| 研究生: |
黎加興 Li, Chia-Shing |
|---|---|
| 論文名稱: |
以非平衡態分子動力學研究介面熱阻影響與質量梯度碳管之熱傳行為 The study on interfacial thermal resistance and thermal transport behavior of mass-graded carbon nanotube using non-equilibrium molecular dynamics simulation |
| 指導教授: |
賴新一
Lai, Hsin-Yi |
| 共同指導教授: |
張怡玲
Chang, I-Ling |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 非平衡態分子動力學 、介面熱阻 、熱整流效果 、質量梯度奈米管 |
| 外文關鍵詞: | Non-Equilibrium Molecular Dynamics, Interfacial thermal resistance, Thermal rectification, Mass-graded nanotubes |
| 相關次數: | 點閱:120 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要以非平衡態分子動力學(NEMD)模擬方法,研究探討介面熱阻對NEMD模擬計算奈米碳管熱傳行為時的影響,並重新檢視碳管尺寸效應造成的熱傳導係數與長度關係,與各種質量梯度之奈米碳管的熱傳行為。本文首先介紹非平衡態分子動力學模擬方法與逆向非平衡態分子動力學(rNEMD)模擬方法。而後利用改變控溫層原子質量,達到改變控溫層與自由層間的介面熱阻大小,藉此判斷介面熱阻對使用NEMD模擬計算奈米碳管熱傳導係數的影響,並透過熱阻與長度關係觀察碳管尺寸效應。又以非平衡態模擬法與逆向非平衡態模擬法計算文獻中質量梯度奈米管模型,進而修改模型找出適合探討質量梯度奈米管熱傳行為的模型與模擬方式,最後利用非平衡態模擬法比較不同半徑與長度的質量梯度奈米管的熱傳行為,並利用態密度解釋其熱整流效果。
本研究發現使用NEMD模擬計算碳管熱傳導係數時,會因為NEMD模擬產生的介面熱阻而影響,並透過比對文獻與修正後質量梯度奈米管的模型與模擬後,確認質量梯度奈米管具有熱整流效果,且為熱流方向由重原子往輕原子方向的熱傳導係數較反方向來的大。
The influence of interface thermal resistance on the thermal transfer behavior of carbon nanotubes (CNTs), and mass-graded CNTs were investigated using non-equilibrium molecular dynamics (NEMD) simulation method. First, we introduced NEMD and reverse non-equilibrium molecular dynamics (rNEMD) simulation methods. Then, we compared the influence of different interface thermal resistance between thermostat slabs and free slabs by altering the atomic mass of thermostat slabs, and observed the relationship between the thermal resistance and the length of CNTs. Moreover, the NEMD and rNEMD simulation were used to calculate the mass-graded CNTs model. We modified the model to choose appropriate model and simulation method to simulation. Finally, we observed the thermal transfer behavior of mass-graded CNTs with different length and diameter in different heat current direction, and explained the thermal rectification by density of state (DOS).
In this study, we found out thermal conductivity of CNTs calculated by using NEMD simulation was influenced by interface thermal resistance, mass-graded CNTs had thermal rectification, and thermal conductivity of mass-graded CNTs is higher when heat current direction is from the heavy-mass to the light-mass region.
[1] F. Müller-Plathe, "A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity," The Journal of Chemical Physics, vol. 106, no. 14, p. 6082, 1997.
[2] S. Iijima, "Helical microtubules of graphitic carbon," Nature, vol. 354, no. 6348, pp. 56-58, 1991.
[3] S. Maruyama, "A molecular dynamics simulation of heat conduction in finite length SWNTs," Physica B: Condensed Matter, vol. 323, no. 1-4, pp. 193-195, 2002.
[4] K. Bi, Y. Chen, J. Yang, Y. Wang, and M. Chen, "Molecular dynamics simulation of thermal conductivity of single-wall carbon nanotubes," Physics Letters A, vol. 350, no. 1-2, pp. 150-153, 2006.
[5] 羅友威, "以非平衡態分子動力學研究完美及具分支構造奈米碳管之熱傳行為," 成功大學機械工程學系學位論文, pp. 1-82, 2016.
[6] J. Shiomi and S. Maruyama, "Molecular Dynamics of Diffusive-Ballistic Heat Conduction in Single-Walled Carbon Nanotubes," Japanese Journal of Applied Physics, vol. 47, no. 4, pp. 2005-2009, 2008.
