroxyethyl- N- methylamino) -4’- nitroazobenzene以共價鍵結的方式接枝到聚亞醯胺主鏈上形成NLO側鏈型高分子。並利用1H NMR光譜計算發色團的接枝率。
利用此一簡便的合成方式在高分子骨幹以及發色團的選擇上深具變化性,可藉以微調結構性質例如溶解度或堅硬性。所有合成的側鏈非線性光學發色團高分子的玻璃轉移溫度均高於200℃以上,裂解溫度均高於300℃以上,具優良熱性質。研究結果顯示,側鏈接枝量愈多熱性質(Tg)也隨之衰減。所合成的高分子均能溶於一般非質子型極性溶劑如NMP、DMAc、DMSO等。含DHTM結構的高分子因鏈段較堅硬,溶解度較差而不能成膜外,其餘均能藉旋轉塗佈加工形成合乎要求的光學薄膜。
利用電暈極化裝置將高分子薄膜極化配向,以顯現巨觀的非線性光學性質,並藉由UV-VIS吸收光譜來量測極化前後的最大吸收度變化,可以得知分子順向排列的整齊性,以序列參數表之。由序列參數在不同溫度下隨時間的變化曲線可以發現,所有NLO高分子在110℃的溫度下,九天後仍能保持原來性質的93 %以上,具備優良的熱安定性。
In this work, three soluble polyimides were synthesized successfully by condensation polymerization between two diamine monomers DABA or DHTM with dianhydride monomer, ODPA. Followed by the covalent bonding of the synthesized chromophore 4-(N-2-hydroxyethyl- N- methylamino) -4’- nitroazobenzene onto the backbone of the polyimide via a mild post-Mitsunobu reaction, three types of NLO side-chain aromatic polyimides were obtained. The chromophore loading level was calculated by 1H NMR spectroscopy.
This facile method provides the synthesis of NLO polyimides with a broad variation of polymer backbone and side-chain chromophores to fine-tune the structural properties such as solubility or rigidity. All the synthesized NLO side-chain polyimides have high glass transition temperatures (Tg > 210℃)and thermal stability(Td > 300℃). The result shows that the thermal stability (Tg) decreased with the loading level of the chromophores. All the polyimides were soluble in aprotic polar solvents such as NMP, DMAc, DMSO, and etc. Polymers containing DHTM moiety have less solubility due to the rigid backbone and cannot be cast into films. High optical-quality films were obtained for all the other samples.
The dipole alignments in the NLO polymers were achieved and the second order nonlinearity could be induced by corona poling. The order parameter was obtained by measuring the absorbance difference before and after poling with UV/VIS spectroscopy. The relaxation curve of the order parameter shows that all the NLO polymers have good temporal-thermal stability. The order parameter values retained > 93 % of the original value even at temperature up to 110℃ for more than 9 days.
1. Weder C., Macromolecules, 28(1995)2377.
2. Dalton L., Adv. Polym. Sci., 1(2002)159.
3. Stahelin M., Appl. Phys. Lett., 61(1992)1626.
4. Gupta M. C., The Handbook of Photonic, CRC
press, Boca Raton, FL (1997)
5. Franken P. A., Hill L. E., Peters C. W.,
Weunreich G., Phys. Rev. Lett, 7(1961)118.
6. Prasad P. N.; Williams D. J.,“Introduction to
Nonlinear Optical Effects in Molecules and
Polymers”, Willey, New York, U.S.A. (1991)
7. Wagniere G. H.,“Linear and Nonlinear
OpticalProperties of Molecules ”, Verlag
Helvetica Chimca Acta, CH-4010 Basel
(Switzerland), 1993.
8. Singer K. D.; Sohn J. E.,“Electroresponsive
Molecules and Polymeric Systems”, Marcel Dekker
Inc., New York, U.S.A. (1991)
9. Sigelle M.; Hierle R., J. Appl. Phys.,
52(1981)4199
10. Oudar J. L.; Chemla D. S., J. Chem. Phys.,
66(1977)2664.
11. Uchiki H.; Kobavashi T., J. Appl. Phys.,
62(1988)2625
12. Levy Y., Dumont V. D. M., Robin P. and
Chastaing E.,“Molecules for Nonlinear Optics
and Photonics”, (1989).
