簡易檢索 / 詳目顯示

研究生: 謝宏嘉
Hsieh, Hung-Chia
論文名稱: 探討USP24調控PD-1去泛素化酵素和蛋白穩定性在T細胞抗腫瘤能力的影響
Investigation of USP24-mediated PD-1 deubiquitination and protein stability in T cell anti-tumor activity
指導教授: 王憶卿
Wang, Yi-Ching
學位類別: 博士
Doctor
系所名稱: 醫學院 - 基礎醫學研究所
Institute of Basic Medical Sciences
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 158
中文關鍵詞: 肺腫瘤微環境T細胞失活轉譯後修飾蛋白穩定性訊息傳遞IL-6USP24PD-1
外文關鍵詞: Lung tumor microenvironment, T cell dysfunction, post-translation modification, protein stability, signal transduction, IL-6, USP24, PD-1
ORCID: 0009-0006-1782-6783
相關次數: 點閱:19下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 研究背景: 持續性的程式性細胞死亡受體-1(PD-1)/PD-L1抑制型訊號會削弱T細胞的細胞毒性功能,最終導致T細胞耗竭,而這與晚期癌症進展及免疫療法失敗高度相關;然而,PD-1 去泛素化及 T 細胞功能失活的調控機制仍不清楚。線上資料庫分析顯示,泛素特異性胜酶 24(USP24)與T細胞功能失活及免疫療法效果不佳高度相關,但在腫瘤微環境中,USP24上調是否與PD-1蛋白穩定性有關仍有待探討。
    研究目的: 本研究旨在探討USP24是否作為PD-1的去泛素化酶,從而增強PD-1穩定性,導致T細胞功能失活並降低免疫治療效果。此外,我們進一步探討調控USP24 在T細胞中表達的上游機制及其治療癌症的潛力。
    研究結果: 本研究發現,USP24過度表達顯著增加PD-1蛋白表現量並增加其蛋白穩定性。免疫沉澱法證實USP24直接與PD-1結合,並拮抗E3 連接酶c-Cbl介導的泛素化。此外,USP24的低下可抑制PD-1介導的免疫抑制作用,並且Usp24C1695A酵素失活突變減緩了EgfrL858R基因轉殖鼠誘導的肺腫瘤生成。值得注意的是,腫瘤微環境中升高的IL-6可活化 NF-κB/STAT3 訊號傳遞,並轉錄上調 USP24 表達,從而穩定 PD-1蛋白;相反地,中和IL-6降低USP24表現量並減少PD-1蛋白穩定性。此外,USP24特異性抑制劑USP24-i-101可促進T細胞對癌細胞毒性活性,抑制肺腫瘤生長,並在與 anti-CTLA4 免疫治療合併使用,達到更佳的抑癌效果。臨床上,肺癌患者若其腫瘤浸潤T細胞或周邊血T淋巴球中USP24表達量較高,則表現出明顯的T細胞耗竭特徵,並且對免疫療法反應較差。
    結論:本研究解析了腫瘤浸潤 CD8+ T 細胞中去泛素化酵素 USP24 受IL-6/STAT3 活化而增強PD-1蛋白穩定性的調控機制,並揭示USP24可作為腫瘤免疫治療的潛在標靶。

    Background: Persist programmed cell death-1 (PD-1)/PD-L1 inhibitory signaling impairs T cell cytotoxic function and eventually leads to T cell exhaustion. This process is strongly correlated with advanced cancer progression and the failure of immunotherapy. However, the mechanism governing PD-1 deubiquitination and T-cell dysfunction remains unclear. By dataset analysis, ubiquitin-specific peptidase 24 (USP24) has been found to be strongly associated with T cell dysfunction and poor responses to immunotherapy. However, it remains unclear whether upregulated USP24 in the tumor microenvironment contributes to PD-1 protein abundance.
    Purpose: This study aims to investigate whether USP24 functions as a PD-1 deubiquitinase, thereby increasing PD-1 stability and contributing to T cell dysfunction and poor immunotherapy efficacy. Additionally, we further dissect the upstream regulatory mechanism controlling USP24 expression in T cells and its potential for cancer treatment.
    Results: We observed that overexpression of USP24 strongly upregulated PD-1 protein expression with increased protein stability in T cells. Immunoprecipitation-Western blot assays confirmed that USP24 directly interacted with PD-1 and counteracted with the E3 ligase c-Cbl-mediated ubiquitination. Moreover, USP24 deficiency suppressed PD-1-mediated immunosuppression and attenuated EgfrL858R driven-lung tumorigenesis in Usp24C1695A-catalytic deficient mice. Notably, increased IL-6 level in the tumor microenvironment activated the NF-B/STAT3 signal and transcriptionally upregulated USP24 expression, which led to PD-1 stabilization. In contrast, IL-6 neutralization attenuated USP24 expression and PD-1 abundance. Targeting PD-1 stability with the USP24-specific inhibitor, USP24-i-101, boosted cytotoxic T-cell activity, restrained lung tumor growth, and achieved superior therapeutic effects when combined with anti-CTLA4 immunotherapy. Clinically, lung cancer patients with high USP24 expression in either tumor-infiltrating lymphocytes or peripheral T cells display exhausted features and show unfavorable responses to immunotherapy in lung cancer patients.