[7] S. Lu and A. J. McGaughey, "Thermal conductance of superlattice junctions," AIP Advances, vol. 5, no. 5, p. 053205, 2015.
[8] B.-W. Huang, T.-K. Hsiao, K.-H. Lin, D.-W. Chiou, and C.-W. Chang, "Length-dependent thermal transport and ballistic thermal conduction," AIP Advances, vol. 5, no. 5, p. 053202, 2015.
[9] C. Chang, D. Okawa, A. Majumdar, and A. Zettl, "Solid-state thermal rectifier," Science, vol. 314, no. 5802, pp. 1121-1124, 2006.
[10] M. Alaghemandi, F. Leroy, E. Algaer, M. C. Böhm, and F. Müller-Plathe, "Thermal rectification in mass-graded nanotubes: a model approach in the framework of reverse non-equilibrium molecular dynamics simulations," Nanotechnology, vol. 21, no. 7, p. 075704, 2010.
[11] B. J. Alder and T. E. Wainwright, "Studies in Molecular Dynamics. I. General Method," The Journal of Chemical Physics, vol. 31, no. 2, p. 459, 1959.
[12] D. W. Brenner, O. A. Shenderova, J. A. Harrison, S. J. Stuart, B. Ni, and S. B. Sinnott, "A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons," Journal of Physics: Condensed Matter, vol. 14, no. 4, pp. 783-802, 2002.
[13] D. W. Brenner, "Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films," Physical Review B, vol. 42, no. 15, pp. 9458-9471, 1990.
[14] C. J. Gomes, M. Madrid, and C. H. Amon, "Thin Film In-Plane Silicon Thermal Conductivity Dependence on Molecular Dynamics Surface Boundary Conditions," vol. 2004, pp. 345-352, 2004.
[15] J. Haile, "Molecular dynamics simulation: Elementary methods," Computers in Physics, vol. 7, no. 6, pp. 625-625, 1993.
[16] T. Dumitrica, Trends in Computational Nanomechanics: Transcending Length and Time Scales. Springer Science & Business Media, 2010.
[17] P. Hunenberger, "Thermostat algorithms for molecular dynamics simulations," (in English), Advanced Computer Simulation Approaches for Soft Matter Sciences I, vol. 173, pp. 105-147, 2005.
[18] G. Bussi, D. Donadio, and M. Parrinello, "Canonical sampling through velocity rescaling," The Journal of chemical physics, vol. 126, no. 1, p. 014101, 2007.
[19] W. G. Hoover, "Canonical dynamics: Equilibrium phase-space distributions," Physical Review A, vol. 31, no. 3, pp. 1695-1697, 1985.
[20] S. Nosé, "A unified formulation of the constant temperature molecular dynamics methods," The Journal of Chemical Physics, vol. 81, no. 1, p. 511, 1984.
[21] H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak, "Molecular dynamics with coupling to an external bath," The Journal of Chemical Physics, vol. 81, no. 8, p. 3684, 1984.
[22] S. A. Adelman, "Generalized Langevin equation approach for atom/solid-surface scattering: General formulation for classical scattering off harmonic solids," The Journal of Chemical Physics, vol. 64, no. 6, p. 2375, 1976.
[23] T. Schlick, Molecular modeling and simulation: an interdisciplinary guide: an interdisciplinary guide. Springer Science & Business Media, 2010.
[24] T. Schneider and E. Stoll, "Molecular-dynamics study of a three-dimensional one-component model for distortive phase transitions," Physical Review B, vol. 17, no. 3, pp. 1302-1322, 1978.
[25] L. Verlet, "Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules," Physical Review, vol. 159, no. 1, pp. 98-103, 1967.
[26] D. Frenkel and B. Smit, Understanding molecular simulation: from algorithms to applications. Academic press, 2001.
[27] W. C. Swope, H. C. Andersen, P. H. Berens, and K. R. Wilson, "A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters," The Journal of Chemical Physics, vol. 76, no. 1, pp. 637-649, 1982.
[28] B. Quentrec and C. Brot, "New method for searching for neighbors in molecular dynamics computations," Journal of Computational Physics, vol. 13, no. 3, pp. 430-432, 1973.
