簡易檢索 / 詳目顯示

研究生: 陳博聖
Chen, Po-Sheng
論文名稱: Sn-3.5Ag-xCu無鉛銲錫之熔斷電流及凝固表面皮膜特性分析
Characteristic Analysis on Fusion Current and Solidification Scale of Sn-3.5Ag-xCu Lead-free Solders
指導教授: 呂傳盛
Lui, Truan-Sheng
陳立輝
Chen, Li-Hui
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 77
中文關鍵詞: 無鉛銲錫熔斷電流凝固表面皮膜
外文關鍵詞: Fusion Current, Solidification Scale, Lead-free solders, Sn-Ag-Cu
相關次數: 點閱:70下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   Sn-Ag-Cu系錫球材料被廣泛應用在電子構裝技術。作為電流訊號傳輸的橋樑,高電流通量可能導致銲點的失效。又Sn-Ag-Cu系錫球在射球或迴銲過程中表面會有顏色改變的現象。因此銲錫材料的熔斷電流和凝固表面皮膜組織的特性需要深入的研究。

      本研究選擇Sn-3.5Ag-xCu (x = 0、0.5、1.2、1.9、2.2) 合金為實驗材料。研究分兩大主題,首先探討Cu含量和凝固速率對於Sn-3.5Ag-xCu合金微觀組織與通電性質之影響。接著則對於不同成分 (pure Sn、Sn-3.5Ag、Sn-3.5Ag-2.2Cu) 和不同凝固速率的凝固表面皮膜進行一系列的分析。

      實驗結果顯示,隨著Cu含量增加,微觀組織中Cu6Sn5的晶出量增加。當Cu含量超過1.2wt%之後,微觀組織出現β-Sn樹枝狀晶明顯微細化及共晶區面積上升的現象,試料的熔斷電流和電導度下降。當凝固速率變慢後,Sn-3.5Ag合金中的Ag3Sn變為長條狀,試料的熔斷電流和電導度上升;Sn-3.5Ag-2.2Cu合金中的Cu6Sn5成長,試料的熔斷電流和電導度幾乎不變。

      凝固表面皮膜的分析結果顯示,表面產生顏色變化的試料,表面氧化生成由SnO和SnO2所組成的皮膜,TEM觀察到的皮膜厚度約為0.5μm。在同樣的凝固速率下,純Sn和Sn-3.5Ag試料表面氧化的程度相近,Sn-3.5Ag-2.2Cu試料表面氧化的程度較輕微。隨著凝固速率變得更緩慢,表面氧化的時間增加,表面顏色變深,但皮膜中Sn的化學態變化不大。

      Sn-Ag-Cu solder balls are extensively applied in the electronic packaging technique. Because the solder balls are used to transmit current, high current density may induce the failure of solder joints. In addition, the surfaces of Sn-Ag-Cu solder balls discolor at injected or reflowed processes, so the fusion current and the solidification scale of solders need to be investigated.

      Sn-3.5Ag-xCu (x = 0、0.5、1.2、1.9、2.2) solders are specimens of the study. The subject of the study divides into two parts. The first part is the effect of Cu content and solidification rate on the microstructure and electric properties. The second part is analyses of the scales with different components (pure Sn, Sn-3.5Ag, and Sn-3.5Ag-2.2Cu) and different solidification rate.

      Experimental results show that the Cu6Sn5 content increases with the increasing of Cu content. By adding more than 1.2wt% Cu, the β-Sn dendrites become refined apparently, and the eutectic area increases. It also causes the decrease of fusion current and conductivity. When solders solidify at the slower cooling rate, the features of Ag3Sn in Sn-3.5Ag solders become rod-like. It also causes the increase of fusion current and conductivity. Cu6Sn5 compounds in Sn-3.5Ag-2.2Cu solders expand, but fusion current and conductivity have no obvious change at the slower solidification rate.

