簡易檢索 / 詳目顯示

研究生: 連怡雯
Win, Sein Lae Yi
論文名稱: TEG-mPCM 鋁蜂巢板應用於 RC 建築屋頂之熱控與發電性能
Thermal and electrical performance of TEG-mPCM honeycomb boards for RC building roofs
指導教授: 賴啟銘
Lai, Chi-Ming
學位類別: 博士
Doctor
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 107
中文關鍵詞: 熱電發電器(TEG)微膠囊相變材料(mPCM)熔點優化鋼筋混凝土屋頂熱-電性能熱流能量收集冷卻負荷減少可持續建築設計
外文關鍵詞: Thermoelectric generator(TEG), Microencapsulated phase change material(mPCM), Reinforced concrete roof, Energy harvesting, Cooling load reduction, Sustainable building
相關次數: 點閱:47下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討將熱電發電器(TEG)與微膠囊相變材料(mPCM)整合於鋼筋混凝土屋頂之熱電性能表現。隨著建築節能需求增加,具備熱調節與能量收集功能的複合建築外殼之開發愈趨重要。然而,目前在屋頂應用mPCM熔點選擇缺乏系統性評估,且在不同熱流條件下之實驗驗證及相關設計指南尚未完善。

    研究採用專門設計的實驗裝置,在太陽熱增益範圍為400至1000 W/m²的控制環境中,系統地評估了熔點為28°C、37°C和43°C的三種mPCM配置。評估指標包括發電能力、熱調節有效性、冷卻負荷減少、能量比率和瞬時熱穿透率。

    研究結果表明,熔點選擇對熱管理和能量收集性能具有決定性影響。37°C mPCM配置在能量產生和熱調節方面表現卓越,在1000 W/m²熱流下達到114.58 mW/m²的峰值發電量——比28°C系統高31%,比43°C系統高5.6%。此外,37°C mPCM提供了83.78 kJ/m²的冷卻負荷減少,比28°C配置提高了30%。43°C mPCM在高溫下表現出較強的熱緩衝能力,但儲存能量釋放過快,無法維持持續發電效能。37°C mPCM在各種熱增益條件下提供平衡性能,而43°C變體則在極端高溫條件下表現卓越。

    本研究成果增進了對建築外圍護結構中耦合熱-電過程的理論認識,且為TEG-mPCM系統在可持續建築中的應用提供具體設計依據,展現現代建築於節能及再生能源利用之潛力。

    This study investigates the thermal and electrical performance of an integrated thermoelectric generator and microencapsulated phase change material (TEG-mPCM) system applied to reinforced concrete (RC) roof assemblies. To meet growing demands for energy-efficient building solutions, multifunctional building envelopes capable of both thermal regulation and energy harvesting are essential. This research addresses key gaps: systematic evaluation of mPCM melting point selection for roof applications, comprehensive experimental validation under varied heat flux conditions, and the lack of clear design guidelines.

    Three mPCM configurations (28°C, 37°C, and 43°C melting points) were experimentally evaluated using a custom-designed setup under solar radiation ranging from 400 to 1000 W/m². Key metrics included power generation, thermal regulation, cooling load reduction, energy ratio, and instantaneous thermal penetration rate.

    Results revealed significant influence of melting point selection on system performance. The 37°C mPCM configuration consistently demonstrated superior performance in energy generation and thermal regulation, achieving peak power generation of 114.58 mW/m² under 1000 W/m² heat flux—31% higher than the 28°C system and 5.6% higher than the 43°C system. Additionally, the 37°C mPCM delivered cooling load reduction of 83.78 kJ/m², representing a 30% improvement over the 28°C configuration. The 43°C mPCM exhibited enhanced thermal buffering capacity at high temperatures but released stored energy too rapidly to maintain sustained power generation.

    The findings highlight the 37°C mPCM's optimal balance between thermal regulation and energy generation capabilities, providing critical insights and practical guidelines for sustainable and energy-efficient building designs.