    Conclusions: Our findings dissect the mechanism by which the deubiquitinase USP24, activated by IL-6/STAT3, enhances PD-1 protein stability and suppresses T cell anti-tumor response. Moreover, we identify USP24 as a potential target of anti-tumor immunotherapy.

    Introduction 1 I. Programmed cell death-1(PD-1)/PD-L1 pathway in cancer (A). PD-1 signaling pathway regulates T cell immunity 1 (B). Aberrant PD-1 expression and T cell dysfunction 2 (C). PD-1 and cancer immunotherapy response 3 II. The regulation of PD-1 expression (A). Epigenetic regulation of PD-1 4 (B). Transcriptional regulation of PD-1 5 (C). Post-translational modification of PD-1 6 III. The role of ubiquitin-specific peptidases (USPs)in cancer progression (A). The USPs family and tumor microenvironment 10 (B). USP24 and cancer development 11 (C). USP24 in tumor microenvironment 12 IV. Potential therapeutic strategies of targeting PTMs of PD-1 (A). Targeting PD-1 glycosylation 12 (B). Therapeutic strategies of PD-1 ubiquitination and deubiquitination 13 (C). Approached based on targeting PD-1 phosphorylation 14 Study basis and specific aims 16 Materials and Methods 18 1. Cell lines and culture conditions 18 2. Animal models 18 3. Flow cytometry analysis 20 4. Method of USP24 inhibitor synthesis 20 5. Plasmids transfection and lentivirus infection 22 6. Western blot assay 23 7. Immunoprecipitation 23 8. RNA extraction and quantitative reverse transcriptase-polymerase chain reaction (RT-qPCR) assay 24 9. Multiplex immunofluorescence (IF) 24 10. PD-L1 binding assay 25 11. Cycloheximide Chase assay 25 12. In vitro deubiquitination assay 25 13. In vitro T cell killing assay 26 14. Cell viability 26 15. Chromatin immunoprecipitation assay (ChIP assay) 27 16. RNA-Seq and gene set enrichment analyses (GSEA) 27 17. Clinical samples of lung cancer patients 28 18. Statistics 29 Results 30 I. Usp24C1695A catalytic mutation mice establish superior T cell anti-tumor activity 30 II. USP24 promotes PD-1 protein stability, leading to T-cell inactivation 31 III. USP24 stabilizes PD-1 by deubiquitinating it in T cells 34 IV. IL-6 increases USP24 expression to enhance PD-1 stability 36 V. USP24-i-101 blocks USP24 enzyme activity to decrease PD-1 protein stability 38 VI. USP24-i-101 boosts anti-tumor immunity and synergizes with anti-CTLA therapy 40 VII. USP24+PD-1+Lag-3+CD8+ T cells predict lung cancer prognosis 42 VIII. Elevated USP24 mRNA in T cells predicts poor immunotherapy response 43 Discussion 45 References 50 Tables 62 Figures 77 Appendix 122

    Alamgeer M, Ganju V, Watkins DN. (2013) Novel therapeutic targets in non-small cell lung cancer. Curr Opin Pharmacol. 13(3):394-401.
    Amarnath S, Mangus CW, Wang JC, Wei F, He A, Kapoor V, Foley JE, Massey PR, Felizardo TC, Riley JL, Levine BL, June CH, Medin JA, Fowler DH. (2011) The PDL1-PD1 axis converts human TH1 cells into regulatory T cells. Sci Transl Med. 3(111):111ra120.
    Asano T, Meguri Y, Yoshioka T, Kishi Y, Iwamoto M, Nakamura M, Sando Y, Yagita H, Koreth J, Kim HT, Alyea EP, Armand P, Cutler CS, Ho VT, Antin JH, Soiffer RJ, Maeda Y, Tanimoto M, Ritz J, Matsuoka KI. (2017) PD-1 modulates regulatory T-cell homeostasis during low-dose interleukin-2 therapy. Blood. 129(15):2186-2197.
    Austin JW, Lu P, Majumder P, Ahmed R, Boss JM. (2014) STAT3, STAT4, NFATc1, and CTCF regulate PD-1 through multiple novel regulatory regions in murine T cells. J Immunol. 192(10):4876-86.
    Bally AP, Austin JW, Boss JM. (2016) Genetic and Epigenetic Regulation of PD-1 Expression. J Immunol. 196(6):2431-7.
    Bardhan K, Aksoylar HI, Le Bourgeois T, Strauss L, Weaver JD, Delcuze B, Charest A, Patsoukis N, Boussiotis VA. (2019) Phosphorylation of PD-1-Y248 is a marker of PD-1-mediated inhibitory function in human T cells. Sci Rep. 9(1):17252.
    Bent EH, Millán-Barea LR, Zhuang I, Goulet DR, Fröse J, Hemann MT. (2021) Microenvironmental IL-6 inhibits anti-cancer immune responses generated by cytotoxic chemotherapy. Nat Commun. 12(1):6218.
    Bicak M, Cimen Bozkus C, Bhardwaj N. (2024) Checkpoint therapy in cancer treatment: progress, challenges, and future directions. J Clin Invest. 134(18):e184846.
    Castiglioni A, Yang Y, Williams K, Gogineni A, Lane RS, Wang AW, Shyer JA, Zhang Z, Mittman S, Gutierrez A, Astarita JL, Thai M, Hung J, Yang YA, Pourmohamad T, Himmels P, De Simone M, Elstrott J, Capietto AH, Cubas R, Modrusan Z, Sandoval W, Ziai J, Gould SE, Fu W, Wang Y, Koerber JT, Sanjabi S, Mellman I, Turley SJ, Müller S. (2023) Combined PD-L1/TGFβ blockade allows expansion and differentiation of stem cell-like CD8 T cells in immune excluded tumors. Nat Commun. 14(1):4703.
    Chen L and Han X. (2015) Anti-PD-1/PD-L1 therapy of human cancer: past, present, and future. J Clin Invest. 125(9):3384-91.
    Chen L and Han X. (2015) Anti-PD-1/PD-L1 therapy of human cancer: past, present, and future. J Clin Invest. 125(9):3384-91.
    Chen X, Fosco D, Kline DE, Meng L, Nishi S, Savage PA, Kline J. (2014) PD-1 regulates extrathymic regulatory T-cell differentiation. Eur J Immunol. 44(9):2603-16.
    Cheng B, Ren Y, Cao H, Chen J. (2020) Discovery of novel resorcinol diphenyl ether-based PROTAC-like molecules as dual inhibitors and degraders of PD-L1. Eur J Med Chem. 199:112377.
    Cheng HY, Kang PJ, Chuang YH, Wang YH, Jan MC, Wu CF, Lin CL, Liu CJ, Liaw YF, Lin SM, Chen PJ, Lee SD, Yu MW. (2014) Circulating programmed death-1 as a marker for sustained high hepatitis B viral load and risk of hepatocellular carcinoma. PLoS One. 9:e95870.
    Dai MY, Shi YY, Wang AJ, Liu XL, Liu M, Cai HB. (2022) High-potency PD-1/PD-L1 degradation induced by Peptide-PROTAC in human cancer cells. Cell Death Dis. 13(11):924.
    Dai X, Lu L, Deng S, Meng J, Wan C, Huang J, Sun Y, Hu Y, Wu B, Wu G, Lovell JF, Jin H, Yang K. (2020) USP7 targeting modulates anti-tumor immune response by reprogramming tumor-associated macrophages in lung cancer. Theranostics. 10(20):9332-9347.
    Dewson G, Eichhorn PJA, Komander D. (2023) Deubiquitinases in cancer. Nat Rev Cancer. 23(12):842-862.
    Duan Z, Shi R, Gao B, Cai J. (2024) N-linked glycosylation of PD-L1/PD-1: an emerging target for cancer diagnosis and treatment. J Transl Med. 22(1):705.
    Duan Z, Shi R, Gao B, Cai J. (2024) N-linked glycosylation of PD-L1/PD-1: an emerging target for cancer diagnosis and treatment. J Transl Med. 22(1):705.
    Francisco LM, Sage PT, Sharpe AH. (2010) The PD-1 pathway in tolerance and autoimmunity. Immunol Rev. 236:219-42.
    Gao H, Xi Z, Dai J, Xue J, Guan X, Zhao L, Chen Z, Xing F. (2024) Drug resistance mechanisms and treatment strategies mediated by Ubiquitin-Specific Proteases (USPs) in cancers: new directions and therapeutic options. Mol Cancer. 3;23(1):88.
    Gordon SR, Maute RL, Dulken BW, Hutter G, George BM, McCracken MN, Gupta R, Tsai JM, Sinha R, Corey D, Ring AM, Connolly AJ, Weissman IL. (2017) PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature. 545(7655):495-499.
    Hailemichael Y, Johnson DH, Abdel-Wahab N, Foo WC, Bentebibel SE, Daher M, Haymaker C, Wani K, Saberian C, Ogata D, Kim ST, Nurieva R, Lazar AJ, Abu-Sbeih H, Fa'ak F, Mathew A, Wang Y, Falohun A, Trinh V, Zobniw C, Spillson C, Burks JK, Awiwi M, Elsayes K, Soto LS, Melendez BD, Davies MA, Wargo J, Curry J, Yee C, Lizee G, Singh S, Sharma P, Allison JP, Hwu P, Ekmekcioglu S, Diab A. (2022) Interleukin-6 blockade abrogates immunotherapy toxicity and promotes tumor immunity. Cancer Cell. 40(5):509-523.e6.
    Harrigan JA, Jacq X, Martin NM, Jackson SP. (2018) Deubiquitylating enzymes and drug discovery: emerging opportunities. Nat Rev Drug Discov. 17(1):57-78.