13. Teng C.; Man H., Appl. Phys. Lett.,
56(1990)1734.
14. Mortazavi M. A.; Knoesen A.; Kowel S. T.; Henry
R. A.; Hoover J. M.; Lindsay G. A., Appl.
Phys., 53(1991)287.
15. Schildkraut J. S., Appl. Opt., 29(1990)2839.
16. Shuto Y. and Amino M., J. Appl. Phys.,
77(1995)4632.
17. Burland D. M.; Miller R. D.; Reiser O.; Twieg
R.; Walsh C. A., J. Appl. Phys., 71(1992)410.
18. Pacific wave industry,
http://www.pacificwaveind.com/
19. Burland D. M.; Miller R. D.; Walsh C. A., Chem.
Rev., 94(1994)31
20.張明智,洪偉諭;’光電高分子材料之回顧與當前應
用之展望’,化工資訊,2002年五月,p.28。
21. Eldada L.; Shacklette L. W., IEEE J. Sel.
Topics Quantum Electron., 6(2000)54
22. Rentzepis, P. M., Pao, Y. H., Appl. Phys.
Lett., 5(1964)156.
23. Davydov B. L.; Dekacheva L. D.; Dunina V. V.;
Zhabotinskii M. E.; Zolin V. F.; Koreneva L.
G.; Samokhina M. A., JEPT Lett., 12(1970)16.
24. Ballman A. A.; Byer R. L.; Eimerl D.; Feigelson
R. S.; Feldman B. J.; Goldberg L. S.; Menyuk
N.; Tang C. L., Appl. Opt., n2, 26(1987)224.
25. Bjorklund G. C.; Ducharme S.; Fleming W.,
Jungbauer D.; Moerner W. E.; Swalen J. D.;
Robert J. T.; Willson C. G.; Yoon Do Y., in
Materials for Nonlinear Optics, Chemical
Perspectives, ACS Symposium Series 455,
(1991)216-225.
26. Mohwald H., Thin Solid Films, 159(1988)1.
27. Bosshard Ch.; Florsheimer M.; Kupfer M.; Gunter
P., Opt. Commun., 85(1991)247.
28. Florsheimer M.; Kupfer M.; Bosshard Ch.; Looser
H.; Gunter P., Adv. Mater., 4(1992)795.
29. David J. Williams, in Materials for Nonlinear
Optics, Chemical Perspectives, ACS Symposium
Series 455, (1991)41-44.
30. Meredith G. R., VanDusen J. G.; Williams D. J.;
Macromolecules,
15(1982)1385.
31. Katz H.; Singer K.; Sohn J.; Dirk C.; King L.;
Gordon H., J. Am. Chem. Soc., 109(1987)6561.
32. Singer K. D.; Kuzyk M. G.; Holland W. R.; Sohn
J. E.; Lalama S. J.; Comizzoli R. B.; Kaze H.
E.; Schilling M. L., Appl. Phys. Lett.,
53(1988)1800.
33. Boyd G.; Francis C.; Trend J.; Ender D.; J.
Opt. Soc. Am. B, 8(1991)887.
34. Hampsch H.; Yang J.; Wong G.; Torkelson J.,
Macromolecules, 23(1990)3648.
35. Ermer S.; Valley J.; Lytel, R.; Lipscomb G.;
Van Eck T.; Girton D., Appl. Phys. Lett.,
61(1992)2272.
36. Walsh C.A.; Burland D.M.; Lee V.Y.; Miller
R.D.; Smith B.A.; Twieg R.J.; Volksen W.,
Macromolecules, 26(1993)3720.
37. Hayden L.; Sauter G.; Ore F.; Pasillas P.;
Hoover J.; Lindsay G.; Henry R., J. Appl.
Phys., 68(1990)456.
38. Lindsay G.; Henry R.; Hoover J.; Knoesen A.;
Mortazavi M., Macromolecules, 25(1992)4888.
39. Herman W.; Rosen W.; Sperling L.; Murphy C.;
Jain H., Proc. SPIE, 1560(1991)206.