    摘要 I ABSTRACT II ACKNOWLEDGEMENT III CONTENTS IV LIST OF TABLES VII LIST OF FIGURES VIII LIST OF EQUATIONS X LIST OF SYMBOLS XI LIST OF ABBREVIATIONS XII CHAPTER 1 INTRODUCTION 1 1.1 Background of Building Energy Consumption 1 1.2 Building Envelope Contribution to Energy Usage 2 1.3 Problem Statement and Research Gaps 3 1.4 Research Objectives 4 1.5 Research Significance and Novelty 5 1.6 Thesis Structure 6 CHAPTER 2 LITERATURE REVIEW 7 2.1 Thermoelectricity and thermoelectric generators 7 2.2 Microcapsulated Phase Change Material (mPCM) 9 2.3 Recent Advancements in Building-Integrated TEGs and PCM 10 2.3.1 Wall and Façade Applications 10 2.3.2 Roof Applications 12 2.3.3 Melting Point Selection Considerations15 CHAPTER 3 EXPERIMENTAL METHODOLOGY 17 3.1 Research Framework and Design 17 3.2 Materials Selection and Characterization 19 3.3 Experimental Setup Development 22 3.4 Testing Parameters and Conditions 23 3.5 Data Collection and Measurement Methods 24 3.6 Calculation Methods and Performance Metrics 26 3.7 Experimental Uncertainty Analysis 28 CHAPTER 4 PERFORMANCE EVALUATION OF 28°C MPCM CONFIGURATION 29 4.1 Power Generation Capability per unit area 29 4.1.1 Power Output Profiles 29 4.1.2 Peak Power Generation Analysis 30 4.1.3 Bidirectional Energy Harvesting Characteristics 32 4.2 Thermal Performance 33 4.2.1 Temperature Profiles and Patterns of RC slab 33 4.2.2 Phase Change Behavior of mPCM 35 4.3 Instantaneous Fractional Heat Penetration 37 CHAPTER 5 PERFORMANCE EVALUATION OF 37°C MPCM CONFIGURATION 39 5.1 Power Generation Capability per unit area 39 5.1.1 Power Output Profiles Under Various Heat Gains 39 5.1.2 Peak Power Generation Analysis 40 5.1.3 Bidirectional Energy Harvesting Characteristics 41 5.2 Thermal Performance 43 5.2.1 Temperature Profiles and Patterns of RC slab 43 5.2.2 Phase Change Behavior of mPCM 44 5.3 Instantaneous Fractional Heat Penetration 46 CHAPTER 6 PERFORMANCE EVALUATION OF 43°C MPCM CONFIGURATION 48 6.1 Power Generation Capability per unit area 48 6.1.1 Power Output Profiles Under Various Heat Gains 48 6.1.2 Peak Power Generation Analysis 49 6.1.3 Bidirectional Energy Harvesting Characteristics 50 6.2 Thermal Performance 52 6.2.1 Temperature Profiles and Patterns of RC slab 52 6.2.2 Phase Change Behavior of mPCM 53 6.3 Instantaneous Fractional Heat Penetration 55 CHAPTER 7 COMPARATIVE ANALYSIS AND PERFORMANCE OPTIMIZATION 57 V7.1 Comparative Performance Assessment 57 7.1.1 Cooling load Comparison 57 7.1.2 Energy Ratio Comparison 59 7.1.3 Daily energy output comparison 60 7.2 Melting Point Selection Optimization 62 7.2.1 Effect of mPCM Melting Point on Power Generation 63 7.2.2 Effect of mPCM Melting Point on Thermal Management 65 7.2.3 Optimal Melting Points for Different Environmental Conditions 66 7.2.4 Melting Point Selection Guidelines 67 CHAPTER 8 CONCLUSIONS AND FUTURE WORK 69 8.1 Summary of Key Findings 69 8.1.1 Experimental Performance Results 69 8.1.2 Comparative Analysis Insights 70 8.1.3 Implementation Guidelines 70 8.2 Contributions to Knowledge 71 8.2.1 Theoretical Contributions 71 8.2.2 Methodological Contributions 72 8.2.3 Practical Applications 73 8.3 Limitations of the Study 73 8.3.1 Experimental Limitations 73 8.3.2 Modeling Constraints 74 8.3.3 Implementation Challenges 75 8.3.4 Validation Restrictions 76 8.4 Recommendations for Future Research 76 8.4.1 Advanced Material Development 76 8.4.2 System Integration Enhancement 77 8.4.3 Large-Scale Implementation Studies 78 8.4.4 Novel Application Areas 79 REFERENCES 80 APPENDIX 84