    Haugh AM and Daud AI. (2024) Distinguishing between help and harm: Helper T cell subsets and immune-related adverse events. J Clin Invest. 134(20):e184310.
    He C, Xing X, Chen HY, Gao M, Shi J, Xiang B, Xiao X, Sun Y, Yu H, Xu G, Yao Y, Xie Z, Xing Y, Budiarto BR, Chen SY, Gao Y, Lee YR, Zhang J. (2024) UFL1 ablation in T cells suppresses PD-1 UFMylation to enhance anti-tumor immunity. Mol Cell. 84(6):1120-1138.e8.
    He H, Yi L, Zhang B, Yan B, Xiao M, Ren J, Zi D, Zhu L, Zhong Z, Zhao X, Jin X, Xiong W. (2021) USP24-GSDMB complex promotes bladder cancer proliferation via activation of the STAT3 pathway. Int J Biol Sci. 17(10):2417-2429.
    He X and Xu C. (2020) Immune checkpoint signaling and cancer immunotherapy. Cell Res. 30(8):660-669.
    Hu X, Wang J, Chu M, Liu Y, Wang ZW, Zhu X. (2021) Emerging role of ubiquitination in the regulation of PD-1/PD-L1 in cancer immunotherapy. Mol Ther. 29(3):908-919.
    Huseni MA, Wang L, Klementowicz JE, Yuen K, Breart B, Orr C, Liu LF, Li Y, Gupta V, Li C, Rishipathak D, Peng J, Şenbabaoǧlu Y, Modrusan Z, Keerthivasan S, Madireddi S, Chen YJ, Fraser EJ, Leng N, Hamidi H, Koeppen H, Ziai J, Hashimoto K, Fassò M, Williams P, McDermott DF, Rosenberg JE, Powles T, Emens LA, Hegde PS, Mellman I, Turley SJ, Wilson MS, Mariathasan S, Molinero L, Merchant M, West NR. (2023) CD8+ T cell-intrinsic IL-6 signaling promotes resistance to anti-PD-L1 immunotherapy. Cell Rep Med. 4(1):100878.
    Huuhtanen J, Kasanen H, Peltola K, Lönnberg T, Glumoff V, Brück O, Dufva O, Peltonen K, Vikkula J, Jokinen E, Ilander M, Lee MH, Mäkelä S, Nyakas M, Li B, Hernberg M, Bono P, Lähdesmäki H, Kreutzman A, Mustjoki S. (2023) Single-cell characterization of anti-LAG-3 and anti-PD-1 combination treatment in patients with melanoma. J Clin Invest. 133(6):e164809.
    Ishikawa M, Nakayama K, Nakamura K, Yamashita H, Ishibashi T, Minamoto T, Iida K, Razia S, Ishikawa N, Nakayama S, Otsuki Y, Kyo S. (2020) High PD-1 expression level is associated with an unfavorable prognosis in patients with cervical adenocarcinoma. Arch Gynecol Obstet. 302(1):209-218.
    Kao C, Oestreich KJ, Paley MA, Crawford A, Angelosanto JM, Ali MA, Intlekofer AM, Boss JM, Reiner SL, Weinmann AS, Wherry EJ. (2011) Transcription factor T-bet represses expression of the inhibitory receptor PD-1 and sustains virus-specific CD8+ T cell responses during chronic infection. Nat Immunol. 12(7):663-71.
    Kuo IY, Yang YE, Yang PS, Tsai YJ, Tzeng HT, Cheng HC, Kuo WT, Su WC, Chang CP, Wang YC. (2021) Converged Rab37/IL-6 trafficking and STAT3/PD-1 transcription axes elicit an immunosuppressive lung tumor microenvironment. Theranostics. 11(14):7029-7044.
    Lak S, Janelle V, Djedid A, Boudreau G, Brasey A, Lisi V, Smaani A, Carli C, Busque L, Lavallée VP, Delisle JS. (2022) Combined PD-L1 and TIM3 blockade improves expansion of fit human CD8+ antigen-specific T cells for adoptive immunotherapy. Mol Ther Methods Clin Dev. 27:230-245.
    Lee TA, Tsai EY, Liu SH, Hsu Hung SD, Chang SJ, Chao CH, Lai YJ, Yamaguchi H, Li CW. (2024) Post-translational modification of PD-1: potential targets for cancer immunotherapy. Cancer Res. 84(6):800-807.
    Li CW, Lim SO, Chung EM, Kim YS, Park AH, Yao J, Cha JH, Xia W, Chan LC, Kim T, Chang SS, Lee HH, Chou CK, Liu YL, Yeh HC, Perillo EP, Dunn AK, Kuo CW, Khoo KH, Hsu JL, Wu Y, Hsu JM, Yamaguchi H, Huang TH, Sahin AA, Hortobagyi GN, Yoo SS, Hung MC. (2018) Eradication of triple-negative breast cancer cells by targeting glycosylated PD-L1. Cancer Cell. 33(2):187-201.e10.