40. Chen Mai, Yu Luping, Dalton L. R.; Yongqiang
Shi, and William H. S., Macromolecules,
24(1991)5421.
41. Mitsunobu, O. Synthesis, (1981)1.
42. Hagen R.; Zobel O.; Sahr O.; Biber M.; Eckel
M.; Strohriegl P.; Eisenbach C. D., Haarer D.,
J. Appl. Phys, 80(1996)3162.
43. Sandhya K. Y.; Pillai C. K. S.; Sato M.;
Tsutsumi N., J. Polym. Sci., PartA: Polym.
Chem., 41(2003)1527.
44. Köhler W.; Robello D.; Dao P.; Willand C.;
Williams D., J. Chem. Phys., 93(1990)9157.
45. Köhler W.; Robello D.; Willand C.; Williams
D., Macromolecules, 24(1991)4589.
46. Xu C.; Wu B.; Todorova O.; Dalton L.; Shi Y.;
Ranon P. M.; Steier W.H., Macromolecules
26(1993)5303.
47. Zhang D.; Sun J.; Hou A. L.; Shen J.; Yi M.,
Mater. Lett., 45(2000)149.
48. Moley J. O.; J. Chem. Soc. Perkin Trans.,
2(1987)1351
49. Dulcic A.; Flytzanis C. L.; Tang C. L.; Pepin
D.; Fitzon M.; Hoppilliard Y., J. Chem. Phys.,
74(1981)1559.
50. Berkovic G.; Shen Y. R.; Schadt M., Mol. Cryst.
Lig. Cryst., B150(1987)607.
51. Nemoto N.; Miyata F.; Nagase Y.; Abe J.;
Hasegawa M.; Shirai Y., Macromolecules,
29(1996)2365
52. Kim Y. W.; Jin J. I.; Moon Y. J.; Choi, K. Y.;
K J. J.; Zyung T.; Polymer, 38(1997)2269
53. So B. K.; Lee K. S.; Lee S. M.; Lee M. K.; Lim
T. K., Opt. Mater., 21(2002)87
54. Wu J.; Valley J. F.; Ermer S.; Binkley E. S.;
Kenney J. T.; Lipscomb G. F.; Lytel R., Appl.
Phys. Lett., 58(1991)225.
55. Wong, K. Y.; Jen, A. K.-Y., J. Appl. Phys.
75,(1994)3308.
56. Yu D.; Yu L., Macromolecules 27(1994)6718.
57. Saadeh H..; Gharavi A.; Yu D.; Yu L.,
Macromolecules, 30(1997)5403.
58. Saadeh H.; Yu D.; Wang L. M.; Yu L., J. Mater.
Chem., 9(1999)1865.
59. Chen T. A.; Jen A. K-Y; Cai Y., J. Am. Chem.
Soc., 117(1995)7295.
60. Chen T. A.; Jen A. K-Y; Cai Y., Macromolecules,
29(1996)535.
61. Leng W.; Zhou Y.; Xu Q.; Liu J.,
Macromolecules, 34(2001)4774.
62. Broeck K. V-D.; Verbiest T.; Degryse J.; Van
Beylen M.; Persoons, A.; Samyn C., Polymer,
42(2001)3315.
63. Crumpler E. T.; Reznichenko J. L.; Dequan L.;
Tobin J. M., Chem. Mater., 7(1995)596.
64. Mortazavi M. A.; Knoesen A.; Kowel S. T., J.
Opt. Soc. Am. B, 6(1989) 733
65. Tsutsumi N.; Yoshizaki S.; Sakai W.;
Kiyotsukuri T., Macromolecules, 28(1995)6437.
66. Buu-Hoï Ng. Ph.; Lavit D., Xuong Ng. D., J.
Chem. Soc., (1953)2612.
67. Droske J. P.; Fossum E. A.; Day J. A.; Iverson
J. H.; Pakyz D. J., Polym. Prepr., Am. Chem.
Soc. Div. Polym. Chem., 33(1992)481
68. 邱致銘;’可溶性聚醯亞胺/二氧化矽奈米複合材料
之合成與性質研究’,國立成功大學化學工程學系
碩士論文,民國92年。