[29] T. N. Heinz and P. H. Hunenberger, "A fast pairlist-construction algorithm for molecular simulations under periodic boundary conditions," J Comput Chem, vol. 25, no. 12, pp. 1474-86, Sep 2004.
[30] G. Chen, "Challenges in Microscale Conductive and Radiative Heat Transfer," Journal of Heat Transfer, vol. 116, p. 799, 1994.
[31] W. Humphrey, A. Dalke, and K. Schulten, "VMD: Visual molecular dynamics," Journal of Molecular Graphics, vol. 14, no. 1, pp. 33-38, 1996.
[32] S. Plimpton, "Fast Parallel Algorithms for Short-Range Molecular Dynamics," Journal of Computational Physics, vol. 117, no. 1, pp. 1-19, 1995.
[33] S. Plimpton, A. Thompson, P. Crozier, and A. Kohlmeyer. LAMMPS WWW Site. Available: http://lammps.sandia.gov
[34] T. Ikeshoji and B. Hafskjold, "Non-equilibrium molecular dynamics calculation of heat conduction in liquid and through liquid-gas interface," Molecular Physics, vol. 81, no. 2, pp. 251-261, 1994.
[35] P. K. Schelling, S. R. Phillpot, and P. Keblinski, "Comparison of atomic-level simulation methods for computing thermal conductivity," Physical Review B, vol. 65, no. 14, 2002.
[36] J. E. Turney, E. S. Landry, A. J. H. McGaughey, and C. H. Amon, "Predicting phonon properties and thermal conductivity from anharmonic lattice dynamics calculations and molecular dynamics simulations," Physical Review B, vol. 79, no. 6, 2009.
[37] Y. G. Zhou, X. L. Zhang, and M. Hu, "Quantitatively analyzing phonon spectral contribution of thermal conductivity based on nonequilibrium molecular dynamics simulations. I. From space Fourier transform," (in English), Physical Review B, vol. 92, no. 19, Nov 30 2015.
[38] G. C. Loh, E. H. T. Teo, and B. K. Tay, "Thermal rectification reversal in carbon nanotubes," Journal of Applied Physics, vol. 112, no. 10, p. 103515, 2012.
[39] X. Xu et al., "Length-dependent thermal conductivity in suspended single-layer graphene," Nat Commun, vol. 5, p. 3689, 2014.
[40] A. Singh and E. B. Tadmor, "Removing artificial Kapitza effects from bulk thermal conductivity calculations in direct molecular dynamics," Journal of Applied Physics, vol. 117, no. 18, p. 185101, 2015.
[41] S. Maruyama, "A molecular dynamics simulation of heat conduction of a finite length single-walled carbon nanotube," Microscale Thermophysical Engineering, vol. 7, no. 1, pp. 41-50, 2003.
[42] S. Maruyama, "A molecular dynamics simulation of heat conduction in finite length SWNTs," Physica B: Condensed Matter, vol. 323, no. 1, pp. 193-195, 2002.
[43] Z. Yao, J.-S. Wang, B. Li, and G.-R. Liu, "Thermal conduction of carbon nanotubes using molecular dynamics," Physical Review B, vol. 71, no. 8, p. 085417, 2005.
[44] M. Hu, X. Zhang, and D. Poulikakos, "Anomalous thermal response of silicene to uniaxial stretching," Physical Review B, vol. 87, no. 19, p. 195417, 2013.
[45] C. Shao and H. Bao, "A molecular dynamics investigation of heat transfer across a disordered thin film," International Journal of Heat and Mass Transfer, vol. 85, pp. 33-40, 2015.
[46] A. M. Marconnet, M. A. Panzer, and K. E. Goodson, "Thermal conduction phenomena in carbon nanotubes and related nanostructured materials," Reviews of Modern Physics, vol. 85, no. 3, pp. 1295-1326, 2013.
[47] S. -c. Wang and X. -g. Liang, "Investigation of thermal rectification in bi-layer nanofilm by molecular dynamics," International Journal of Thermal Sciences, vol. 50, no. 5, pp. 680-685, 2011.
[48] G. Lei, H. Cheng, H. Liu, and W. Rao, "Thermal rectification in asymmetric graphyne nanoribbons: A nonequilibrium molecular dynamics study," Materials Letters, vol. 189, pp. 101-103, 2017.
校內:2022-08-31公開