    Li X, Zhang J, Wang B, Chen C, Zhang E, Lv Z, He Q, Hu Y, Wang X, Zhang F. (2023) USP24-dependent stabilization of Runx2 recruits a p300/NCOA3 complex to transactivate ADAMTS genes and promote degeneration of intervertebral disc in chronic inflammation mice. Biol Direct. 18(1):37.
    Lin Z, Tan C, Qiu Q, Kong S, Yang H, Zhao F, Liu Z, Li J, Kong Q, Gao B, Barrett T, Yang GY, Zhang J, Fang D. (2015) Ubiquitin-specific protease 22 is a deubiquitinase of CCNB1. Cell Discov. 1:15028.
    Liu J, Wei L, Hu N, Wang D, Ni J, Zhang S, Liu H, Lv T, Yin J, Ye M, Song Y. (2022) FBW7-mediated ubiquitination and destruction of PD-1 protein primes sensitivity to anti-PD-1 immunotherapy in non-small cell lung cancer. J Immunother Cancer. 10(9):e005116.
    Liu Z, Xiao M, Mo Y, Wang H, Han Y, Zhao X, Yang X, Liu Z, Xu B. (2022) Emerging roles of protein palmitoylation and its modifying enzymes in cancer cell signal transduction and cancer therapy. Int J Biol Sci. 18(8):3447-3457.
    Lu P, Youngblood BA, Austin JW, Mohammed AU, Butler R, Ahmed R, Boss JM. (2014) Blimp-1 represses CD8 T cell expression of PD-1 using a feed-forward transcriptional circuit during acute viral infection. J Exp Med. 211(3):515-27.
    Lucarini V, Melaiu O, D'Amico S, Pastorino F, Tempora P, Scarsella M, Pezzullo M, De Ninno A, D'Oria V, Cilli M, Emionite L, Infante P, Di Marcotullio L, De Ioris MA, Barillari G, Alaggio R, Businaro L, Ponzoni M, Locatelli F, Fruci D. (2022) Combined mitoxantrone and anti-TGFβ treatment with PD-1 blockade enhances antitumor immunity by remodelling the tumor immune landscape in neuroblastoma. J Exp Clin Cancer Res. 41(1):326.
    Lyle C, Richards S, Yasuda K, Napoleon MA, Walker J, Arinze N, Belghasem M, Vellard I, Yin W, Ravid JD, Zavaro E, Amraei R, Francis J, Phatak U, Rifkin IR, Rahimi N, Chitalia VC. (2019) c-Cbl targets PD-1 in immune cells for proteasomal degradation and modulates colorectal tumor growth. Sci Rep. 9(1):20257.
    Ma J, Zheng B, Goswami S, Meng L, Zhang D, Cao C, Li T, Zhu F, Ma L, Zhang Z, Zhang S, Duan M, Chen Q, Gao Q, Zhang X. (2019) PD1HiCD8+ T cells correlate with exhausted signature and poor clinical outcome in hepatocellular carcinoma. J Immunother Cancer. 7(1):331.
    Marasco M, Berteotti A, Weyershaeuser J, Thorausch N, Sikorska J, Krausze J, Brandt HJ, Kirkpatrick J, Rios P, Schamel WW, Köhn M, Carlomagno T. (2020) Molecular mechanism of SHP2 activation by PD-1 stimulation. Sci Adv. 6(5):eaay4458.
    Meng X, Liu X, Guo X, Jiang S, Chen T, Hu Z, Liu H, Bai Y, Xue M, Hu R, Sun SC, Liu X, Zhou P, Huang X, Wei L, Yang W, Xu C. (2018) FBXO38 mediates PD-1 ubiquitination and regulates anti-tumour immunity of T cells. Nature. 564(7734):130-135.
    Oestreich KJ, Yoon H, Ahmed R, Boss JM. (2008) NFATc1 regulates PD-1 expression upon T cell activation. J Immunol. 181(7):4832-9.
    Oestreich KJ, Yoon H, Ahmed R, Boss JM. (2008) NFATc1 regulates PD-1 expression upon T cell activation. J Immunol. 181(7):4832-9.
    Ohkuma R, Ieguchi K, Watanabe M, Takayanagi D, Goshima T, Onoue R, Hamada K, Kubota Y, Horiike A, Ishiguro T, Hirasawa Y, Ariizumi H, Tsurutani J, Yoshimura K, Tsuji M, Kiuchi Y, Kobayashi S, Tsunoda T, Wada S. (2021) Increased plasma soluble PD-1 concentration correlates with disease progression in patients with cancer treated with anti-PD-1 antibodies. Biomedicines. 9(12):1929.
    Okada M, Chikuma S, Kondo T, Hibino S, Machiyama H, Yokosuka T, Nakano M, Yoshimura A. (2017) Blockage of core Fucosylation reduces cell-surface expression of PD-1 and promotes anti-tumor immune responses of T cells. Cell Rep. 20(5):1017-1028.
    Okada M, Chikuma S, Kondo T, Hibino S, Machiyama H, Yokosuka T, Nakano M, Yoshimura A. (2017) Blockage of core fucosylation reduces cell-surface expression of PD-1 and promotes anti-tumor immune responses of T cells. Cell Rep. 1;20(5):1017-1028.