    [1] “Energy system, Buildings,” Paris, 2022. Accessed: Sep. 18, 2023. [Online]. Available: https://www.iea.org/reports/buildings
    [2] X. Cao, X. Dai, and J. Liu, “Building energy-consumption status worldwide and the state-of-the-art technologies for zero-energy buildings during the past decade,” Energy Build, vol. 128, pp. 198–213, Sep. 2016, doi: 10.1016/J.ENBUILD.2016.06.089.
    [3] L. Pérez-Lombard, J. Ortiz, and C. Pout, “A review on buildings energy consumption information,” Energy Build, vol. 40, no. 3, pp. 394–398, Jan. 2008, doi: 10.1016/J.ENBUILD.2007.03.007.
    [4] “The Future of Cooling,” 2018.
    [5] European Commission, “Nearly-zero energy and zero-emission buildings.”
    [6] H. Akbari and H. D. Matthews, “Global cooling updates: Reflective roofs and pavements,” Energy Build, vol. 55, pp. 2–6, Dec. 2012, doi: 10.1016/J.ENBUILD.2012.02.055.
    [7] K. M. Al-Obaidi, M. Ismail, and A. M. Abdul Rahman, “Passive cooling techniques through reflective and radiative roofs in tropical houses in Southeast Asia: A literature review,” Frontiers of Architectural Research, vol. 3, no. 3, pp. 283–297, Sep. 2014, doi: 10.1016/J.FOAR.2014.06.002.
    [8] A. Khabaz, “Construction and design requirements of green buildings’ roofs in Saudi Arabia depending on thermal conductivity principle,” Constr Build Mater, vol. 186, pp. 1119–1131, Oct. 2018, doi: 10.1016/J.CONBUILDMAT.2018.07.234.
    [9] A. Synnefa, M. Santamouris, and I. Livada, “A study of the thermal performance of reflective coatings for the urban environment,” Solar Energy, vol. 80, no. 8, pp. 968–981, Aug. 2006, doi: 10.1016/J.SOLENER.2005.08.005.
    [10] S. B. Sadineni, S. Madala, and R. F. Boehm, “Passive building energy savings: A review of building envelope components,” Renewable and Sustainable Energy Reviews, vol. 15, no. 8, pp. 3617–3631, Oct. 2011, doi: 10.1016/J.RSER.2011.07.014.
    [11] S. E. Kalnæs and B. P. Jelle, “Phase change materials and products for building applications: A state-of-the-art review and future research opportunities,” Energy Build, vol. 94, pp. 150–176, May 2015, doi: 10.1016/J.ENBUILD.2015.02.023.
    [12] N. Jaziri, A. Boughamoura, J. Müller, B. Mezghani, F. Tounsi, and M. Ismail, “A comprehensive review of Thermoelectric Generators: Technologies and common applications,” Energy Reports, vol. 6, pp. 264–287, Dec. 2020, doi: 10.1016/J.EGYR.2019.12.011.
    [13] K. W. Shah et al., “Application of phase change materials in building components and the use of nanotechnology for its improvement,” Energy Build, vol. 262, p. 112018, May 2022, doi: 10.1016/J.ENBUILD.2022.112018.
    [14] C. M. Lai and S. Hokoi, “Thermal performance of an aluminum honeycomb wallboard incorporating microencapsulated PCM,” Energy Build, vol. 73, pp. 37–47, Apr. 2014, doi: 10.1016/J.ENBUILD.2014.01.017.
    [15] S. M. Wang, P. Matiašovský, P. Mihálka, and C. M. Lai, “Experimental investigation of the daily thermal performance of a mPCM honeycomb wallboard,” Energy Build, vol. 159, pp. 419–425, Jan. 2018, doi: 10.1016/J.ENBUILD.2017.10.080.
    [16] T. J. Seebeck, “Ueber die magnetische Polarisation der Metalle und Erze durch Temperaturdifferenz,” Verlag von Wilhelm Engelman, 1826.
    [17] D. Champier, “Thermoelectric generators: A review of applications,” Energy Convers Manag, vol. 140, pp. 167–181, May 2017, doi: 10.1016/J.ENCONMAN.2017.02.070.
    [18] J. C. Peltier, “Nouvelles expériences sur la caloricité des courants électriques.,” Annales de Chimie et de Physique, vol. 56, pp. 371–386, 1834.
    [19] W. Thomson, “ On the Dynamical Theory of Heat Transfer.,” Trans. R. Soc. Edinb., vol. 3, pp. 91–98, 1851.
    [20] E. Altenkirch, “Über den nutzeffekt der thermosäule. ,” Physikalische Zeitschrift, vol. 10, no. 560, 1909.
    [21] C. W. T. Hendricks Terry, “Engineering scoping study of thermoelectric generator systems for industrial waste heat recovery,” Pacific Northwest National Lab.(PNNL), Richland, WA (United States), 2006.