      The analysis show that oxidization occurs on the surface of discolored specimens and the scales are composed of SnO and SnO2. According to TEM analysis, the depth of scale is ~ 0.5μm. At the same solidification rate, the extent of oxidization on pure Sn is similar to that on Sn-3.5Ag solders. However, the extent of oxidization on Sn-3.5Ag-2.2Cu solders is slightly less. The surface color of solders becomes darker at slower solidification rate, while the chemical state of Sn does not change obviously.

    中文摘要…………………………………………………………Ⅰ 英文摘要…………………………………………………………Ⅱ 總目錄……………………………………………………………Ⅳ 表目錄……………………………………………………………Ⅶ 圖目錄……………………………………………………………Ⅷ 第一章 前言………………………………………………………1 第二章 文獻回顧…………………………………………………3 2-1 軟銲的基本介紹……………………………………………3 2-2 銲錫在電子構裝中的角色…………………………………3 2-3 傳統Sn-Pb銲錫的介紹及銲錫無鉛化的理由…………….4 2-4 Sn-Ag系銲錫的特性……………………………………….5 2-5 添加Cu對於Sn-Ag系銲錫的影響………………………….6 2-6 銲錫的通電性質……………………………………………6 2-7 金屬表面的高溫氧化性質及皮膜對銲錫的影響…………7 第三章 實驗方法……………………………………………….15 3-1 研究架構……………………………………………………15 3-2 合金熔煉及試料澆鑄………………………………………15 3-3 微觀組織分析及熱分析……………………………………16 3-3-1 OM觀察……………………………………………………16 3-3-2 X-ray分析……………………………………………….16 3-3-3 DSC分析………………………………………………….16 3-4 通電性質分析………………………………………………16 3-4-1 熔斷電流試片製備………………………………………16 3-4-2 電流負載試驗機裝置……………………………………17 3-4-3 熔斷電流量測……………………………………………17 3-4-4 電導度量測………………………………………………17 3-5 表面分析……………………………………………………18 第四章 實驗結果……………………………………………….25 4-1 Cu含量對Sn-3.5Ag-xCu微觀組織與通電性質之影響……25 4-1-1 微觀組織分析……………………………………………25 4-1-2 通電性質分析……………………………………………25 4-2 凝固速率對Sn-3.5Ag-xCu微觀組織與通電性質之影響…26 4-2-1 微觀組織比較……………………………………………26 4-2-2 通電性質比較……………………………………………27 4-3 Sn-3.5Ag-xCu凝固表面皮膜之特性分析…………………27 4-3-1 X光薄膜繞射分析……………………………………….27 4-3-2 Sn-3.5Ag與Sn-3.5Ag-2.2Cu慢冷鑄塊之XPS分析…….28 4-3-3 純Sn慢冷鑄塊之XPS分析……………………………….30 4-3-4 TEM分析………………………………………………….31 第五章 討論…………………………………………………….56 5-1 試料成分對凝固表面皮膜之影響…………………………56 5-1-1 由表面的化學態來探討表面氧化程度的差異…………56 5-1-2 由表面氧化的程度來探討慢冷鑄塊表面顏色的差異…56 5-1-3 由熱力學及擴散的觀點來探討表面氧化程度差異的 原因………………………………………………………57 5-2 凝固速率對凝固表面皮膜之影響…………………………57 5-2-1 凝固速率對表面顏色的影響……………………………57 5-2-2 凝固速率對表面化學態的影響…………………………58 5-2-3 極端緩慢的凝固速率對表面皮膜的影響………………58 5-3 Cu含量和凝固速率對Sn-3.5Ag-xCu熔斷電流之影響……59 5-3-1 熔解溫度的影響…………………………………………59 5-3-2 Cu含量的影響……………………………………………60 5-3-3 凝固速率的影響…………………………………………60 第六章 結論…………………………………………………….70 參考資料…………………………………………………………71