    Patsoukis N, Bardhan K, Chatterjee P, Sari D, Liu B, Bell LN, Karoly ED, Freeman GJ, Petkova V, Seth P, Li L, Boussiotis VA. (2015) PD-1 alters T-cell metabolic reprogramming by inhibiting glycolysis and promoting lipolysis and fatty acid oxidation. Nat Commun. 6:6692.
    Patsoukis N, Duke-Cohan JS, Chaudhri A, Aksoylar HI, Wang Q, Council A, Berg A, Freeman GJ, Boussiotis VA. (2020) Interaction of SHP-2 SH2 domains with PD-1 ITSM induces PD-1 dimerization and SHP-2 activation. Commun Biol. 3(1):128.
    Patsoukis N, Wang Q, Strauss L, Boussiotis VA. (2020) Revisiting the PD-1 pathway. Sci Adv. 6(38):eabd2712.
    Qi SM, Cheng G, Cheng XD, Xu Z, Xu B, Zhang WD, Qin JJ. (2020) Targeting USP7-mediated deubiquitination of MDM2/MDMX-p53 pathway for cancer therapy: Are we there yet? Front Cell Dev Biol. 8:233.
    Sakuishi K, Apetoh L, Sullivan JM, Blazar BR, Kuchroo VK, Anderson AC. (2010) Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J Exp Med. 207(10):2187-94.
    Shan J, Zhao W, Gu W. (2009) Suppression of cancer cell growth by promoting cyclin D1 degradation. Mol Cell. 36(3):469-76.
    Shen R, Postow MA, Adamow M, Arora A, Hannum M, Maher C, Wong P, Curran MA, Hollmann TJ, Jia L, Al-Ahmadie H, Keegan N, Funt SA, Iyer G, Rosenberg JE, Bajorin DF, Chapman PB, Shoushtari AN, Betof AS, Momtaz P, Merghoub T, Wolchok JD, Panageas KS, Callahan MK. (2021) LAG-3 expression on peripheral blood cells identifies patients with poorer outcomes after immune checkpoint blockade. Sci Transl Med. 13(608):eabf5107.
    Shi L, Chen S, Yang L, Li Y. (2013) The role of PD-1 and PD-L1 in T-cell immune suppression in patients with hematological malignancies. J Hematol Oncol. 6(1):74.
    Shi J, Zhang Z, Chen HY, Yao Y, Ke S, Yu K, Shi J, Xiao X, He C, Xiang B, Sun Y, Gao M, Xing X, Yu H, Wang X, Yuan WC, Budiarto BR, Chen SY, Zhang T, Lee YR, Zhu H, Zhang J. (2025) Targeting the TRIM21-PD-1 axis potentiates immune checkpoint blockade and CAR-T cell therapy. Mol Ther. 33(3):1073-1090.
    Staron MM, Gray SM, Marshall HD, Parish IA, Chen JH, Perry CJ, Cui G, Li MO, Kaech SM. (2014) The transcription factor FoxO1 sustains expression of the inhibitory receptor PD-1 and survival of antiviral CD8(+) T cells during chronic infection. Immunity. 41(5):802-14.
    Sun JY, Zhang D, Wu S, Xu M, Zhou X, Lu XJ, Ji J. (2020) Resistance to PD-1/PD-L1 blockade cancer immunotherapy: mechanisms, predictive factors, and future perspectives. Biomark Res. 8:35.
    Sun L, Li CW, Chung EM, Yang R, Kim YS, Park AH, Lai YJ, Yang Y, Wang YH, Liu J, Qiu Y, Khoo KH, Yao J, Hsu JL, Cha JH, Chan LC, Hsu JM, Lee HH, Yoo SS, Hung MC. (2020) Targeting Glycosylated PD-1 induces potent antitumor immunity. Cancer Res. 80(11):2298-2310.
    Sun SC. (2008) Deubiquitylation and regulation of the immune response. Nat Rev Immunol. 8(7):501-11.
    Terawaki S, Chikuma S, Shibayama S, Hayashi T, Yoshida T, Okazaki T, Honjo T. (2011) IFN-α directly promotes programmed cell death-1 transcription and limits the duration of T cell-mediated immunity. J Immunol. 186(5):2772-9.
    Tichet M, Wullschleger S, Chryplewicz A, Fournier N, Marcone R, Kauzlaric A, Homicsko K, Deak LC, Umaña P, Klein C, Hanahan D. (2023) Bispecific PD1-IL2v and anti-PD-L1 break tumor immunity resistance by enhancing stem-like tumor-reactive CD8+ T cells and reprogramming macrophages. Immunity. 56(1):162-179.e6.
    Tietscher S, Wagner J, Anzeneder T, Langwieder C, Rees M, Sobottka B, de Souza N, Bodenmiller B. (2023) A comprehensive single-cell map of T cell exhaustion-associated immune environments in human breast cancer. Nat Commun. 14(1):98.