    [22] C. Roy, “ Manufacture of Thermoelectric Devices. ,” U.S. Patent , vol. 2980746A, 1961.
    [23] O. H. Ando Junior, A. L. O. Maran, and N. C. Henao, “A review of the development and applications of thermoelectric microgenerators for energy harvesting,” Aug. 01, 2018, Elsevier Ltd. doi: 10.1016/j.rser.2018.03.052.
    [24] R. Aridi, J. Faraj, S. Ali, T. Lemenand, and M. Khaled, “Thermoelectric Power Generators: State-of-the-Art, Heat Recovery Method, and Challenges,” Sep. 01, 2021, Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/electricity2030022.
    [25] Y. Altin and A. Çelik Bedeloğlu, “Energy storage textile,” Advances in Functional and Protective Textiles, pp. 493–529, 2020, doi: 10.1016/B978-0-12-820257-9.00019-9.
    [26] P. Jaffar Abass and S. Muthulingam, “Incorporation of phase change materials into building materials and envelopes for thermal comfort and energy optimization: A comprehensive review,” Journal of Building Engineering, vol. 103, p. 112106, Jun. 2025, doi: 10.1016/J.JOBE.2025.112106.
    [27] S. K. Jha, A. Sankar, Y. Zhou, and A. Ghosh, “Incorporation of Phase Change Materials in Buildings,” Construction Materials, vol. 4, no. 4, pp. 676–703, Oct. 2024, doi: 10.3390/constrmater4040037.
    [28] V. V. Tyagi, S. C. Kaushik, S. K. Tyagi, and T. Akiyama, “Development of phase change materials based microencapsulated technology for buildings: A review,” Renewable and Sustainable Energy Reviews, vol. 15, no. 2, pp. 1373–1391, Feb. 2011, doi: 10.1016/J.RSER.2010.10.006.
    [29] Z. A. Liu et al., “Effectiveness assessment of different kinds/configurations of phase-change materials (PCM) for improving the thermal performance of lightweight building walls in summer and winter,” Renew Energy, vol. 202, pp. 721–735, Jan. 2023, doi: 10.1016/J.RENENE.2022.12.009.
    [30] L. Ma et al., “Energy performance of a rural residential building with PCM-silica aerogel sunspace in severe cold regions,” Energy Build, vol. 280, p. 112719, Feb. 2023, doi: 10.1016/J.ENBUILD.2022.112719.
    [31] R. Al Shannaq and M. M. Farid, “Microencapsulation of phase change materials (PCMs) for thermal energy storage systems,” Advances in Thermal Energy Storage Systems: Methods and Applications, pp. 247–284, Jan. 2015, doi: 10.1533/9781782420965.2.247.
    [32] S. Lae Yi Win, C. T. Liao, H. Y. Chang, and C. M. Lai, “Experimental observations on electricity generation and thermal characteristics of TEG façades,” Energy Build, vol. 294, Sep. 2023, doi: 10.1016/j.enbuild.2023.113225.
    [33] J. Ko and J. W. Jeong, “Annual performance evaluation of thermoelectric generator-assisted building-integrated photovoltaic system with phase change material,” Renewable and Sustainable Energy Reviews, vol. 145, Jul. 2021, doi: 10.1016/j.rser.2021.111085.
    [34] Y. K. Kang, J. Joung, M. Kim, and J. W. Jeong, “Energy impact of heat pipe-assisted microencapsulated phase change material heat sink for photovoltaic and thermoelectric generator hybrid panel,” Renew Energy, vol. 207, pp. 298–308, May 2023, doi: 10.1016/J.RENENE.2023.03.042.
    [35] M. A. T. I. Tehseen Ilahi, “Design and analysis of thermoelectric material based roof top energy harvesting system for Pakistan,” Jun. 10, 2015, IEEE, Islamabad, Pakistan.
    [36] Y. Tong and W. Yang, “Numerical analysis and experimental study on the thermoelectric characteristics of the Al–Si alloy used for building energy storage tile,” Renew Energy, vol. 200, pp. 1447–1457, Nov. 2022, doi: 10.1016/j.renene.2022.10.068.
    [37] Y. K. Kang, J. Joung, S. Kim, J. Park, and J. W. Jeong, “Design of a thermoelectric generator-assisted photovoltaic panel hybrid harvester using microencapsulate phase change material,” Journal of Building Engineering, vol. 87, p. 109110, Jun. 2024, doi: 10.1016/J.JOBE.2024.109110.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE