| 研究生: |
蔡侑遠 Tsai, You-Yuan |
|---|---|
| 論文名稱: |
台南登革病毒流行之檢驗及基因分析 Laboratory Diagnosis and Genetic Analysis of Dengue Virus Epidemic in Tainan |
| 指導教授: |
王貞仁
Wang, Jen-Ren |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 醫學檢驗生物技術學系 Department of Medical Laboratory Science and Biotechnology |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 英文 |
| 論文頁數: | 92 |
| 中文關鍵詞: | 登革病毒 、親緣性演化發育樹 、次世代定序 、準種 |
| 外文關鍵詞: | dengue virus, phylogenetic tree, next-generation sequencing, quasispecies |
| 相關次數: | 點閱:48 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
登革病毒(Dengue virus)屬於黃病毒科(Flaviviridae)中的黃病毒屬(Flavivirus)。目前全球約有36億人處於受登革病毒感染的威脅,全世界每年估計約有3.9億人受到感染登革病毒感染。2015年台灣台南市登革病毒感染之通報案例為22,777例。本次研究中,建立並分析兩種優化登革病毒培養標準操作方法。兩種方法的陽性率於統計上無顯著差異,但操作方法一所需孵育時間較方法二短,方法一非常適合用於臨床診斷。本次研究,利用C6/36細胞從628份病患血清中分離出129株登革病毒。將其中45株登革病毒毒株的C,prM和E基因進行序列定序,並與GenBank代表性序列進行序列比對。以C基因至 E基因序列區域進行親緣演化分析(phylogenetic analysis),其結果顯示2015年台南爆發之登革熱疫情之病毒株均被歸類為登革病毒血清第二型,而基因型為世界性基因型(Cosmopolitan genotype),此結果與僅用E基因序列區域進行親緣演化分析結果一致。此45株病毒株之C基因至 E基因序列區域中沒有鑑定出正向和負向選擇性位點(positive and negative selection sites)。與其他基因型序列相比,我們發現了幾個序列變異位點。主要變異位點為C-A314G(K73R),並建立了反向遺傳病毒(reverse-genetics virus)。在BHK-21和C6 / 36細胞中,野生型病毒(wildtype virus)之生長速率比C-A314G(K73R)變異病毒株更快。登革病毒之準種分析實驗中,我們從一名感染登革病毒患者收集三個不同時間點之血清,並利用次世代定序(next-generation sequencing, NGS)將血清中登革病毒定序。依據定序結果發現,登革病毒感染患者血清中之單倍體病毒株(haplotype)的數量隨時間降低。在感染後第5天,病患血清內產生兩個新的單倍體,這兩個新的單倍體序列變異皆位於NS4A基因第115位點,其胺基酸由亮氨酸突變為異亮氨酸。在我們對登革病毒準種分析(quasispecies analysis)中,發現核苷酸變異位點都位於基因組之非結構區域(non-structural region),包含NS2B、NS3和NS4A基因,其基因轉譯出之相關蛋白酶功能對於病毒生命週期中是不可或缺的且重要的。總結來說,以C至E基因序列之親緣性演化分析結果顯示45株登革病毒株之核苷酸序列是高度保守的,具有作為登革病毒候選疫苗株的潛力。所有結果顯示登革病毒在宿主間和宿主內透過RNA序列變異持續適應及對抗宿主的免疫反應。
Dengue virus (DENV) belongs to the genus Flavivirus in the Flaviviridae family. Approximately 3.6 billion people are now at risk for dengue, and there are an estimated 390 million dengue infections worldwide every year. There were 22,777 reported DENV infections in Tainan, Taiwan in 2015. Two optimized standard operation protocol for dengue virus culture were established and analyzed in this study. Although the positive rates of the two protocols did not have a significant difference, protocol-I with a shorter incubation time is very suitable for use in clinical diagnosis. There were 129 DENV isolated from 628 sera in C6/36 cells up to now. Partial sequences of C, prM, and E genes from 45 DENV strains were obtained and aligned with representative sequences from GenBank. Phylogenetic analysis based on the sequences of C to E genes revealed that all strains from the 2015 Tainan epidemic were classified as DENV serotype 2 Cosmopolitan genotype, which was consistent with the phylogenetic analysis of E gene only. There were no positive and negative selection sites identified in these sequences. Compared with other genotypes, several variations were found. The major variation was C-A314G (K73R) and a reverse-genetics virus was established. In BHK-21 and C6/36 cells, the wildtype virus had a higher replication rate than C-A314G (K73R). Three sera were collected from one DENV infected patient at different time-points and sequenced by Next Generation Sequencing (NGS). The number of haplotypes decreased with time in the DENV-infected patient. On the fifth day post-infection, two new haplotypes emerged whereby leucine mutated to isoleucine and was identified in NS4A-115. In our quasispecies analysis of DENV, the variations were all located in the nonstructural region of the genome, namely NS2B, NS3, and NS4A which are important with respect to various enzymatic functions needed during the viral life cycle. In conclusion, genetic analysis of C to E gene showed that nucleotide sequences of 45 DENV strains were highly conserved with the potential for being a vaccine candidate. All results demonstrated that DENV continually adapts between inter-and intra-host.
1 Guzman, M. G. & Harris, E. Dengue. Lancet (London, England) 385, 453-465, doi:10.1016/s0140-6736(14)60572-9 (2015).
2 Lindenbach, B. D. & Rice, C. M. Molecular biology of flaviviruses. Advances in virus research 59, 23-61 (2003).
3 Mukhopadhyay, S., Kuhn, R. J. & Rossmann, M. G. A structural perspective of the flavivirus life cycle. Nature reviews. Microbiology 3, 13-22, doi:10.1038/nrmicro1067 (2005).
4 Kuno, G., Chang, G. J., Tsuchiya, K. R., Karabatsos, N. & Cropp, C. B. Phylogeny of the genus Flavivirus. Journal of virology 72, 73-83 (1998).
5 Wang, E. et al. Evolutionary Relationships of Endemic/Epidemic and Sylvatic Dengue Viruses. Journal of virology 74, 3227-3234, doi:10.1128/jvi.74.7.3227-3234.2000 (2000).
6 Alvarez, D. E. et al. Structural and functional analysis of dengue virus RNA. Novartis Foundation symposium 277, 120-132; discussion 132-125, 251-123 (2006).
7 Back, A. T. & Lundkvist, A. Dengue viruses - an overview. Infection ecology & epidemiology 3, doi:10.3402/iee.v3i0.19839 (2013).
8 Gamarnik, A. Frontiers in dengue virus research. (2010).
9 Padmanabhan, R. & Strongin, A. Frontiers in Dengue Virus Research. (2010).
10 Yu, L., Nomaguchi, M., Padmanabhan, R. & Markoff, L. Specific requirements for elements of the 5' and 3' terminal regions in flavivirus RNA synthesis and viral replication. Virology 374, 170-185, doi:10.1016/j.virol.2007.12.035 (2008).
11 Freire, J. M. et al. Peptides as models for the structure and function of viral capsid proteins: Insights on dengue virus capsid. Biopolymers 100, 325-336, doi:10.1002/bip.22266 (2013).
12 Faustino, A. F. et al. Understanding Dengue Virus Capsid Protein Interaction with Key Biological Targets. Sci Rep 5, 10592, doi:10.1038/srep10592 (2015).
13 Kuhn, R. J. et al. Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. Cell 108, 717-725 (2002).
14 Fu, J., Tan, B. H., Yap, E. H., Chan, Y. C. & Tan, Y. H. Full-length cDNA sequence of dengue type 1 virus (Singapore strain S275/90). Virology 188, 953-958 (1992).
15 Jones, C. T. et al. Flavivirus capsid is a dimeric alpha-helical protein. Journal of virology 77, 7143-7149, doi:10.1128/jvi.77.12.7143-7149.2003 (2003).