    Van Loosdregt J, Fleskens V, Fu J, Brenkman AB, Bekker CP, Pals CE, Meerding J, Berkers CR, Barbi J, Gröne A, Sijts AJ, Maurice MM, Kalkhoven E, Prakken BJ, Ovaa H, Pan F, Zaiss DM, Coffer PJ. (2013) Stabilization of the transcription factor Foxp3 by the deubiquitinase USP7 increases Treg-cell-suppressive capacity. Immunity. 39(2):259-71.
    Wang K, Liu S, Wang J, Wu Y, Cai F, Song W. (2014) Transcriptional regulation of human USP24 gene expression by NF-kappa B. J Neurochem. 128(6):818-28.
    Wang SA, Wu YC, Yang FM, Hsu FL, Zhang K, Hung JJ. (2024) NCI677397 targeting USP24-mediated induction of lipid peroxidation induces ferroptosis in drug-resistant cancer cells. Mol Oncol. 18(9):2255-2276.
    Wang SA, Wu YC, Yang FM, Hsu FL, Zhang K, Hung JJ. (2024) NCI677397 targeting USP24-mediated induction of lipid peroxidation induces ferroptosis in drug-resistant cancer cells. Mol Oncol. 18(9):2255-2276.
    Wang SA, Young MJ, Jeng WY, Liu CY, Hung JJ. (2020) USP24 stabilizes bromodomain containing proteins to promote lung cancer malignancy. Sci Rep. 10(1):20870.
    Wang SA, Young MJ, Wang YC, Chen SH, Liu CY, Lo YA, Jen HH, Hsu KC, Hung JJ. (2021) USP24 promotes drug resistance during cancer therapy. Cell Death Differ. 28(9):2690-2707.
    Wang YC, Wu YS, Hung CY, Wang SA, Young MJ, Hsu TI, Hung JJ. (2018) USP24 induces IL-6 in tumor-associated microenvironment by stabilizing p300 and β-TrCP and promotes cancer malignancy. Nat Commun. 9(1):3996.
    Weiss SA, Huang AY, Fung ME, Martinez D, Chen ACY, LaSalle TJ, Miller BC, Scharer CD, Hegde M, Nguyen TH, Rowe JH, Osborn JF, Patterson DG, Sifnugel N, Mei-An Nolan C, Davidson RA, Schwartz MA, Bally APR, Neeld DK, LaFleur MW, Boss JM, Doench JG, Nicholas Haining W, Sharpe AH, Sen DR. (2024) Epigenetic tuning of PD-1 expression improves exhausted T cell function and viral control. Nat Immunol. 25(10):1871-1883.
    Wherry EJ and Kurachi M. (2015) Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol. 15(8):486-99.
    Wu Z, Cao Z, Yao H, Yan X, Xu W, Zhang M, Jiao Z, Zhang Z, Chen J, Liu Y, Zhang M, Wang D. (2023) Coupled deglycosylation-ubiquitination cascade in regulating PD-1 degradation by MDM2. Cell Rep. 25(7):112693.
    Xiao N, Li H, Luo J, Wang R, Chen H, Chen J, Wang P. (2012) Ubiquitin-specific protease 4 (USP4) targets TRAF2 and TRAF6 for deubiquitination and inhibits TNFα-induced cancer cell migration. Biochem J. 441(3):979-86.
    Xiao X, Shi J, He C, Bu X, Sun Y, Gao M, Xiang B, Xiong W, Dai P, Mao Q, Xing X, Yao Y, Yu H, Xu G, Li S, Ren Y, Chen B, Jiang C, Meng G, Lee YR, Wei W, Freeman GJ, Xie C, Zhang J. (2023) ERK and USP5 govern PD-1 homeostasis via deubiquitination to modulate tumor immunotherapy. Nat Commun. 14(1):2859.
    Xiong W, Gao X, Zhang T, Jiang B, Hu MM, Bu X, Gao Y, Zhang LZ, Xiao BL, He C, Sun Y, Li H, Shi J, Xiao X, Xiang B, Xie C, Chen G, Zhang H, Wei W, Freeman GJ, Shu HB, Wang H, Zhang J. (2022) USP8 inhibition reshapes an inflamed tumor microenvironment that potentiates the immunotherapy. Nat Commun. 13(1):1700.
    Yamauchi T, Hoki T, Oba T, Jain V, Chen H, Attwood K, Battaglia S, George S, Chatta G, Puzanov I, Morrison C, Odunsi K, Segal BH, Dy GK, Ernstoff MS, Ito F. (2021) T-cell CX3CR1 expression as a dynamic blood-based biomarker of response to immune checkpoint inhibitors. Nat Commun. 12(1):1402.
    Yang J, Wei P, Barbi J, Huang Q, Yang E, Bai Y, Nie J, Gao Y, Tao J, Lu Y, Xie C, Hou X, Ren J, Wu X, Meng J, Zhang Y, Fu J, Kou W, Gao Y, Chen Z, Liang R, Tsun A, Li D, Guo W, Zhang S, Zheng SG, Niu J, Galardy P, Tong X, Shi G, Li H, Pan F, Li B. (2020) The deubiquitinase USP44 promotes Treg function during inflammation by preventing FOXP3 degradation. EMBO Rep. 21(9):e50308.