    1. S. S. Kang, and A. K. Sarkhel, “Lead Free Solders for Electronic Packaging”, Journal of Electronic Materials, 1994, Vol. 23, pp. 701-707.
    2. J. Glazer, “Microstructure and Mechanical Properties of Pb-Free Solder Alloys for Low-Cost Electronic Assembly: A Review”, Journal of Electronic Materials, 1994, Vol. 23, pp. 693-700.
    3. 賴玄金,「從IPC Work’99會議中看無鉛銲錫電子構裝之應用現況與發展趨勢」,工業材料,民國89年,第158期,99-107頁。
    4. P. T. Vianco, and D. R. Frear, “Issues in the Replacement of Lead-Bearing Solders”, JOM, 1993, Vol. 45, pp. 14-19.
    5. J. Zhao, Y. Mutoh, Y. Miyashita, and S. L. Mannan, “Fatigue Crack-Growth Behavior of Sn-Ag-Cu and Sn-Ag-Cu-Bi Lead-Free Solders”, Journal of Electronic Materials, 2002, Vol. 31, pp. 879-886.
    6. K. S. Kim, S. H. Huh, and K. Suganuma, “Effects of Cooling Speed on Microstructure and Tensile Properties of Sn-Ag-Cu Alloys”, Material Science and Engineering, 2002, Vol. 333, pp. 106-114.
    7. W. Yang, L. E. Felton, and R. W. Messler, “The Effect of Soldering Process Variables on the Microstructure and Mechanical Properties of Eutectic Sn-Ag/Cu Solder Joints”, Journal of Electronic Materials, 1995, Vol. 24, pp. 1465-1472.
    8. J. M. Song, F. I. Li, T. S. Lui, and L. H. Chen, “Investigation of Vibration Fracture Behavior of Sn-Ag-Cu Solders under Resonance”, Journal of Materials Research, 2004, Vol. 19, pp. 2665-2673.
    9. Microelectronics Packaging Handbook Part 3, R. R. Tummala, E. J. Rymaszewski, and A. G. Klopfenstein, Chapman & Hall, 1997, Chap. 15-16.
    10. K. Suganuma, and K. Kim, “ Solidification Microstructure Control of Sn-Ag-Cu Lead-free Solder”, Journal of High Temperature Society of Japan, 2004, Vol. 30, pp. 185-190.
    11. D. Q. Yu, J. Zhao, and L. Wang, “Improvement on the Microstructure Stability, Mechanical and Wetting Properties of Sn-Ag-Cu Lead-free Solder with the Addition of Rare Earth Elements”, Journal of Alloys and Compounds, 2004, Vol. 376, pp. 170-175.
    12. B. Salam, C. Virseda, H. Da, N. N. Ekere, and R. Durairaj, “Reflow Profile Study of the Sn-Ag-Cu Solder”, Soldering and Surface Mount Technology, 2004, Vol. 16, pp. 27-34.
    13. M. M. Schwartz, “Fundamentals of Soldering”, ASM Handbook, 1993, Vol. 6, pp.126-137.
    14. S. M. Darwish, S. A. Habdan, and A. A. Tamimi, “Knowledge-base for Electronics Soldering”, Journal of Materials Processing Technology, 2000, Vol. 97, pp. 1-9.
    15. W. J. Plumbridge, “Review Solders in Electronic”, Journal of Materials Science, 1996, Vol. 31, pp. 2501-2514.
    16. M. McCormack, S. Jin, and G.W. Kammlott, “Suppression of Microstructural Coarsening and Creep Deformation in a Lead-Free Solder”, American Institute of Physics, 1994, Vol. 64, pp. 580-582.
    17. M. Abtew, and G. Selvaduray, “Lead-free Solders in Microelectronics”, Materials Science and Engineering, 2000, Vol. 27, pp. 95-141.
    18. I. Artaki, and A. M. Jackson, “Evaluation of Lead-Free Solder Joints in Electronic Assemblies”, Journal of Electronic Materials, 1994, Vol. 23, pp. 757-764.
    19. I. Karakaya, and W. T. Thompson, “The Pb-Sn System”, Bulletion of Alloy Phase Diagrams, 1998, Vol. 9, pp. 144-152.
    20. 莊強名,「無鉛化共晶銲錫合金之振動破壞特性研究」,國立成功大學材料科學及工程學系,博士論文,民國90年。
    21. S. K. Kang, “Lead (Pb)-free Solders for Electronic Packaging”, Journal of Electronic Materials, 1994, Vol. 23, pp. 701-707.
    22. K. Kawashima, T. Ito, and M. Sakuragi, “Strain-rate and Temperature -dependent Stress-Strain Curves of Sn-Pb Eutectic Alloy”, Journal of Materials Science, 1992, Vol. 27, pp. 6389-6390.
    23. Y. Miyazawa, and T. Ariga, “Influences of Aging Treatment on Microstructure and Hardness of Sn-(Ag, Bi, Zn) Eutectic Solder Alloys”, Materials Transactions, 2001, Vol. 42, pp. 776-782.
    24. B. Trumble, “Get the Lead Out”, IEEE Spectrum, 1998, Vol. 35, pp. 55-60.
    25. 張淑如,「鉛對人體的危害」,勞工安全衛生簡訊,民國84年,第12期,17-18頁。
    26. M. McCormack, S. Jin, H. S. Chen, and D. A. Machusak, “New Lead-free Sn-Zn-In Solder Alloys”, Journal of Electronic Materials, 1994, Vol. 23, pp. 687-690.
    27. A. Ku, O. Ogunseitan, J. D. Saphores, A. Shapiro, and J. M. Schoenung, “Lead-free Solders: Issues of Toxicity, Availability and Impacts of Extraction”, Proceedings - Electronic Components and Technology Conference, 2003, pp. 47-53.
    28. I. Karakaya, and W. T. Thompson, “The Ag-Sn System”, Bulletion of Alloy Phase Diagrams, 1987, Vol. 8, pp. 340-347.
    29. K. Suganuma, and Y. Nakamura, “Microstructure and Strength of Interface between Sn-Ag Eutectic Solder and Cu”, Journal of the Japan Institute of Metals, 1995, Vol. 59, pp. 1299-1305.
    30. K. Suganuma, S. H. Huh, K. Kim, H. Nakase, and Y. Nakamura, “Effect of Ag Content on Properties of Sn-Ag Binary Alloy Solder” Materials Transactions, 2001, Vol. 42, pp. 286-291.
    31. W. Yang, R. W. Messler. Jr, and L. E. Felton, “Microstructure Evolution of Eutectic Sn-Ag Solder Joints”, Journal of Electronic Materials, 1994, Vol. 23, pp. 765-772.
    32. S. Jin, and M. MaCormack, “Dispersoid Addition to a Pb-free Solder for Suppression of Microstructural Coarsening”, Journal of Electronic Materials, 1994, Vol. 23, pp. 735-739.
    33. M. MaCormack, S. Jin, and G. W. Kammlott, “Suppression of Microstructural Coarsening and Creep Deformation in a Lead-free Solder”, Applied Physics Letters, 1994, Vol. 64, pp. 580-582.
    34. 殷翠梅,「Sn-Ag系無鉛銲錫之振動破壞特性探討」,國立成功大學材料科學及工程學系,碩士論文,民國90年。
    35. N. C. Lee, “Getting Ready for Lead-free Solders”, Soldering and Surface Mount Technology, 1997, Vol. 9, pp. 116-125.
    36. F. Hua, and J. Glazer, “Lead-free for Electronic Assembly”, TMS Annual Meeting, Design and Reliability of Solders and Solder Interconnections, 1997, pp. 65-73.