16 Balinsky, C. A. et al. Nucleolin interacts with the dengue virus capsid protein and plays a role in formation of infectious virus particles. Journal of virology 87, 13094-13106, doi:10.1128/jvi.00704-13 (2013).
17 Samsa, M. M., Mondotte, J. A., Caramelo, J. J. & Gamarnik, A. V. Uncoupling cis-Acting RNA elements from coding sequences revealed a requirement of the N-terminal region of dengue virus capsid protein in virus particle formation. Journal of virology 86, 1046-1058, doi:10.1128/jvi.05431-11 (2012).
18 Keelapang, P. et al. Alterations of pr-M cleavage and virus export in pr-M junction chimeric dengue viruses. Journal of virology 78, 2367-2381, doi:10.1128/jvi.78.5.2367-2381.2004 (2004).
19 Meng, F. et al. Unstructural biology of the Dengue virus proteins. The FEBS journal 282, 3368-3394, doi:10.1111/febs.13349 (2015).
20 Perera, R. & Kuhn, R. J. Structural proteomics of dengue virus. Current opinion in microbiology 11, 369-377, doi:10.1016/j.mib.2008.06.004 (2008).
21 Yu, I. M. et al. Structure of the immature dengue virus at low pH primes proteolytic maturation. Science (New York, N.Y.) 319, 1834-1837, doi:10.1126/science.1153264 (2008).
22 Zhang, W. et al. Visualization of membrane protein domains by cryo-electron microscopy of dengue virus. Nature structural biology 10, 907-912, doi:10.1038/nsb990 (2003).
23 Hsieh, S. C. et al. Highly conserved residues in the helical domain of dengue virus type 1 precursor membrane protein are involved in assembly, precursor membrane (prM) protein cleavage, and entry. The Journal of biological chemistry 289, 33149-33160, doi:10.1074/jbc.M114.610428 (2014).
24 Pitcher, T. J. et al. Functional analysis of dengue virus (DENV) type 2 envelope protein domain 3 type-specific and DENV complex-reactive critical epitope residues. The Journal of general virology 96, 288-293, doi:10.1099/vir.0.070813-0 (2015).
25 Modis, Y., Ogata, S., Clements, D. & Harrison, S. C. A ligand-binding pocket in the dengue virus envelope glycoprotein. Proceedings of the National Academy of Sciences of the United States of America 100, 6986-6991, doi:10.1073/pnas.0832193100 (2003).
26 Chavez, J. H., Silva, J. R., Amarilla, A. A. & Moraes Figueiredo, L. T. Domain III peptides from flavivirus envelope protein are useful antigens for serologic diagnosis and targets for immunization. Biologicals : journal of the International Association of Biological Standardization 38, 613-618, doi:10.1016/j.biologicals.2010.07.004 (2010).
27 Fahimi, H., Allahyari, H., Hassan, Z. M. & Sadeghizadeh, M. Dengue virus type-3 envelope protein domain III; expression and immunogenicity. Iranian journal of basic medical sciences 17, 836-843 (2014).
28 Marzinek, J. K. et al. Characterizing the Conformational Landscape of Flavivirus Fusion Peptides via Simulation and Experiment. Sci Rep 6, 19160, doi:10.1038/srep19160 (2016).
29 Langosch, D., Hofmann, M. & Ungermann, C. The role of transmembrane domains in membrane fusion. Cellular and molecular life sciences : CMLS 64, 850-864, doi:10.1007/s00018-007-6439-x (2007).
30 Fritz, R. et al. The unique transmembrane hairpin of flavivirus fusion protein E is essential for membrane fusion. Journal of virology 85, 4377-4385, doi:10.1128/jvi.02458-10 (2011).
31 Zhang, X. et al. Structures and Functions of the Envelope Glycoprotein in Flavivirus Infections. Viruses 9, doi:10.3390/v9110338 (2017).
32 Liu, J. et al. Flavivirus NS1 protein in infected host sera enhances viral acquisition by mosquitoes. Nature microbiology 1, 16087, doi:10.1038/nmicrobiol.2016.87 (2016).
33 Edeling, M. A., Diamond, M. S. & Fremont, D. H. Structural basis of Flavivirus NS1 assembly and antibody recognition. Proceedings of the National Academy of Sciences of the United States of America 111, 4285-4290, doi:10.1073/pnas.1322036111 (2014).
34 Muller, D. A. & Young, P. R. The flavivirus NS1 protein: molecular and structural biology, immunology, role in pathogenesis and application as a diagnostic biomarker. Antiviral research 98, 192-208, doi:10.1016/j.antiviral.2013.03.008 (2013).
35 Avirutnan, P. et al. Vascular leakage in severe dengue virus infections: a potential role for the nonstructural viral protein NS1 and complement. The Journal of infectious diseases 193, 1078-1088, doi:10.1086/500949 (2006).
36 Fan, J., Liu, Y. & Yuan, Z. Critical role of Dengue Virus NS1 protein in viral replication. Virologica Sinica 29, 162-169, doi:10.1007/s12250-014-3459-1 (2014).
37 Wu, R. H., Tsai, M. H., Chao, D. Y. & Yueh, A. Scanning mutagenesis studies reveal a potential intramolecular interaction within the C-terminal half of dengue virus NS2A involved in viral RNA replication and virus assembly and secretion. Journal of virology 89, 4281-4295, doi:10.1128/jvi.03011-14 (2015).
38 Chambers, T. J., McCourt, D. W. & Rice, C. M. Yellow fever virus proteins NS2A, NS2B, and NS4B: identification and partial N-terminal amino acid sequence analysis. Virology 169, 100-109 (1989).
39 Xie, X., Gayen, S., Kang, C., Yuan, Z. & Shi, P. Y. Membrane topology and function of dengue virus NS2A protein. Journal of virology 87, 4609-4622, doi:10.1128/jvi.02424-12 (2013).
40 Leung, J. Y. et al. Role of nonstructural protein NS2A in flavivirus assembly. Journal of virology 82, 4731-4741, doi:10.1128/jvi.00002-08 (2008).
41 Takamatsu, Y., Morita, K. & Hayasaka, D. A Single Amino Acid Substitution in the NS2A Protein of Japanese Encephalitis Virus Affects Virus Propagation In Vitro but Not In Vivo. Journal of virology 89, 6126-6130, doi:10.1128/jvi.00370-15 (2015).
42 Xie, X., Zou, J., Puttikhunt, C., Yuan, Z. & Shi, P. Y. Two distinct sets of NS2A molecules are responsible for dengue virus RNA synthesis and virion assembly. Journal of virology 89, 1298-1313, doi:10.1128/jvi.02882-14 (2015).
43 Kummerer, B. M. & Rice, C. M. Mutations in the yellow fever virus nonstructural protein NS2A selectively block production of infectious particles. Journal of virology 76, 4773-4784, doi:10.1128/jvi.76.10.4773-4784.2002 (2002).
44 Firth, A. E. & Atkins, J. F. A conserved predicted pseudoknot in the NS2A-encoding sequence of West Nile and Japanese encephalitis flaviviruses suggests NS1' may derive from ribosomal frameshifting. Virology journal 6, 14, doi:10.1186/1743-422x-6-14 (2009).
45 Li, X. D. et al. Transmembrane Domains of NS2B Contribute to both Viral RNA Replication and Particle Formation in Japanese Encephalitis Virus. Journal of virology 90, 5735-5749, doi:10.1128/jvi.00340-16 (2016).
46 Li, Y., Li, Q., Wong, Y. L., Liew, L. S. & Kang, C. Membrane topology of NS2B of dengue virus revealed by NMR spectroscopy. Biochimica et biophysica acta 1848, 2244-2252, doi:10.1016/j.bbamem.2015.06.010 (2015).
47 Matusan, A. E., Pryor, M. J., Davidson, A. D. & Wright, P. J. Mutagenesis of the Dengue virus type 2 NS3 protein within and outside helicase motifs: effects on enzyme activity and virus replication. Journal of virology 75, 9633-9643, doi:10.1128/jvi.75.20.9633-9643.2001 (2001).
48 Sampath, A. et al. Structure-based mutational analysis of the NS3 helicase from dengue virus. Journal of virology 80, 6686-6690, doi:10.1128/jvi.02215-05 (2006).
49 Li, H., Clum, S., You, S., Ebner, K. E. & Padmanabhan, R. The serine protease and RNA-stimulated nucleoside triphosphatase and RNA helicase functional domains of dengue virus type 2 NS3 converge within a region of 20 amino acids. Journal of virology 73, 3108-3116 (1999).
50 Querenet, M., Danjoy, M. L., Mollereau, B. & Davoust, N. Expression of dengue virus NS3 protein in Drosophila alters its susceptibility to infection. Fly 9, 1-6, doi:10.1080/19336934.2015.1072662 (2015).
51 Miller, S., Kastner, S., Krijnse-Locker, J., Buhler, S. & Bartenschlager, R. The non-structural protein 4A of dengue virus is an integral membrane protein inducing membrane alterations in a 2K-regulated manner. The Journal of biological chemistry 282, 8873-8882, doi:10.1074/jbc.M609919200 (2007).
52 McLean, J. E., Wudzinska, A., Datan, E., Quaglino, D. & Zakeri, Z. Flavivirus NS4A-induced autophagy protects cells against death and enhances virus replication. The Journal of biological chemistry 286, 22147-22159, doi:10.1074/jbc.M110.192500 (2011).
53 Lindenbach, B. D. & Rice, C. M. Genetic interaction of flavivirus nonstructural proteins NS1 and NS4A as a determinant of replicase function. Journal of virology 73, 4611-4621 (1999).
54 Domingo, E. Rapid evolution of viral RNA genomes. The Journal of nutrition 127, 958s-961s, doi:10.1093/jn/127.5.958S (1997).
55 Van Slyke, G. A. et al. Point mutations in the West Nile virus (Flaviviridae; Flavivirus) RNA-dependent RNA polymerase alter viral fitness in a host-dependent manner in vitro and in vivo. Virology 427, 18-24, doi:10.1016/j.virol.2012.01.036 (2012).
56 Yu, F., Hasebe, F., Inoue, S., Mathenge, E. G. & Morita, K. Identification and characterization of RNA-dependent RNA polymerase activity in recombinant Japanese encephalitis virus NS5 protein. Archives of virology 152, 1859-1869, doi:10.1007/s00705-007-1007-0 (2007).
57 Wang, Q. et al. Effect of the methyltransferase domain of Japanese encephalitis virus NS5 on the polymerase activity. Biochimica et biophysica acta 1819, 411-418, doi:10.1016/j.bbagrm.2012.01.003 (2012).
58 Zhou, Y. et al. Structure and function of flavivirus NS5 methyltransferase. Journal of virology 81, 3891-3903, doi:10.1128/jvi.02704-06 (2007).
59 Kroschewski, H. et al. Mutagenesis of the dengue virus type 2 NS5 methyltransferase domain. The Journal of biological chemistry 283, 19410-19421, doi:10.1074/jbc.M800613200 (2008).
60 SEARO., W. Comprehensive Guidelines for Prevention and Control of Dengue and Dengue Haemorrhagic Fever Revised and expanded 2011. (2011).
61 Kalayanarooj S, N. S. Guidelines for Dengue Hemorrhagic Fever Case Management. Bangkok: Bangkok Medical Publisher (2004).
62 Chang, C. J., Chen, C. S., Tien, C. J. & Lu, M. R. Epidemiological, clinical and climatic characteristics of dengue fever in Kaohsiung City, Taiwan with implication for prevention and control. PloS one 13, e0190637, doi:10.1371/journal.pone.0190637 (2018).
63 Hadinegoro, S. R. The revised WHO dengue case classification: does the system need to be modified? Paediatrics and international child health 32 Suppl 1, 33-38, doi:10.1179/2046904712z.00000000052 (2012).
64 Lardo, S., Soesatyo, M. H., Juffrie, J. & Umniyati, S. R. The Autoimmune Mechanism in Dengue Hemorrhagic Fever. Acta medica Indonesiana 50, 70-79 (2018).
65 Whitehorn, J. & Simmons, C. P. The pathogenesis of dengue. Vaccine 29, 7221-7228, doi:10.1016/j.vaccine.2011.07.022 (2011).
66 Kurane, I. & Takasaki, T. Dengue fever and dengue haemorrhagic fever: challenges of controlling an enemy still at large. Reviews in medical virology 11, 301-311 (2001).
67 Wei, K. & Li, Y. Global evolutionary history and spatio-temporal dynamics of dengue virus type 2. Scientific reports 7, 45505 (2017).
68 Hotta, S. Experimental studies on dengue: I. Isolation, identification and modification of the virus. The Journal of infectious diseases, 1-9 (1952).
69 Messina, J. P. et al. Global spread of dengue virus types: mapping the 70 year history. Trends in microbiology 22, 138-146, doi:10.1016/j.tim.2013.12.011 (2014).
70 Halstead, S. B. Dengue haemorrhagic fever—a public health problem and a field for research. Bulletin of the World Health Organization 58, 1 (1980).
71 Lewis, J. A. et al. Phylogenetic relationships of dengue-2 viruses. Virology 197, 216-224, doi:10.1006/viro.1993.1582 (1993).
72 da Costa Faria, N. R. et al. Twenty years of DENV-2 activity in Brazil: molecular characterization and phylogeny of strains isolated from 1990 to 2010. PLoS neglected tropical diseases 7, e2095 (2013).
73 Bhatt, S. et al. The global distribution and burden of dengue. Nature 496, 504 (2013).
74 Brady, O. J. et al. Refining the Global Spatial Limits of Dengue Virus Transmission by Evidence-Based Consensus. PLOS Neglected Tropical Diseases 6, e1760, doi:10.1371/journal.pntd.0001760 (2012).
75 King, C.-C. et al. Major epidemics of dengue in Taiwan in 1981–2000: related to intensive virus activities in Asia. Dengue bulletin 24, 1-10 (2000).
76 Hsieh, Y. H. Ascertaining the impact of catastrophic events on dengue outbreak: The 2014 gas explosions in Kaohsiung, Taiwan. PloS one 12, e0177422, doi:10.1371/journal.pone.0177422 (2017).
77 Hsieh, Y.-H. Dengue outbreaks in Taiwan, 1998-2017: Importation, serotype and temporal pattern. Asian Pacific Journal of Tropical Medicine 11, 460 (2018).
78 Wang, S.-F. et al. Consecutive large dengue outbreaks in Taiwan in 2014–2015. Emerging microbes & infections 5, e123 (2016).
79 Center for Disease Control, T. C. Taiwan National Infectious Disease Statistics System for Dengue Virus Surveillance., Available at: http://nidss.cdc.gov.tw/en/SingleDisease.aspx?dc=1&dt=2&disease=061 (2016).
80 Wan, S. W. et al. Autoimmunity in dengue pathogenesis. Journal of the Formosan Medical Association = Taiwan yi zhi 112, 3-11, doi:10.1016/j.jfma.2012.11.006 (2013).
81 Halstead, S. B. Pathogenesis of Dengue: Dawn of a New Era. F1000Research 4, doi:10.12688/f1000research.7024.1 (2015).
82 Martina, B. E., Koraka, P. & Osterhaus, A. D. Dengue virus pathogenesis: an integrated view. Clinical microbiology reviews 22, 564-581, doi:10.1128/cmr.00035-09 (2009).
83 Guzman, A. & Isturiz, R. E. Update on the global spread of dengue. International journal of antimicrobial agents 36 Suppl 1, S40-42, doi:10.1016/j.ijantimicag.2010.06.018 (2010).
84 Brown, M. G. et al. Dengue virus infection of mast cells triggers endothelial cell activation. Journal of virology 85, 1145-1150 (2011).
85 Anderson, R., Wang, S., Osiowy, C. & Issekutz, A. C. Activation of endothelial cells via antibody-enhanced dengue virus infection of peripheral blood monocytes. Journal of virology 71, 4226-4232 (1997).
86 Brown, M. G. et al. Dramatic caspase‐dependent apoptosis in antibody‐enhanced dengue virus infection of human mast cells. Journal of leukocyte biology 85, 71-80 (2009).
87 Chen, R. & Vasilakis, N. Dengue--quo tu et quo vadis? Viruses 3, 1562-1608, doi:10.3390/v3091562 (2011).
88 Monath, T. P. Dengue: the risk to developed and developing countries. Proceedings of the National Academy of Sciences 91, 2395-2400 (1994).
89 da Costa, C. F. et al. Transovarial transmission of DENV in Aedes aegypti in the Amazon basin: a local model of xenomonitoring. Parasites & vectors 10, 249, doi:10.1186/s13071-017-2194-5 (2017).
90 Guzman, M. G., Gubler, D. J., Izquierdo, A., Martinez, E. & Halstead, S. B. Dengue infection. Nature reviews. Disease primers 2, 16055, doi:10.1038/nrdp.2016.55 (2016).
91 Domingo, E. et al. in Quasispecies: Concept and Implications for Virology 51-82 (Springer, 2006).
92 Más, A., López-Galíndez, C., Cacho, I., Gómez, J. & Martínez, M. A. Unfinished stories on viral quasispecies and Darwinian views of evolution. Journal of molecular biology 397, 865-877 (2010).
93 Lauring, A. S. & Andino, R. Quasispecies theory and the behavior of RNA viruses. PLoS pathogens 6, e1001005, doi:10.1371/journal.ppat.1001005 (2010).
94 Vignuzzi, M., Stone, J. K., Arnold, J. J., Cameron, C. E. & Andino, R. Quasispecies diversity determines pathogenesis through cooperative interactions in a viral population. Nature 439, 344 (2006).
95 Sauder, C. J. et al. Changes in mumps virus neurovirulence phenotype associated with quasispecies heterogeneity. Virology 350, 48-57 (2006).
96 Wang, W. K., Lin, S. R., Lee, C. M., King, C. C. & Chang, S. C. Dengue type 3 virus in plasma is a population of closely related genomes: quasispecies. Journal of virology 76, 4662-4665, doi:10.1128/jvi.76.9.4662-4665.2002 (2002).
97 Vignuzzi, M., Stone, J. K., Arnold, J. J., Cameron, C. E. & Andino, R. Quasispecies diversity determines pathogenesis through cooperative interactions in a viral population. Nature 439, 344-348, doi:10.1038/nature04388 (2006).
98 Quail, M. A. et al. A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC genomics 13, 341, doi:10.1186/1471-2164-13-341 (2012).
99 Kamps, R. et al. Next-Generation Sequencing in Oncology: Genetic Diagnosis, Risk Prediction and Cancer Classification. International journal of molecular sciences 18, doi:10.3390/ijms18020308 (2017).
100 Barzon, L. et al. Next-generation sequencing technologies in diagnostic virology. Journal of clinical virology : the official publication of the Pan American Society for Clinical Virology 58, 346-350, doi:10.1016/j.jcv.2013.03.003 (2013).
101 Bahassi el, M. & Stambrook, P. J. Next-generation sequencing technologies: breaking the sound barrier of human genetics. Mutagenesis 29, 303-310, doi:10.1093/mutage/geu031 (2014).
102 Giallonardo, F. D. et al. Full-length haplotype reconstruction to infer the structure of heterogeneous virus populations. Nucleic acids research 42, e115, doi:10.1093/nar/gku537 (2014).
103 Röltgen, K. et al. Development of Dengue Virus Serotype–Specific NS1 Capture Assays for the Rapid and Highly Sensitive Identification of the Infecting Serotype in Human Sera. The Journal of Immunology 200, 3857-3866, doi:10.4049/jimmunol.1701790 (2018).
104 Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic acids research 22, 4673-4680 (1994).
105 Swofford, D. L. PAUP* version 4.0 b10. Sinauer, Sunderland, MA. (2002).
106 Tamura, K., Dudley, J., Nei, M. & Kumar, S. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular biology and evolution 24, 1596-1599, doi:10.1093/molbev/msm092 (2007).
107 Medina, F. et al. Dengue virus: isolation, propagation, quantification, and storage. Current protocols in microbiology Chapter 15, Unit 15D.12., doi:10.1002/9780471729259.mc15d02s27 (2012).
108 Gubler, D. J., Suharyono, W., Tan, R., Abidin, M. & Sie, A. Viraemia in patients with naturally acquired dengue infection. Bull World Health Organ 59, 623-630 (1981).
109 Zou, J. et al. Characterization of dengue virus NS4A and NS4B protein interaction. Journal of virology 89, 3455-3470, doi:10.1128/jvi.03453-14 (2015).
110 Bahassi el, M. & Stambrook, P. J. Next-generation sequencing technologies: breaking the sound barrier of human genetics. Mutagenesis 29, 303-310, doi:10.1093/mutage/geu031 (2014).
1 Guzman, M. G. & Harris, E. Dengue. Lancet (London, England) 385, 453-465, doi:10.1016/s0140-6736(14)60572-9 (2015).
2 Lindenbach, B. D. & Rice, C. M. Molecular biology of flaviviruses. Advances in virus research 59, 23-61 (2003).
3 Mukhopadhyay, S., Kuhn, R. J. & Rossmann, M. G. A structural perspective of the flavivirus life cycle. Nature reviews. Microbiology 3, 13-22, doi:10.1038/nrmicro1067 (2005).
4 Kuno, G., Chang, G. J., Tsuchiya, K. R., Karabatsos, N. & Cropp, C. B. Phylogeny of the genus Flavivirus. Journal of virology 72, 73-83 (1998).
5 Wang, E., Ni, H., Xu, R., Barrett, A. D. T., Watowich, S. J., Gubler, D. J. & Weaver, S. C. Evolutionary Relationships of Endemic/Epidemic and Sylvatic Dengue Viruses. Journal of virology 74, 3227-3234, doi:10.1128/jvi.74.7.3227-3234.2000 (2000).
6 Alvarez, D. E., Lodeiro, M. F., Filomatori, C. V., Fucito, S., Mondotte, J. A. & Gamarnik, A. V. Structural and functional analysis of dengue virus RNA. Novartis Foundation symposium 277, 120-132; discussion 132-125, 251-123 (2006).
7 Pang, X., Zhang, M. & Dayton, A. I. Development of Dengue virus type 2 replicons capable of prolonged expression in host cells. BMC microbiology 1, 18 (2001).
8 Back, A. T. & Lundkvist, A. Dengue viruses - an overview. Infection ecology & epidemiology 3, doi:10.3402/iee.v3i0.19839 (2013).
9 Gamarnik, A. Frontiers in dengue virus research. (2010).
10 Padmanabhan, R. & Strongin, A. Frontiers in Dengue Virus Research. (2010).
11 Yu, L., Nomaguchi, M., Padmanabhan, R. & Markoff, L. Specific requirements for elements of the 5' and 3' terminal regions in flavivirus RNA synthesis and viral replication. Virology 374, 170-185, doi:10.1016/j.virol.2007.12.035 (2008).
12 Freire, J. M., Veiga, A. S., de la Torre, B. G., Santos, N. C., Andreu, D., Da Poian, A. T. & Castanho, M. A. Peptides as models for the structure and function of viral capsid proteins: Insights on dengue virus capsid. Biopolymers 100, 325-336, doi:10.1002/bip.22266 (2013).
13 Faustino, A. F., Martins, I. C., Carvalho, F. A., Castanho, M. A., Maurer-Stroh, S. & Santos, N. C. Understanding Dengue Virus Capsid Protein Interaction with Key Biological Targets. Sci Rep 5, 10592, doi:10.1038/srep10592 (2015).
14 Kuhn, R. J., Zhang, W., Rossmann, M. G., Pletnev, S. V., Corver, J., Lenches, E., Jones, C. T., Mukhopadhyay, S., Chipman, P. R., Strauss, E. G., Baker, T. S. & Strauss, J. H. Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. Cell 108, 717-725 (2002).
15 Fu, J., Tan, B. H., Yap, E. H., Chan, Y. C. & Tan, Y. H. Full-length cDNA sequence of dengue type 1 virus (Singapore strain S275/90). Virology 188, 953-958 (1992).
16 Jones, C. T., Ma, L., Burgner, J. W., Groesch, T. D., Post, C. B. & Kuhn, R. J. Flavivirus capsid is a dimeric alpha-helical protein. Journal of virology 77, 7143-7149, doi:10.1128/jvi.77.12.7143-7149.2003 (2003).
17 Balinsky, C. A., Schmeisser, H., Ganesan, S., Singh, K., Pierson, T. C. & Zoon, K. C. Nucleolin interacts with the dengue virus capsid protein and plays a role in formation of infectious virus particles. Journal of virology 87, 13094-13106, doi:10.1128/jvi.00704-13 (2013).
18 Samsa, M. M., Mondotte, J. A., Caramelo, J. J. & Gamarnik, A. V. Uncoupling cis-Acting RNA elements from coding sequences revealed a requirement of the N-terminal region of dengue virus capsid protein in virus particle formation. Journal of virology 86, 1046-1058, doi:10.1128/jvi.05431-11 (2012).
19 Keelapang, P., Sriburi, R., Supasa, S., Panyadee, N., Songjaeng, A., Jairungsri, A., Puttikhunt, C., Kasinrerk, W., Malasit, P. & Sittisombut, N. Alterations of pr-M cleavage and virus export in pr-M junction chimeric dengue viruses. Journal of virology 78, 2367-2381, doi:10.1128/jvi.78.5.2367-2381.2004 (2004).
20 Meng, F., Badierah, R. A., Almehdar, H. A., Redwan, E. M., Kurgan, L. & Uversky, V. N. Unstructural biology of the Dengue virus proteins. The FEBS journal 282, 3368-3394, doi:10.1111/febs.13349 (2015).
21 Perera, R. & Kuhn, R. J. Structural proteomics of dengue virus. Current opinion in microbiology 11, 369-377, doi:10.1016/j.mib.2008.06.004 (2008).
22 Yu, I. M., Zhang, W., Holdaway, H. A., Li, L., Kostyuchenko, V. A., Chipman, P. R., Kuhn, R. J., Rossmann, M. G. & Chen, J. Structure of the immature dengue virus at low pH primes proteolytic maturation. Science (New York, N.Y.) 319, 1834-1837, doi:10.1126/science.1153264 (2008).
23 Zhang, W., Chipman, P. R., Corver, J., Johnson, P. R., Zhang, Y., Mukhopadhyay, S., Baker, T. S., Strauss, J. H., Rossmann, M. G. & Kuhn, R. J. Visualization of membrane protein domains by cryo-electron microscopy of dengue virus. Nature structural biology 10, 907-912, doi:10.1038/nsb990 (2003).
24 Hsieh, S. C., Wu, Y. C., Zou, G., Nerurkar, V. R., Shi, P. Y. & Wang, W. K. Highly conserved residues in the helical domain of dengue virus type 1 precursor membrane protein are involved in assembly, precursor membrane (prM) protein cleavage, and entry. The Journal of biological chemistry 289, 33149-33160, doi:10.1074/jbc.M114.610428 (2014).
25 Pitcher, T. J., Sarathy, V. V., Matsui, K., Gromowski, G. D., Huang, C. Y. & Barrett, A. D. Functional analysis of dengue virus (DENV) type 2 envelope protein domain 3 type-specific and DENV complex-reactive critical epitope residues. The Journal of general virology 96, 288-293, doi:10.1099/vir.0.070813-0 (2015).
26 Modis, Y., Ogata, S., Clements, D. & Harrison, S. C. A ligand-binding pocket in the dengue virus envelope glycoprotein. Proceedings of the National Academy of Sciences of the United States of America 100, 6986-6991, doi:10.1073/pnas.0832193100 (2003).
27 Chavez, J. H., Silva, J. R., Amarilla, A. A. & Moraes Figueiredo, L. T. Domain III peptides from flavivirus envelope protein are useful antigens for serologic diagnosis and targets for immunization. Biologicals : journal of the International Association of Biological Standardization 38, 613-618, doi:10.1016/j.biologicals.2010.07.004 (2010).
28 Fahimi, H., Allahyari, H., Hassan, Z. M. & Sadeghizadeh, M. Dengue virus type-3 envelope protein domain III; expression and immunogenicity. Iranian journal of basic medical sciences 17, 836-843 (2014).
29 Marzinek, J. K., Lakshminarayanan, R., Goh, E., Huber, R. G., Panzade, S., Verma, C. & Bond, P. J. Characterizing the Conformational Landscape of Flavivirus Fusion Peptides via Simulation and Experiment. Sci Rep 6, 19160, doi:10.1038/srep19160 (2016).
30 Langosch, D., Hofmann, M. & Ungermann, C. The role of transmembrane domains in membrane fusion. Cellular and molecular life sciences : CMLS 64, 850-864, doi:10.1007/s00018-007-6439-x (2007).
31 Fritz, R., Blazevic, J., Taucher, C., Pangerl, K., Heinz, F. X. & Stiasny, K. The unique transmembrane hairpin of flavivirus fusion protein E is essential for membrane fusion. Journal of virology 85, 4377-4385, doi:10.1128/jvi.02458-10 (2011).
32 Zhang, X., Jia, R., Shen, H., Wang, M., Yin, Z. & Cheng, A. Structures and Functions of the Envelope Glycoprotein in Flavivirus Infections. Viruses 9, doi:10.3390/v9110338 (2017).
33 Liu, J., Liu, Y., Nie, K., Du, S., Qiu, J., Pang, X., Wang, P. & Cheng, G. Flavivirus NS1 protein in infected host sera enhances viral acquisition by mosquitoes. Nature microbiology 1, 16087, doi:10.1038/nmicrobiol.2016.87 (2016).
34 Edeling, M. A., Diamond, M. S. & Fremont, D. H. Structural basis of Flavivirus NS1 assembly and antibody recognition. Proceedings of the National Academy of Sciences of the United States of America 111, 4285-4290, doi:10.1073/pnas.1322036111 (2014).
35 Muller, D. A. & Young, P. R. The flavivirus NS1 protein: molecular and structural biology, immunology, role in pathogenesis and application as a diagnostic biomarker. Antiviral research 98, 192-208, doi:10.1016/j.antiviral.2013.03.008 (2013).
36 Avirutnan, P., Punyadee, N., Noisakran, S., Komoltri, C., Thiemmeca, S., Auethavornanan, K., Jairungsri, A., Kanlaya, R., Tangthawornchaikul, N., Puttikhunt, C., Pattanakitsakul, S. N., Yenchitsomanus, P. T., Mongkolsapaya, J., Kasinrerk, W., Sittisombut, N., Husmann, M., Blettner, M., Vasanawathana, S., Bhakdi, S. & Malasit, P. Vascular leakage in severe dengue virus infections: a potential role for the nonstructural viral protein NS1 and complement. The Journal of infectious diseases 193, 1078-1088, doi:10.1086/500949 (2006).
37 Fan, J., Liu, Y. & Yuan, Z. Critical role of Dengue Virus NS1 protein in viral replication. Virologica Sinica 29, 162-169, doi:10.1007/s12250-014-3459-1 (2014).
38 Wu, R. H., Tsai, M. H., Chao, D. Y. & Yueh, A. Scanning mutagenesis studies reveal a potential intramolecular interaction within the C-terminal half of dengue virus NS2A involved in viral RNA replication and virus assembly and secretion. Journal of virology 89, 4281-4295, doi:10.1128/jvi.03011-14 (2015).
39 Chambers, T. J., McCourt, D. W. & Rice, C. M. Yellow fever virus proteins NS2A, NS2B, and NS4B: identification and partial N-terminal amino acid sequence analysis. Virology 169, 100-109 (1989).
40 Xie, X., Gayen, S., Kang, C., Yuan, Z. & Shi, P. Y. Membrane topology and function of dengue virus NS2A protein. Journal of virology 87, 4609-4622, doi:10.1128/jvi.02424-12 (2013).
41 Leung, J. Y., Pijlman, G. P., Kondratieva, N., Hyde, J., Mackenzie, J. M. & Khromykh, A. A. Role of nonstructural protein NS2A in flavivirus assembly. Journal of virology 82, 4731-4741, doi:10.1128/jvi.00002-08 (2008).
42 Takamatsu, Y., Morita, K. & Hayasaka, D. A Single Amino Acid Substitution in the NS2A Protein of Japanese Encephalitis Virus Affects Virus Propagation In Vitro but Not In Vivo. Journal of virology 89, 6126-6130, doi:10.1128/jvi.00370-15 (2015).
43 Xie, X., Zou, J., Puttikhunt, C., Yuan, Z. & Shi, P. Y. Two distinct sets of NS2A molecules are responsible for dengue virus RNA synthesis and virion assembly. Journal of virology 89, 1298-1313, doi:10.1128/jvi.02882-14 (2015).
44 Kummerer, B. M. & Rice, C. M. Mutations in the yellow fever virus nonstructural protein NS2A selectively block production of infectious particles. Journal of virology 76, 4773-4784, doi:10.1128/jvi.76.10.4773-4784.2002 (2002).
45 Firth, A. E. & Atkins, J. F. A conserved predicted pseudoknot in the NS2A-encoding sequence of West Nile and Japanese encephalitis flaviviruses suggests NS1' may derive from ribosomal frameshifting. Virology journal 6, 14, doi:10.1186/1743-422x-6-14 (2009).
46 Li, X. D., Deng, C. L., Ye, H. Q., Zhang, H. L., Zhang, Q. Y., Chen, D. D., Zhang, P. T., Shi, P. Y., Yuan, Z. M. & Zhang, B. Transmembrane Domains of NS2B Contribute to both Viral RNA Replication and Particle Formation in Japanese Encephalitis Virus. Journal of virology 90, 5735-5749, doi:10.1128/jvi.00340-16 (2016).
47 Li, Y., Li, Q., Wong, Y. L., Liew, L. S. & Kang, C. Membrane topology of NS2B of dengue virus revealed by NMR spectroscopy. Biochimica et biophysica acta 1848, 2244-2252, doi:10.1016/j.bbamem.2015.06.010 (2015).
48 Matusan, A. E., Pryor, M. J., Davidson, A. D. & Wright, P. J. Mutagenesis of the Dengue virus type 2 NS3 protein within and outside helicase motifs: effects on enzyme activity and virus replication. Journal of virology 75, 9633-9643, doi:10.1128/jvi.75.20.9633-9643.2001 (2001).
49 Sampath, A., Xu, T., Chao, A., Luo, D., Lescar, J. & Vasudevan, S. G. Structure-based mutational analysis of the NS3 helicase from dengue virus. Journal of virology 80, 6686-6690, doi:10.1128/jvi.02215-05 (2006).
50 Li, H., Clum, S., You, S., Ebner, K. E. & Padmanabhan, R. The serine protease and RNA-stimulated nucleoside triphosphatase and RNA helicase functional domains of dengue virus type 2 NS3 converge within a region of 20 amino acids. Journal of virology 73, 3108-3116 (1999).
51 Querenet, M., Danjoy, M. L., Mollereau, B. & Davoust, N. Expression of dengue virus NS3 protein in Drosophila alters its susceptibility to infection. Fly 9, 1-6, doi:10.1080/19336934.2015.1072662 (2015).
52 Miller, S., Kastner, S., Krijnse-Locker, J., Buhler, S. & Bartenschlager, R. The non-structural protein 4A of dengue virus is an integral membrane protein inducing membrane alterations in a 2K-regulated manner. The Journal of biological chemistry 282, 8873-8882, doi:10.1074/jbc.M609919200 (2007).
53 McLean, J. E., Wudzinska, A., Datan, E., Quaglino, D. & Zakeri, Z. Flavivirus NS4A-induced autophagy protects cells against death and enhances virus replication. The Journal of biological chemistry 286, 22147-22159, doi:10.1074/jbc.M110.192500 (2011).
54 Lindenbach, B. D. & Rice, C. M. Genetic interaction of flavivirus nonstructural proteins NS1 and NS4A as a determinant of replicase function. Journal of virology 73, 4611-4621 (1999).
55 Domingo, E. Rapid evolution of viral RNA genomes. The Journal of nutrition 127, 958s-961s, doi:10.1093/jn/127.5.958S (1997).
56 Van Slyke, G. A., Ciota, A. T., Willsey, G. G., Jaeger, J., Shi, P. Y. & Kramer, L. D. Point mutations in the West Nile virus (Flaviviridae; Flavivirus) RNA-dependent RNA polymerase alter viral fitness in a host-dependent manner in vitro and in vivo. Virology 427, 18-24, doi:10.1016/j.virol.2012.01.036 (2012).
57 Yu, F., Hasebe, F., Inoue, S., Mathenge, E. G. & Morita, K. Identification and characterization of RNA-dependent RNA polymerase activity in recombinant Japanese encephalitis virus NS5 protein. Archives of virology 152, 1859-1869, doi:10.1007/s00705-007-1007-0 (2007).
58 Wang, Q., Weng, L., Tian, X., Counor, D., Sun, J., Mao, Y., Deubel, V., Okada, H. & Toyoda, T. Effect of the methyltransferase domain of Japanese encephalitis virus NS5 on the polymerase activity. Biochimica et biophysica acta 1819, 411-418, doi:10.1016/j.bbagrm.2012.01.003 (2012).
59 Zhou, Y., Ray, D., Zhao, Y., Dong, H., Ren, S., Li, Z., Guo, Y., Bernard, K. A., Shi, P. Y. & Li, H. Structure and function of flavivirus NS5 methyltransferase. Journal of virology 81, 3891-3903, doi:10.1128/jvi.02704-06 (2007).
60 Kroschewski, H., Lim, S. P., Butcher, R. E., Yap, T. L., Lescar, J., Wright, P. J., Vasudevan, S. G. & Davidson, A. D. Mutagenesis of the dengue virus type 2 NS5 methyltransferase domain. The Journal of biological chemistry 283, 19410-19421, doi:10.1074/jbc.M800613200 (2008).
61 SEARO., W. Comprehensive Guidelines for Prevention and Control of Dengue and Dengue Haemorrhagic Fever Revised and expanded 2011. (2011).