    Yang R, Cheng S, Luo N, Gao R, Yu K, Kang B, Wang L, Zhang Q, Fang Q, Zhang L, Li C, He A, Hu X, Peng J, Ren X, Zhang Z. (2019) Distinct epigenetic features of tumor-reactive CD8+ T cells in colorectal cancer patients revealed by genome-wide DNA methylation analysis. Genome Biol. 21(1):2.
    Yang S, Yan H, Wu Y, Shan B, Zhou D, Liu X, Mao X, Zhou S, Zhao Q, Xia H. (2021) Deubiquitination and Stabilization of PD-L1 by USP21. Am J Transl Res. 13(11):12763-12774.
    Yang ZZ, Grote DM, Xiu B, Ziesmer SC, Price-Troska TL, Hodge LS, Yates DM, Novak AJ, Ansell SM. (2014) TGF-β upregulates CD70 expression and induces exhaustion of effector memory T cells in B-cell non-Hodgkin's lymphoma. Leukemia. 28(9):1872-84.
    Yao H, Li C, He F, Song T, Brosseau JP, Wang H, Lu H, Fang C, Shi H, Lan J, Fang JY, Xu J. (2020) A peptidic inhibitor for PD-1 palmitoylation targets its expression and functions. RSC Chem Biol. 2(1):192-205.
    Yasunaga J, Lin FC, Lu X, Jeang KT. (2011) Ubiquitin-specific peptidase 20 targets TRAF6 and human T cell leukemia virus type 1 tax to negatively regulate NF-kappaB signaling. J Virol. 85(13):6212-9.
    Yi M, Zheng X, Niu M, Zhu S, Ge H, Wu K. (2022) Combination strategies with PD-1/PD-L1 blockade: current advances and future directions. Mol Cancer. 21(1):28.
    Young MJ, Wang SA, Chen YC, Liu CY, Hsu KC, Tang SW, Tseng YL, Wang YC, Lin SM, Hung JJ. (2024) USP24-i-101 targeting of USP24 activates autophagy to inhibit drug resistance acquired during cancer therapy. Cell Death Differ. 31(5):574-591.
    Zhao M, Guo W, Wu Y, Yang C, Zhong L, Deng G, Zhu Y, Liu W, Gu Y, Lu Y, Kong L, Meng X, Xu Q, Sun Y. (2019) SHP2 inhibition triggers anti-tumor immunity and synergizes with PD-1 blockade. Acta Pharm Sin B. 9(2):304-315.
    Zhi X, Jiang S, Zhang J, Qin J. (2023) Ubiquitin-specific peptidase 24 accelerates aerobic glycolysis and tumor progression in gastric carcinoma through stabilizing PLK1 to activate NOTCH1. Cancer Sci. 114(8):3087-3100.
    Zhou N, Guo C, Li X, Tu L, Du J, Qian Q, Li J, Huang D, Xu Q, Zheng X. (2024) USP24 promotes hepatocellular carcinoma tumorigenesis through deubiquitinating and stabilizing TRAF2. Biochem Pharmacol. 229:116473.
    Zhou Q, Munger ME, Veenstra RG, Weigel BJ, Hirashima M, Munn DH, Murphy WJ, Azuma M, Anderson AC, Kuchroo VK, Blazar BR. (2011) Coexpression of Tim-3 and PD-1 identifies a CD8+ T-cell exhaustion phenotype in mice with disseminated acute myelogenous leukemia. Blood. 117(17):4501-10.
    Zhou S, Zhu J, Xu J, Gu B, Zhao Q, Luo C, Gao Z, Chin YE, Cheng X. (2022) Anti-tumour potential of PD-L1/PD-1 post-translational modifications. Immunology. 167(4):471-81.
    Zhou XA, Zhou J, Zhao L, Yu G, Zhan J, Shi C, Yuan R, Wang Y, Chen C, Zhang W, Xu D, Ye Y, Wang W, Shen Z, Wang W, Wang J.(2020) KLHL22 maintains PD-1 homeostasis and prevents excessive T cell suppression. Proc Natl Acad Sci U S A. 117(45):28239-28250.
    Zhu C, Li L, Yu Y, Wang X, Shi Y, Gao Y, Chen K, Liu X, Cui Y, Zhang T, Yu Z. (2025) Optimization of SHP2 allosteric inhibitors with novel tail heterocycles and their potential as antitumor therapeutics. Eur J Med Chem. 282:117078.
    Zhu X and Lang J. (2017) Soluble PD-1 and PD-L1: predictive and prognostic significance in cancer. Oncotarget. 8(57):97671-97682.
    Zou Q, Jin J, Xiao Y, Zhou X, Hu H, Cheng X, Kazimi N, Ullrich SE, Sun SC. (2015) T Cell Intrinsic USP15 deficiency promotes excessive IFN-γ production and an immunosuppressive tumor microenvironment in MCA-induced fibrosarcoma. Cell Rep. 13(11):2470-2479.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE