| 研究生: |
黃士容 Huang, Shih-Rong |
|---|---|
| 論文名稱: |
熱電發電系統之研究:最佳化發電及振盪邊界條件之影響 Investigation of a Thermoelectric Generation System: Optimal Power Output and the Effect of Oscillating Boundary Condition |
| 指導教授: |
陳維新
Chen, Wei-Hsin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 92 |
| 中文關鍵詞: | 熱電發電器 、輸出功率及效率 、有限元素法 、熱沉 、兩階段優化 、振盪邊界 |
| 外文關鍵詞: | Thermoelectric generators, Output power and efficiency, Finite element scheme, Taguchi method, Heat sink, Two-stage optimization, Oscillating boundary condition, Period, Amplitude |
| 相關次數: | 點閱:100 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
熱電發電器是一種將廢熱轉換成電能之設備,其具有很大之前景性,熱電系統具有相對較低之能源轉換效率,為解決此問題,有研究者投入尋找更佳之熱電材料;另一方面,有學者為推廣綠色能源,使用廢熱回收作為熱電系統之熱源。本研究針對熱電發電系統,分為兩個部分:第一部分為使用田口方法優化熱電系統及第二部分為初步探討振盪邊界條件對熱電發電器的影響之研究。
第一部分的研究中,首先,為提高熱電發電系統之效率,使用田口方法對六個因子進行有限元素法數值模擬分析。六個因子包含熱沉的長度和寬度、鰭片的高度和厚度、熱側表面的溫度以及外部負載電阻,考慮五個水準之內範圍,將條件排列成L25 (65) 直交表。結果顯示,對於熱電發電系統輸出功率及效率,最重要之影響因子為熱側表面溫度,而熱沉寬度對其影響則是微乎其微,熱沉通過分析方法將其近似於有效熱對流係數,並使用田口方法L9 (43) 直交表進行模擬分析。結果顯示,熱沉的長度對有效熱對流係數之影響最大。使用兩階段優化熱電發電系統之性能,利用田口方法達到第一級優化,第二級優化功率-電流曲線,熱電發電系統之輸出功率可進一步提高6%。
第二部分的研究中,藉由振盪邊界週期性對熱電發電器之影響進行初步探討,分別在熱側表面及冷側表面溫度使用正弦波型週期性溫度邊界條件,針對振盪週期及振盪振幅兩種因子模擬分析,熱側表面或冷側表面為正弦波型溫度且另一側表面溫度為固定溫度,與兩側表面為固定溫度進行比較。結果顯示,振盪週期對熱電發電器之性能沒有影響,振盪振幅越大導致性能越好,熱電發電器兩側表面溫度差會直接影響熱電性能,改變熱側表面溫度為振盪邊界相較改變冷側表面溫度影響更顯著,使用振盪邊界之熱電發電器輸出功率最高可提高18%(振盪週期及振幅分別為30min及75K)。
SUMMARY
The thermoelectric generator (TEG) is a promising device to convert waste heat into electricity. This study is divided into two parts to numerically simulate the performance of a TEG system. In the first part, a TEG system in which a TEG module and heat sinks are considered. The heat transfer rate of the heat sinks is approximated by an analytical method. To maximize the efficiency of the system, the Taguchi method is employed. Six factors, including the length and width of heat sink, the height and thickness of fins, hot side temperature, and external load resistance, along with five levels are taken into account. The orthogonal array employed in the Taguchi method is able to significantly reduce the time for seeking the optimum operation. The analysis suggests that the hot side temperature is the most important factor in determining the output power and efficiency of the TEG system, whereas the heat sink width almost plays no role on them. The influences of the four geometric parameters on the heat transfer rate of heat sinks are also evaluated by the Taguchi method. The results indicate that the heat sink length has the largest effect on the heat transfer rate. Two-stage optimization for the performance of the TEG system is developed. The first-stage optimum operation is obtained from the Taguchi approach, and the second-stage optimization is performed from the power-current curve. After undergoing the second-stage optimization, the output power of the system in the first stage can be further improved by around 6%. In the second part, the effect of oscillating boundary conditions on the performance of a TEG system is analyzed. The temperature of hot side surface or cold side surface is approximated by sinusoidal oscillating boundary conditions. Three important factors, including oscillation period, oscillation amplitude, and external load resistance are taken into account. The results indicate that the period of oscillation has no effect on the TEG performance, but the amplitude does. Temperature difference between both the hot side and cold side surfaces will affect the performance of the TEG. The oscillating boundary conditions imposed on the hot side surface are better than on the cold side surface. Output power of thermoelectric generator can be increased by 18% using the oscillation boundary conditions.
Amaral C, Brandão C, Sempels VE, Lesage FJ. 2014. Net thermoelectric generator power output using inner channel geometries with alternating flow impeding panels. Applied Energy, Vol. 65, pp. 94-101.
Attia PM, Lewis MR, Bomberger CC, Prasad AK, Zide JMO. 2013. Experimental studies of thermoelectric power generation in dynamic temperature environments. Energy, Vol. 60, pp. 453-456.
Baloni BD, Pathak Y, Channiwala SA. 2015. Centrifugal blower volute optimization based on Taguchi method. Computers & Fluids, Vol. 112, pp. 72-78.
Barma M-C. Riaz M, Saidur R, Long BD. 2015. Estimation of thermoelectric power generation by recovering waste heat from Biomass fired thermal oil heater. Energy Conversion and Management, Vol. 98, pp. 303-313.
Bass JC, Allen DT. 1999. Milliwatt radioisotope power supply for space applications. IEEE 18th International Conference on Therrnoelectrics, pp. 521-524.
Bello-Ochende T, Liebenberg L, Meyer JP. 2007. Constructal cooling channels for micro-channel heat sinks. International Journal of Heat Mass Transfer, Vol. 50, pp. 4141-4150.
Bomberger CC, Attia PM, Prasad AK, Zide JMO. 2013. Modeling passive power generation in a temporally-varying temperature environment via thermoelectrics. Applied Thermal Engineering, Vol. 56, pp. 152-158.
Canel T, Kaya AU, Celik B. 2012. Parameter optimization of nanosecond laser for microdrilling on PVC by Taguchi method. Optics & Laser Technology, Vol. 44, pp. 23472-2353.
Champier D, Bedecarrats JP, Rivaletto M, Strub F. 2010. Thermoelectric power generation from biomass cook stoves. Energy, Vol. 35, pp. 935-942.
Champier D, Bédécarrats JP, Kousksou T, Rivaletto M, Strub F, Pignolet P. 2011. Study of a TE (thermoelectric) generator incorporated in a multifunction wood stove. Energy, Vol. 36, pp. 1518-1526.
Chen CJ, Hung CI. 2013. Optimization of co-gasification process in an entrained-flow gasifier using the taguchi method. Journal of Thermal Science and Technology, Vol. 8, pp. 190-208
Chen GL, Chen GB, Li YH, Wu WT. 2014. A study of thermal pyrolysis for castor meal using the Taguchi method. Energy, Vol. 71, pp. 62-70.
Chen M, Rosendahl LA, Condra T. 2011. A three-dimensional numerical model of thermoelectric generators in fluid power systems. International Journal of Heat and Mass Transfer, Vol. 54, pp. 345-355.
Chen WH, Chen CJ, Hung CI. 2013. Taguchi approach for co-gasification optimization of torrefied biomass and coal. Bioresource Technology, Vol. 144, pp. 615-622.
Chen WH, Liao CY, Hung CI, Huang WL. 2012. Experimental study on thermoelectric modules for power generation at various operating conditions. Energy, Vol. 45, pp. 874-881.
Chen WH, Liao CY, Hung CI. 2012. A numerical study on the performance of miniature thermoelectric cooler affected by Thomson Effect. Apply Energy, Vol. 89, pp. 464-473.
Chen WH, Liao CY, Wang CC, Hung CI. 2015. Evaluation of power generation from thermoelectric cooler at normal and low-temperature cooling conditions. Energy for Sustainable Development, Vol. 25, pp. 8-16.
Chen WH, Wang CC, Hung CI, Yang CC, Juang RC. 2014. Modeling and simulation for the design of thermal-concentrated solar thermoelectric generator. Energy, Vol. 64, pp. 287-297.
Copeland D. 2000. Optimization of parallel plate heatsinks for forced convection. Proc of the 16th IEEE Semi-Therm Symposium, pp. 266-72.
Copeland DW. 2003. Fundamental performance limits of heat sinks. Journal of Electron Packag, Vol. 125, pp. 221-225.
Duan Z, Muzychka YS. 2006. Experimental investigation of heat transfer in impingement air cooled plate fin heat sinks. Journal of Electronic Package, Vol. 128, pp. 412-418.
Favarel C, Bédécarrats JP, Kousksou T, Champier D. 2014. Numerical optimization of the occupancy rate of thermoelectric generators to produce the highest electrical power. Energy, Vol. 65, pp. 104-116.
Gao X, Andreasen SJ, Chen M, Kær SK. 2012. Numerical model of a thermoelectric generator with compact plate-fin heat exchanger for high temperature PEM fuel cell exhaust heat recovery. International Journal of Hydrogen Energy, Vol. 37, pp. 8490-8498.
Glosch H, Ashauer M, Pfeiffer U, Lang W. 1999. A thermoelectric converter for energy supply. Sensors and Actuators A: Physical, Vol. 74, pp. 246-250.
Gou X, Xiao H, Yang S. 2010. Modeling, experimental study and optimization on low-temperature waste heat thermoelectric generator system. Applied Energy, Vol. 87, pp. 3131-3136.
He W, Zhang G, Zhang X, Ji J, Li G, Zhao X. 2015. Recent development and application of thermoelectric generator and cooler. Applied Energy, Vol. 143, pp. 1-25.
Heremans JP, Jovovic P, Toberer ES, Saramat A, Kurosaki K, Charoenphakdee A, Yamanaka S, Snyde G-J. 2008. Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States. Science, Vol. 321, pp. 554-557.
Hsiao YY, Chang WC, Chen SL. 2010. A mathematic model of thermoelectric module with applications on waste heat recovery from automobile engine. Energy, Vol. 35, pp. 1447-1454.
Hsu CT, Huang GY, Chu HS, Yu B, Yao DJ. 2011. Experiments and simulations on low-temperature waste heat harvesting system by thermoelectric power generators. Applied Energy, Vol. 88, pp. 1291-1297.
Huang YX, Wang XD, Cheng CH, Lin DT. 2013. Geometry optimization of thermoelectric coolers using simplified conjugate-gradient method. Energy, Vol. 59, pp. 389-397.
Incropera FP, Dewitt DP, Bergman TL, Lavine AS. 2007. Fundamentals of heat and mass transfer. 6th ed. Hoboken: John Wiley & Sons.
Jia X, Gao Y. 2015. Optimal design of a novel thermoelectric generator with linear-shaped structure under different operating temperature conditions. Applied Thermal Engineering, Vol. 78, pp. 533-542.
Khattab NM, Shenawy ETE. 2006. Optimal operation of thermoelectric cooler driven by solar thermoelectric generator. Energy Conversion and Management, Vol. 47, pp. 407-426.
Kumar S, Heister SD, Xu X, Salvador JR, Meisner GP. 2013. Thermoelectric generators for automotive waste heat recovery systems part I: numerical modeling and baseline model analysis. Journal of Electronic Materials, Vol. 42, pp. 665-674.
Kumar S, Heister SD, Xu X, Salvador JR, Meisner GP. 2013. Thermoelectric generators for automotive waste heat recovery systems part ii: parametric evaluation and topological studies. Journal of Electronic Materials, Vol. 42, pp. 944-955.
Lesage FJ, Pagé-Potvin N. 2013. Experimental analysis of peak power output of a thermoelectric liquid-to-liquid generator under an increasing electrical load resistance. Energy Conversion and Management, Vol. 66, pp. 98-105.
Liang X, Sun X, Tian H, Shu G, Wang Y, Wang X. 2014. Comparison and parameter optimization of a two-stage thermoelectric generator using high temperature exhaust of internal combustion engine. Applied Energy, Vol. 130, pp. 190-199.
MacLeay I, Harris K, Annut A and chapter authors. 2014. Digest of united kingdom energy statistics 2014. Department of Energy and Climate Chenge.
Meng F, Chen L, Sun F, Yang B. 2014. Thermoelectric power generation driven by blast furnace slag flushing water. Energy, Vol. 66, pp. 965-972.
Meng JH, Zhang XX, Wang XD. 2014. Dynamic response characteristics of thermoelectric generator predicted by a three-dimensional heat-electricity coupled model. Journal of Power Sources, Vol. 245, pp. 262-269.
Meng JH, Zhang XX, Wang XD. 2014. Multi-objective and multi-parameter optimization of a thermoelectric generator module. Energy, Vol. 71, pp. 367-376.
Mereu S, Sciubba E, Bejan A. 1993. The optimal cooling of a stack of heat generating boards with fixed pressure drop, flowrate or pumping power. International Journal of Heat Mass Transfer, Vol. 36, pp. 3677-3686.
Mozdgir A, Mahdavi I, Badeleh IS, Solimanpur M. 2013. Using the Taguchi method to optimize the differential evolution algorithm parameters for minimizing the workload smoothness index in simple assembly line balancing., Mathematical and Computer Modelling, Vol. 57, pp. 137-151.
Montecucco A, Buckle JR, Knox AR. 2012. Solution to the 1-D unsteady heat conduction equation with internal Joule heat generation for thermoelectric devices. Applied Thermal Engineering, Vol. 35, pp. 177-184.
Montecucco A, Knox AR. 2014. Accurate simulation of thermoelectric power generating systems. Applied Energy, Vol. 118, pp. 166-172.
Niu Z, Diao H, Yu S, Jiao K, Du Q, Shu G. 2014. Investigation and design optimization of exhaust-based thermoelectric generator system for internal combustion engine. Energy Conversion and Management, Vol. 85, pp. 85-101.
Orr B, Singh B, Tan L, Akbarzadeh A. 2014. Electricity generation from an exhaust heat recovery system utilising thermoelectric cells and heat pipes. Applied Thermal Engineering, Vol. 73, pp. 588-597.
Pollock DD. 1985. Thermoelectricity: Theory, Thermometry, Tool. ASTM special technical publication, Vol. 852, pp. 1-295.
Qiu K, Hayden ACS. 2008. Development of a thermoelectric self-powered residential heating system. Journal of Power Sources, Vol. 180, pp. 884-889.
Rao RV, Patel V. 2013. Multi-objective optimization of two stage thermoelectric cooler using a modified teaching–learning-based optimization algorithm. Engineering Applications of Artificial Intelligence, Vol. 26, pp. 430-444.
Riffat SB, Ma X. 2003. Thermoelectrics: a review of present and potential applications. Applied Thermal Engineering, Vol. 8, pp. 913-935.
Sharp J, Bierschenk J, Lyon HB. 2006. Overview of solid-state thermoelectric refrigerators and possible applications to on-chip thermal management. IEEE, Vol.94, pp. 1602-1612.
Silvester PP, Ferrari RL. 1996. Finite elements for electrical engineers. 3rd ed. New York: Cambridge University Press.
Simons RE, Ellsworth MJ, Chu RC. 2005. An assessment of module cooling enhancement with thermoelectric coolers. Journal of Heat Transfer ASME, Vol. 127, pp. 76-84.
Stevens RJ, Weinstein SJ, Koppula KS. 2014. Theoretical limits of thermoelectric power generation from exhaust gases. Applied Energy, Vol. 133, pp. 80-88.
Tanyildizi H, Şahin M. 2015. Application of Taguchi method for optimization of concrete strengthened with polymer after high temperature. Construction and Building Materials, Vol. 79, pp. 97-103.
U.S. Department of Energy. 2004. Energy loss reduction and recovery in industrial energy systems.
Wang CC, Hung CI, Chen WH. 2012. Design of heat sink for improving the performance of thermoelectric generator using a two-stage optimization. Energy, Vol. 39, pp. 236-245.
Wang XD, Huang YX, Cheng CH, Lin DTW, Kang CH. 2012. A three-dimensional numerical modeling of thermoelectric device with consideration of coupling of temperature field and electric potential field. Energy, Vol. 47, pp. 488-497.
Wu HW, Wu ZY. 2012. Combustion characteristics and optimal factors determination with Taguchi method for diesel engines port-injecting hydrogen. Energy, Vol. 47, pp. 411-420.
Xiong B, Chen L, Meng F, Sun F. 2014. Modeling and performance analysis of a two-stage thermoelectric energy harvesting system from blast furnace slag water waste heat. Energy, Vol. 77, pp. 562-569.
Yan Y and Malen JA. 2013. Periodic heating amplifies the efficiency of thermoelectric energy conversion. Energy & Environmental Science, Vol. 6, pp. 1267-1273.
Yan D, Dawson FP, Pugh M, El-Deib AA. 2014. Time-Dependent Finite-Volume Model of Thermoelectric Devices. IEEE, Vol. 50, pp. 600-608.
Yazawa K, Hao M, Wu B, Silaen AK, Zhou CQ, Fisher T-S, Shakouri A. 2014. Thermoelectric topping cycles for power plants to eliminate cooling water consumption. Energy Conversion and Management, Vol. 84, pp. 244-252.
Yu S, Du Q, Diao H, Shu G, Jiao K. 2015. Start-up modes of thermoelectric generator based on vehicle exhaust waste heat recovery. Applied Energy, Vol.138, pp. 276-290.
Yu S, Du Q, Diao H, Shu G, Jiao K. 2015. Effect of vehicle driving conditions on the performance of thermoelectric generator. Energy Conversion and Management, Vol.96, pp. 363-376.
Yu J, Zhao H. 2007. A numerical model for thermoelectric generator with the parallel-plate heat exchanger. Journal of Power Sources, Vol. 172, pp. 428-434.
Yusoff N, Ramasamy M, Yusup S. 2011. Taguchi’s parametric design approach for the selection of optimization variables in a refrigerated gas plant. Chemical Engineering Research and Design, Vol. 89, pp. 665-675.
Zeng M, Tang LH, Lin M, Wang QW. 2010. Optimization of heat exchangers with vortex-generator fin by Taguchi method. Applied Thermal Engineering, Vol. 30, pp. 1775-1783.
Zheng XF, Liu CX, Yan YY, Wang Q. 2014. A review of thermoelectrics research- Recent developments and potentials for sustainable and renewable energy applications. Renewable and Sustainable Energy Reviews, Vol. 32, pp. 486-503.
陳維新,生質物與生質能,高立圖書有限公司,2015年5月(四版)。
巫振榮, 熱電元件應用, 國家奈米元件實驗室奈米通訊,2013年,20卷4期32-35頁。
王健彰,應用於廢熱回收與太陽能採集之熱電發電器性能研究,國立成功大學,2013年。
廖振業,以模擬與實驗方式探討熱電致冷晶片的冷卻及發電性能,國立成功大學,2012年。