62 Kalayanarooj S, N. S. Guidelines for Dengue Hemorrhagic Fever Case Management. Bangkok: Bangkok Medical Publisher (2004).
63 Chang, C. J., Chen, C. S., Tien, C. J. & Lu, M. R. Epidemiological, clinical and climatic characteristics of dengue fever in Kaohsiung City, Taiwan with implication for prevention and control. PloS one 13, e0190637, doi:10.1371/journal.pone.0190637 (2018).
64 Hadinegoro, S. R. The revised WHO dengue case classification: does the system need to be modified? Paediatrics and international child health 32 Suppl 1, 33-38, doi:10.1179/2046904712z.00000000052 (2012).
65 Lardo, S., Soesatyo, M. H., Juffrie, J. & Umniyati, S. R. The Autoimmune Mechanism in Dengue Hemorrhagic Fever. Acta medica Indonesiana 50, 70-79 (2018).
66 Whitehorn, J. & Simmons, C. P. The pathogenesis of dengue. Vaccine 29, 7221-7228, doi:10.1016/j.vaccine.2011.07.022 (2011).
67 Kurane, I. & Takasaki, T. Dengue fever and dengue haemorrhagic fever: challenges of controlling an enemy still at large. Reviews in medical virology 11, 301-311 (2001).
68 Wei, K. & Li, Y. Global evolutionary history and spatio-temporal dynamics of dengue virus type 2. Scientific reports 7, 45505 (2017).
69 Hotta, S. Experimental studies on dengue: I. Isolation, identification and modification of the virus. The Journal of infectious diseases, 1-9 (1952).
70 Messina, J. P., Brady, O. J., Scott, T. W., Zou, C., Pigott, D. M., Duda, K. A., Bhatt, S., Katzelnick, L., Howes, R. E., Battle, K. E., Simmons, C. P. & Hay, S. I. Global spread of dengue virus types: mapping the 70 year history. Trends in microbiology 22, 138-146, doi:10.1016/j.tim.2013.12.011 (2014).
71 Halstead, S. B. Dengue haemorrhagic fever—a public health problem and a field for research. Bulletin of the World Health Organization 58, 1 (1980).
72 Lewis, J. A., Chang, G. J., Lanciotti, R. S., Kinney, R. M., Mayer, L. W. & Trent, D. W. Phylogenetic relationships of dengue-2 viruses. Virology 197, 216-224, doi:10.1006/viro.1993.1582 (1993).
73 da Costa Faria, N. R., Nogueira, R. M. R., de Filippis, A. M. B., Simões, J. B. S., de Bruycker Nogueira, F., Lima, M. d. R. Q. & dos Santos, F. B. Twenty years of DENV-2 activity in Brazil: molecular characterization and phylogeny of strains isolated from 1990 to 2010. PLoS neglected tropical diseases 7, e2095 (2013).
74 Bhatt, S., Gething, P. W., Brady, O. J., Messina, J. P., Farlow, A. W., Moyes, C. L., Drake, J. M., Brownstein, J. S., Hoen, A. G. & Sankoh, O. The global distribution and burden of dengue. Nature 496, 504 (2013).
75 Brady, O. J., Gething, P. W., Bhatt, S., Messina, J. P., Brownstein, J. S., Hoen, A. G., Moyes, C. L., Farlow, A. W., Scott, T. W. & Hay, S. I. Refining the Global Spatial Limits of Dengue Virus Transmission by Evidence-Based Consensus. PLOS Neglected Tropical Diseases 6, e1760, doi:10.1371/journal.pntd.0001760 (2012).
76 King, C.-C., Wu, Y.-C., Chao, D.-Y., Lin, T.-H., Chow, L., Wang, H.-T., Ku, C.-C., Kao, C.-L., Chien, L.-J. & Chang, H.-J. Major epidemics of dengue in Taiwan in 1981–2000: related to intensive virus activities in Asia. Dengue bulletin 24, 1-10 (2000).
77 Hsieh, Y. H. Ascertaining the impact of catastrophic events on dengue outbreak: The 2014 gas explosions in Kaohsiung, Taiwan. PloS one 12, e0177422, doi:10.1371/journal.pone.0177422 (2017).
78 Hsieh, Y.-H. Dengue outbreaks in Taiwan, 1998-2017: Importation, serotype and temporal pattern. Asian Pacific Journal of Tropical Medicine 11, 460-466, doi:10.4103/1995-7645.240081 (2018).
79 Hsieh, Y.-H. Dengue outbreaks in Taiwan, 1998-2017: Importation, serotype and temporal pattern. Asian Pacific Journal of Tropical Medicine 11, 460 (2018).
80 Wang, S.-F., Chang, K., Loh, E.-W., Wang, W.-H., Tseng, S.-P., Lu, P.-L., Chen, Y.-H. & Chen, Y.-M. A. Consecutive large dengue outbreaks in Taiwan in 2014–2015. Emerging microbes & infections 5, e123 (2016).
81 Center for Disease Control, T. C. Taiwan National Infectious Disease Statistics System for Dengue Virus Surveillance., Available at: http ://nidss.cdc.gov.tw/en/SingleDisease.aspx?dc=1&dt=2&disease=061 (2016).
82 Chen, C., Kuo, H. & Liu, D. Dengue fatal cases in Taiwan: a preliminary study for 2015 outbreak. Taiwan Epidemiology Bulletin 31, 605-607 (2015).
83 Tsai, H. P., Tsai, Y. Y., Lin, I. T., Kuo, P. H., Chang, K. C., Chen, J. C., Ko, W. C. & Wang, J. R. Validation and Application of a Commercial Quantitative Real-Time Reverse Transcriptase-PCR Assay in Investigation of a Large Dengue Virus Outbreak in Southern Taiwan. PLoS Negl Trop Dis 10, e0005036, doi:10.1371/journal.pntd.0005036 (2016).
84 Chang, K., Huang, C. H., Lee, I. K., Lu, P. L., Lin, C. Y., Chen, T. C., Lai, P. C., Hsieh, H. C., Yu, H. L., Hung, C. H., Wu, M. C., Chin, Y. Y., Huang, C. C., Wu, D. C. & Chen, Y. H. Differences in Mortality and Clinical Manifestations of Dengue Hemorrhagic Fever in Taiwan in Different Years: A Comparison for Cases in 2014 and 2015 Epidemics. The American journal of tropical medicine and hygiene 97, 361-368, doi:10.4269/ajtmh.16-1018 (2017).
85 Wang, S. F., Chang, K., Loh, E. W., Wang, W. H., Tseng, S. P., Lu, P. L., Chen, Y. H. & Chen, Y. A. Consecutive large dengue outbreaks in Taiwan in 2014-2015. Emerging microbes & infections 5, e123, doi:10.1038/emi.2016.124 (2016).
86 Chuang, T. W., Chaves, L. F. & Chen, P. J. Effects of local and regional climatic fluctuations on dengue outbreaks in southern Taiwan. PloS one 12, e0178698, doi:10.1371/journal.pone.0178698 (2017).
87 Wan, S. W., Lin, C. F., Yeh, T. M., Liu, C. C., Liu, H. S., Wang, S., Ling, P., Anderson, R., Lei, H. Y. & Lin, Y. S. Autoimmunity in dengue pathogenesis. Journal of the Formosan Medical Association = Taiwan yi zhi 112, 3-11, doi:10.1016/j.jfma.2012.11.006 (2013).
88 Halstead, S. B. Pathogenesis of Dengue: Dawn of a New Era. F1000Research 4, doi:10.12688/f1000research.7024.1 (2015).
89 Martina, B. E., Koraka, P. & Osterhaus, A. D. Dengue virus pathogenesis: an integrated view. Clinical microbiology reviews 22, 564-581, doi:10.1128/cmr.00035-09 (2009).