    37. J. Glazer, “Metallurgy of Low Temperature Pb-free Solders for Electronic Assembly”, International Materials Reviews, 1995, Vol. 40, pp. 65-93.
    38. N. Saunders, and A. P. Miodownik, “Ag-Sn Binary Alloy Diagrams”, ASM Handbook, 1992, Vol. 3, pp. 2-179.
    39. I. E. Anderson, J. C. Foley, B. A. Cook, J. Harringa, R. L. Terpstra, O. Unal, “Alloying Effects in Near-eutectic Sn-Ag-Cu Solder Alloys for Improved Microstructural Stability”, Journal of Electronic Materials, 2001, Vol. 30, pp. 1050-1059.
    40. H. Ye, C. Basaran, and D. C. Hopkin, “Damage Mechanics of Microelectronics Solder Joints under High Current Densities”, International Journal of Solids and Structures, 2003, Vol. 40, pp. 4021-4032.
    41. H. Ye, C. Basaran, and D. C. Hopkin, “Mechanical Degradation of Microelectronics Solder Joints under Current Stressing”, International Journal of Solids and Structures, 2003, Vol. 40, pp. 7269-7284.
    42. H. Ye, C. Basaran, and D. C. Hopkin, “Pb Phase Coarsening in Eutectic Pb/Sn Flip Chip Solder Joints under Electric Current Stressing”, International Journal of Solids and Structures, 2004, Vol. 41, pp. 2743-2755.
    43. C. Y. Liu, C. Chen, C. N. Liao, and K. N. Tu, “Microstructure- electromigration Correlation in a Thin Stripe of Eutectic SnPb Solder Stressed between Cu Electrodes”, Applied Physics Letters, 1999, Vol. 75, pp. 58-60.
    44. C. Y. Liu, C. Chen, and K. N. Tu, “Electromigration in SnPb Solder Strips as a Function of Alloy Composition”, Journal of Applied Physics, 2000, Vol. 88, pp. 5703-5709.
    45. T. Y. Lee, and K. N. Tu, “Electromigration of Eutectic SnPb Solder Interconnects for Flip Chip Technology”, Journal of Applied Physics, 2001, Vol. 89, pp. 3189-3194.
    46. Q. T. Huynh, C. Y. Liu, C. Chen, and K. N. Tu, “Electromigration in SnPb Solder Lines”, Journal of Applied Physics, 2001, Vol. 89, pp. 4332-4335.
    47. 蔡東原,「共晶型錫基合金之高荷電破壞特性探討」, 國立成功大學材料科學及工程學系,碩士論文,民國93年。
    48. 工程材料科學 (修訂版),劉國雄、林樹均、李勝隆、鄭晃忠、葉均蔚,全華科技,民國80年,第16章。
    49. 金屬材料之高溫氧化與腐蝕,日本腐蝕防蝕學會,復漢出版社,民國77年,第2、3章。
    50. Principles of Extractive Metallurgy, Terkel Rosenqvist, Mcgraw-Hill Book Company, 1974, Appendix C.
    51. S. Vaynman, and M. E. Fine, “Development of Fluxes for Lead-Free Solders Containing Zinc”, Scripta Materialia, 1999, Vol. 41, pp. 1269-1271.
    52. 電工材料,許正道,文笙書局,民國81年,第3章。
    53. 電工材料,俞國平,大中國圖書,民國69年,第4章。
    54. Handbook of X-ray Photoelectron Spectroscopy, C. D. Wanger, W. M. Riggs, L. E. Davis, J. F. Moulder, and G. E. Muilenberg, Perkin-Elmer Corporation, 1979, Data Interpretation.
    55. 在光學世界裡,李殿奎,凡異出版社,民國87年,第5章。
    56. 薄膜光學與鍍膜技術,李正中,藝軒圖書出版社,民國88年。
    57. 表面處理,張裕祺,高立圖書,民國79年,第17章。
    58. Introduction to High Temperature Oxidation and Corrosion, A. S. Khanna, ASM International, 2002.
    59. Oxidation of Metals and Alloys, O. Kubaschewski, and B. E. Hopkins, Butterworths, 1967.

    下載圖示 校內:2006-07-12公開
    校外:2006-07-12公開
    QR CODE