90 Guzman, A. & Isturiz, R. E. Update on the global spread of dengue. International journal of antimicrobial agents 36 Suppl 1, S40-42, doi:10.1016/j.ijantimicag.2010.06.018 (2010).
91 Brown, M. G., Hermann, L. L., Issekutz, A. C., Marshall, J. S., Rowter, D., Al-Afif, A. & Anderson, R. Dengue virus infection of mast cells triggers endothelial cell activation. Journal of virology 85, 1145-1150 (2011).
92 Anderson, R., Wang, S., Osiowy, C. & Issekutz, A. C. Activation of endothelial cells via antibody-enhanced dengue virus infection of peripheral blood monocytes. Journal of virology 71, 4226-4232 (1997).
93 Brown, M. G., Huang, Y. Y., Marshall, J. S., King, C. A., Hoskin, D. W. & Anderson, R. Dramatic caspase‐dependent apoptosis in antibody‐enhanced dengue virus infection of human mast cells. Journal of leukocyte biology 85, 71-80 (2009).
94 Chen, R. & Vasilakis, N. Dengue--quo tu et quo vadis? Viruses 3, 1562-1608, doi:10.3390/v3091562 (2011).
95 Monath, T. P. Dengue: the risk to developed and developing countries. Proceedings of the National Academy of Sciences 91, 2395-2400 (1994).
96 da Costa, C. F., Dos Passos, R. A., Lima, J. B. P., Roque, R. A., de Souza Sampaio, V., Campolina, T. B., Secundino, N. F. C. & Pimenta, P. F. P. Transovarial transmission of DENV in Aedes aegypti in the Amazon basin: a local model of xenomonitoring. Parasites & vectors 10, 249, doi:10.1186/s13071-017-2194-5 (2017).
97 Guzman, M. G., Gubler, D. J., Izquierdo, A., Martinez, E. & Halstead, S. B. Dengue infection. Nature reviews. Disease primers 2, 16055, doi:10.1038/nrdp.2016.55 (2016).
98 Medina, F., Medina, J. F., Colon, C., Vergne, E., Santiago, G. A. & Munoz-Jordan, J. L. Dengue virus: isolation, propagation, quantification, and storage. Current protocols in microbiology Chapter 15, Unit 15D.12., doi:10.1002/9780471729259.mc15d02s27 (2012).
99 Taiwan-CDC. Manual of standard operation procedure of communicable disease. 91 (2019).
100 Domingo, E., Martin, V., Perales, C., Grande-Perez, A., Garcia-Arriaza, J. & Arias, A. in Quasispecies: Concept and Implications for Virology 51-82 (Springer, 2006).
101 Más, A., López-Galíndez, C., Cacho, I., Gómez, J. & Martínez, M. A. Unfinished stories on viral quasispecies and Darwinian views of evolution. Journal of molecular biology 397, 865-877 (2010).
102 Lauring, A. S. & Andino, R. Quasispecies theory and the behavior of RNA viruses. PLoS pathogens 6, e1001005, doi:10.1371/journal.ppat.1001005 (2010).
103 Vignuzzi, M., Stone, J. K., Arnold, J. J., Cameron, C. E. & Andino, R. Quasispecies diversity determines pathogenesis through cooperative interactions in a viral population. Nature 439, 344 (2006).
104 Sauder, C. J., Vandenburgh, K. M., Iskow, R. C., Malik, T., Carbone, K. M. & Rubin, S. A. Changes in mumps virus neurovirulence phenotype associated with quasispecies heterogeneity. Virology 350, 48-57 (2006).
105 Wang, W. K., Lin, S. R., Lee, C. M., King, C. C. & Chang, S. C. Dengue type 3 virus in plasma is a population of closely related genomes: quasispecies. Journal of virology 76, 4662-4665, doi:10.1128/jvi.76.9.4662-4665.2002 (2002).
106 Vignuzzi, M., Stone, J. K., Arnold, J. J., Cameron, C. E. & Andino, R. Quasispecies diversity determines pathogenesis through cooperative interactions in a viral population. Nature 439, 344-348, doi:10.1038/nature04388 (2006).
107 Quail, M. A., Smith, M., Coupland, P., Otto, T. D., Harris, S. R., Connor, T. R., Bertoni, A., Swerdlow, H. P. & Gu, Y. A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC genomics 13, 341, doi:10.1186/1471-2164-13-341 (2012).
108 Kamps, R., Brandão, R. D., Bosch, B. J., Paulussen, A. D., Xanthoulea, S., Blok, M. J. & Romano, A. Next-Generation Sequencing in Oncology: Genetic Diagnosis, Risk Prediction and Cancer Classification. International journal of molecular sciences 18, doi:10.3390/ijms18020308 (2017).
109 Barzon, L., Lavezzo, E., Costanzi, G., Franchin, E., Toppo, S. & Palu, G. Next-generation sequencing technologies in diagnostic virology. Journal of clinical virology : the official publication of the Pan American Society for Clinical Virology 58, 346-350, doi:10.1016/j.jcv.2013.03.003 (2013).
110 Bahassi el, M. & Stambrook, P. J. Next-generation sequencing technologies: breaking the sound barrier of human genetics. Mutagenesis 29, 303-310, doi:10.1093/mutage/geu031 (2014).
111 Giallonardo, F. D., Töpfer, A., Rey, M., Prabhakaran, S., Duport, Y., Leemann, C., Schmutz, S., Campbell, N. K., Joos, B., Lecca, M. R., Patrignani, A., Däumer, M., Beisel, C., Rusert, P., Trkola, A., Günthard, H. F., Roth, V., Beerenwinkel, N. & Metzner, K. J. Full-length haplotype reconstruction to infer the structure of heterogeneous virus populations. Nucleic acids research 42, e115, doi:10.1093/nar/gku537 (2014).
112 Röltgen, K., Rose, N., Ruggieri, A., Warryn, L., Scherr, N., Pinho-Nascimento, C. A., Tamborrini, M., Jaenisch, T. & Pluschke, G. Development of Dengue Virus Serotype–Specific NS1 Capture Assays for the Rapid and Highly Sensitive Identification of the Infecting Serotype in Human Sera. The Journal of Immunology 200, 3857-3866, doi:10.4049/jimmunol.1701790 (2018).
113 Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic acids research 22, 4673-4680 (1994).
114 Swofford, D. L. PAUP* version 4.0 b10. Sinauer, Sunderland, MA. (2002).
115 Tamura, K., Dudley, J., Nei, M. & Kumar, S. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular biology and evolution 24, 1596-1599, doi:10.1093/molbev/msm092 (2007).
116 Gubler, D. J., Suharyono, W., Tan, R., Abidin, M. & Sie, A. Viraemia in patients with naturally acquired dengue infection. Bull World Health Organ 59, 623-630 (1981).
117 Zou, J., Xie, X., Wang, Q. Y., Dong, H., Lee, M. Y., Kang, C., Yuan, Z. & Shi, P. Y. Characterization of dengue virus NS4A and NS4B protein interaction. Journal of virology 89, 3455-3470, doi:10.1128/jvi.03453-14 (2015).
118 Tian, J. N., Wu, R. H., Chen, S. L., Chen, C. T. & Yueh, A. Mutagenesis of the dengue virus NS4A protein reveals a novel cytosolic N-terminal domain responsible for virus-induced cytopathic effects and intramolecular interactions within the N-terminus of NS4A. The Journal of general virology 100, 457-470, doi:10.1099/jgv.0.001227 (2019).
119 Ali, A. & Ali, I. The Complete Genome Phylogeny of Geographically Distinct Dengue Virus Serotype 2 Isolates (1944-2013) Supports Further Groupings within the Cosmopolitan Genotype. PloS one 10, e0138900, doi:10.1371/journal.pone.0138900 (2015).