簡易檢索 / 詳目顯示

研究生: 李玟慧
Li, Wen-Hui
論文名稱: 以水性塗佈製程製備功能性聚酯紡織品
Fabrication of Functional Polyester Fabrics by Using Waterborne Coating Process
指導教授: 楊毓民
Yang, Yu-Min
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 101
中文關鍵詞: 水性製程雙疏紡織品油水分離化學穩定性耐久性自癒
外文關鍵詞: Waterborne process, Amphiphobic textiles, Oil-water separation, Chemical stability, Durability, Self-healing
相關次數: 點閱:126下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 紡織品可經由處理與設計,使其具備疏水、疏油、自潔、自癒(self-healing)及化學穩定等功能性,進而發展防護性服裝、油水分離等各種應用,因此廣泛受到學術界和工業界的關注。本研究以環境友善的水性製程,將材料塗佈於紡織品,創造出對水及各種油體具不同疏液性質之織物,例如: 超疏水/疏油之雙疏表面以及超疏水/親油表面,且具有自癒、抗物理、化學特性。實驗採用簡單的一鍋(one-pot) 製程,選用水性鐵氟龍分散體 (PTFE DISP)、疏水改質二氧化矽奈米粒子 (HM SiO2)、1H, 1H, 2H, 2H-全氟癸基三乙氧基矽烷 (FAS-17) 及水性聚氨酯 (WPU) 為材料,利用雙尺寸粒子創造粗糙度,添加全氟矽烷降低材料表面能,以及水性聚氨酯用來改善耐久性。
    實驗結果顯示,將PTFE DISP/HM SiO2/FAS-17/WPU溶液浸塗於紡織品,可得到超疏水及疏油織物,對表面張力大於27.1 mN/m的液體之接觸角大於97.3°,且具備自潔、自癒及耐久性,可應用於防護性服裝。而使用PTFE DISP/FAS-17溶液塗佈的織物則展現超疏水及親油性質,利用其對水及油體疏液性的差異,在油水分離應用上有發展的潛力。

    The functional textile surfaces for various applications, such as protection garments and oil/water separation, have attracted a lot of interests in both academia and industry. Nowadays, waterborne coating systems are highly desirable because of high safety and non-environmental impact. In this work, using PTFE aqueous dispersion (PTFE DISP), hydrophobically modified silica nanoparticles (HM SiO2), 1H, 1H, 2H, 2H-perfluorodecyltriethoxysilane (FAS-17) and waterborne polyurethane (WPU) to form a stable, homogeneous waterborne solution. This coating solution was then applied onto the twill weave polyester fabrics. For textiles with a micro-scale fiber structure, nanoscale particles are coated onto the surface to create the hierarchical structure. The fluorination is for lowering the surface energy and the WPU is for enhancing the mechanical durability.
    The fabrics coated with PTFE DISP/HM SiO2/FAS-17/WPU exhibited liquid repellency as signified by high static contact angles (≧97.3∘) against five pure liquids (water, ethylene glycol, sunflower oil, hexadecane, pentadecane) with surface tension values ranging from 72.8 to 27.1 mN/m. The coated fabrics also show chemical stability, mechanical stability and self-healing, which may find its application in protection garments. Moreover, the fabrics coated with PTFE DISP/FAS-17 are superhydrophobic/olephilic, which can be applied to oil/water separation based on differences in wettability of oil and water.

    摘要 I Extended Abstract II 致謝 XV 目錄 XVI 表目錄 XXI 圖目錄 XXIII 第一章 緒論 1 1.1 前言 1 1.2 研究動機與研究目的 2 第二章 文獻回顧 3 2.1 超疏水表面理論 3 2.1.1 蓮花效應 (Lotus effect) 3 2.1.2 超疏水表面之表徵 5 2.1.3 楊氏 (Young) 方程式 7 2.1.4 溫佐 (Wenzel) 方程式 8 2.1.5 卡西-巴斯特 (Cassie and Baxter) 方程式 9 2.1.6 介於溫佐和卡西-巴斯特兩狀態之間的過渡狀態 10 2.2 超雙疏表面的理論基礎 12 2.2.1 結構參數 13 2.2.2 化學參數 16 2.3 超雙疏紡織品的製備 17 2.3.1預粗糙化和後氟化 18 2.3.2一鍋法 20 2.4 水性製程製備功能性表面 22 2.5 複合材料 24 2.5.1有機/無機奈米複合材料 24 2.5.2無機奈米粒子疏水改質 27 2.6 表面之機械耐久性 29 2.7 油水分離 33 第三章 實驗內容 40 3.1 實驗藥品 40 3.1.1 製備疏水改質二氧化矽奈米粒子 40 3.1.2 製備奈米複合分散液材料 40 3.1.3 測試液體 41 3.2 儀器設備與裝置 43 3.2.1 Milli-Q超純水系統 43 3.2.2 加熱攪拌器 (Hot plate stirrer) 44 3.2.3 箱型高溫爐 (Muffle furnace) 44 3.2.4 掃描式電子顯微鏡 (Scanning electron microscope) 45 3.2.5 X-光能量散佈光譜儀 (X-ray energy dispersive spectrometer) 46 3.2.6 接觸角分析儀 (Contact angle measure analyzer) 47 3.2.7 傅立葉轉換紅外光譜儀 (Fourier Transform Infrared Spectroscopy, FTIR) 48 3.2.8 氧電漿表面處理系統 (Oxygen plasma) 49 3.3 實驗方法 51 3.3.1 聚酯纖維紡織品的前置處理 51 3.3.2 疏水化改質二氧化矽奈米粒子 (HM SiO2) 製備 51 3.3.3 含氟聚合物分散體的配製 52 3.3.4 以浸塗法 (dip-coating) 塗佈聚酯纖維紡織品 53 3.3.5 雙疏紡織品之電漿測試 53 第四章 結果與討論 54 4.1 以水性塗佈製程製備雙疏聚酯紡織品表面 55 4.1.1 PET紡織品塗佈PTFE DISP之潤濕性質 55 4.1.2 PET紡織品塗佈PTFE DISP/FAS-17之潤濕性質 57 4.1.3 PET紡織品塗佈PTFE DISP/HM SiO2/FAS-17之潤濕性質 59 4.1.4 塗佈紡織品的表面型態 64 4.2 利用水性聚氨酯增強塗佈紡織品之機械穩定性 66 4.2.1 膠帶剝離測試 66 4.2.2 PET紡織品塗佈PTFE DISP/FAS-17/WPU之潤濕性質及耐久性測試 67 4.2.3 PET紡織品塗佈PTFE DISP/HM SiO2/FAS-17/WPU之潤濕性質及耐久性測試 70 4.2.4 塗佈紡織品之機械耐久性測試 72 4.3 應用:防護性服裝及油水分離 76 4.3.1 塗佈紡織品疏液性及其應用的關係 76 4.3.2 塗佈紡織品應用於防護性服裝之特性 78 4.3.3 塗佈紡織品應用於油水分離 87 第五章 結論與建議 94 5.1 結論 94 5.2 建議 96 第六章 參考文獻 97

    1. Barthlott, W.; Neinhuis, C., Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta, 202 (1), 1-8, 1997.
    2. Neinhuis, C.; Barthlott, W., Characterization and distribution of water-repellent, self-cleaning plant surfaces. Annals of botany, 79 (6), 667-677, 1997.
    3. Zimmermann, J.; Seeger, S.; Reifler, F. A., Water shedding angle: a new technique to evaluate the water-repellent properties of superhydrophobic surfaces. Textile Research Journal, 79 (17), 1565-1570, 2009.
    4. Li, S.; Huang, J.; Chen, Z.; Chen, G.; Lai, Y., A review on special wettability textiles: theoretical models, fabrication technologies and multifunctional applications. Journal of Materials Chemistry A, 5 (1), 31-55, 2017.
    5. Chu, Z.; Seeger, S., Superamphiphobic surfaces. Chemical Society Reviews, 43 (8), 2784-2798, 2014.
    6. Wenzel, R. N., Resistance of solid surfaces to wetting by water. Industrial & Engineering Chemistry, 28 (8), 988-994, 1936.
    7. Cassie, A.; Baxter, S., Wettability of porous surfaces. Transactions of the Faraday society, 40, 546-551, 1944.
    8. Feng, X. J.; Jiang, L., Design and creation of superwetting/antiwetting surfaces. Advanced Materials, 18 (23), 3063-3078, 2006.
    9. Bormashenko, E.; Grynyov, R.; Chaniel, G.; Taitelbaum, H.; Bormashenko, Y., Robust technique allowing manufacturing superoleophobic surfaces. Applied Surface Science, 270, 98-103, 2013.
    10. Liu, X.; Liang, Y.; Zhou, F.; Liu, W., Extreme wettability and tunable adhesion: biomimicking beyond nature? Soft Matter, 8 (7), 2070-2086, 2012.
    11. Bico, J.; Thiele, U.; Que´re´, D., Wetting of textured surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 206 (1), 41-46, 2002.
    12. Tuteja, A.; Choi, W.; Ma, M.; Mabry, J. M.; Mazzella, S. A.; Rutledge, G. C.; McKinley, G. H.; Cohen, R. E., Designing superoleophobic surfaces. Science, 318 (5856), 1618-1622, 2007.
    13. Li, L.; Breedveld, V.; Hess, D. W., Design and fabrication of superamphiphobic paper surfaces. ACS Applied Materials & Interfaces, 5 (11), 5381-5386, 2013.
    14. Chen, L.; Guo, Z.; Liu, W., Outmatching superhydrophobicity: bio-inspired re-entrant curvature for mighty superamphiphobicity in air. Journal of Materials Chemistry A, 5 (28), 14480-14507, 2017.
    15. Helbig, R.; Nickerl, J.; Neinhuis, C.; Werner, C., Smart skin patterns protect springtails. PLoS ONE, 6 (9), e25105, 2011.
    16. Kota, A. K.; Mabry, J. M.; Tuteja, A., Superoleophobic surfaces: design criteria and recent studies. Surface Innovations, 1 (2), 71-83, 2013.
    17. Cao, L.; Hu, H.-H.; Gao, D., Design and fabrication of micro-textures for inducing a superhydrophobic behavior on hydrophilic materials. Langmuir, 23 (8), 4310-4314, 2007.
    18. Cao, L.; Price, T. P.; Weiss, M.; Gao, D., Super water-and oil-repellent surfaces on intrinsically hydrophilic and oleophilic porous silicon films. Langmuir, 24 (5), 1640-1643, 2008.
    19. Tuteja, A.; Choi, W.; McKinley, G. H.; Cohen, R. E.; Rubner, M. F., Design Parameters for Superhydrophobicity and Superoleophobicity. MRS Bulletin, 33 (08), 752-758, 2008.
    20. Jiang, T.; Guo, Z.; Liu, W., Biomimetic superoleophobic surfaces: focusing on their fabrication and applications. Journal of Materials Chemistry A, 3 (5), 1811-1827, 2015.
    21. Tuteja, A.; Choi, W.; Ma, M.; Mabry, J. M.; Mazzella, S. A.; Rutledge, G. C.; McKinley, G. H.; Cohen, R. E., Designing superoleophobic surfaces. Science, 318 (5856), 1618-1622, 2007.
    22. Zhou, H.; Zhao, Y.; Wang, H.; Lin, T., Recent Development in durable super‐liquid‐repellent fabrics. Advanced Materials Interfaces, 3 (23), 1600402 (20 pages), 2016.
    23. Kota, A. K.; Kwon, G.; Tuteja, A., The design and applications of superomniphobic surfaces. NPG Asia Materials, 6 (7), e109 (16 pages), 2014.
    24. Joly, L.; Biben, T., Wetting and friction on superoleophobic surfaces. Soft Matter, 5 (13), 2549-2557, 2009.
    25. Wen, G.; Guo, Z.; Liu, W., Biomimetic polymeric superhydrophobic surfaces and nanostructures: from fabrication to applications. Nanoscale, 9 (10), 3338-3366, 2017.
    26. Honda, K.; Morita, M.; Sakata, O.; Sasaki, S.; Takahara, A., Effect of surface molecular aggregation state and surface molecular motion on wetting behavior of water on poly(fluoroalkyl methacrylate) thin films. Macromolecules, 43 (1), 454-460, 2010.
    27. Kwon, G.; Post, E.; Tuteja, A., Membranes with selective wettability for the separation of oil–water mixtures. MRS Communications, 5 (03), 475-494, 2015.
    28. Xue, C. H.; Li, Y. R.; Zhang, P.; Ma, J. Z.; Jia, S. T., Washable and wear-resistant superhydrophobic surfaces with self-cleaning property by chemical etching of fibers and hydrophobization. ACS Applied Materials & Interfaces, 6 (13), 10153-10161, 2014.
    29. Xu, B.; Ding, Y.; Qu, S.; Cai, Z., Superamphiphobic cotton fabrics with enhanced stability. Applied Surface Science, 356, 951-957, 2015.
    30. Zhou, H.; Wang, H.; Niu, H.; Fang, J.; Zhao, Y.; Lin, T., Superstrong, chemically stable, superamphiphobic fabrics from particle-free polymer coatings. Advanced Materials Interfaces, 2 (6), 1400559 (8 pages), 2015.
    31. Milionis, A.; Dang, K.; Prato, M.; Loth, E.; Bayer, I. S., Liquid repellent nanocomposites obtained from one-step water-based spray. Journal of Materials Chemistry A, 3 (24), 12880-12889, 2015.
    32. Xu, L.; Zhuang, W.; Xu, B.; Cai, Z., Superhydrophobic cotton fabrics prepared by one-step water-based sol–gel coating. The Journal of The Textile Institute, 103 (3),311-319, 2012.
    33. Zhang, J.; Gao, Z.; Li, L.; Li, B.; Sun, H., Waterborne nonfluorinated superhydrophobic coatings with exceptional mechanical durability based on natural nanorods. Advanced Materials Interfaces, 4 (19), 1700723 (9 pages), 2017.
    34. 徐國財, 張立德, 奈米複合材料. 五南圖書出版股份有限公司: 2004.
    35. Basu, B. J.; Dinesh Kumar, V., Fabrication of superhydrophobic nanocomposite coatings using polytetrafluoroethylene and silica nanoparticles. ISRN Nanotechnology, 2011, 803916 (6 pages), 2011.
    36. Zhou, H.; Wang, H.; Niu, H.; Gestos, A.; Lin, T., Robust, self-healing superamphiphobic fabrics prepared by two-step coating of fluoro-containing polymer, fluoroalkyl silane, and modified silica nanoparticles. Advanced Functional Materials, 23 (13), 1664-1670, 2013.
    37. Rahmawan, Y.; Xu, L.; Yang, S., Self-assembly of nanostructures towards transparent, superhydrophobic surfaces. Journal of Materials Chemistry A, 1 (9), 2955-2969, 2013.
    38. 楊毓民, 張鑑祥, 分子層級的薄膜表面形態控制-逐層組裝技術. 化工技術, 12, 135-144, 2004.
    39. Liu, M.; Hou, Y.; Li, J.; Tie, L.; Peng, Y.; Guo, Z., Inorganic adhesives for robust, self-healing, superhydrophobic surfaces. Journal of Materials Chemistry A, 5 (36), 19297-19305, 2017.
    40. Gupta, R. K.; Dunderdale, G. J.; England, M. W.; Hozumi, A., Oil/water separation techniques: a review of recent progresses and future directions. Journal of Materials Chemistry A, 5 (31), 16025-16058, 2017.
    41. Worthington, M. J. H.; Shearer, C. J.; Esdaile, L. J.; Campbell, J. A.; Gibson, C. T.; Legg, S. K.; Yin, Y.; Lundquist, N. A.; Gascooke, J. R.; Albuquerque, I. S.; Shapter, J. G.; Andersson, G. G.; Lewis, D. A.; Bernardes, G. J. L.; Chalker, J. M., Sustainable polysulfides for oil spill remediation: repurposing industrial waste for environmental benefit. Advanced Sustainable Systems, 2 (6), 1800024 (7 pages), 2018.
    42. Zhou, H.; Wang, H.; Niu, H.; Lin, T., Superphobicity/philicity Janus fabrics with switchable, spontaneous, directional transport ability to water and oil fluids. Scientific Reports, 3, 2964 (6 pages), 2013.
    43. Wang, H.; Zhou, H.; Niu, H.; Zhang, J.; Du, Y.; Lin, T., Dual-layer superamphiphobic/superhydrophobic-oleophilic nanofibrous membranes with unidirectional oil-transport ability and strengthened oil-water separation performance. Advanced Materials Interfaces, 2 (4), 1400506 (7 pages), 2015.
    44. 韓志偉, 簡易塗佈PVDF-HFP/FAS-13/HM-SiNPs奈米複合材料製備全疏滑溜表面. 國立成功大學碩士論文 2017.
    45. Surface Energy Data for Various Polymers. Available at: https://www.accudynetest.com/polytable_03.html. Acessed 21 June 2018
    46. Chen, C. C.; Chen, C. J.; Chen, S. A.; Li, W. H.; Yang, Y. M., Fabrication of highly transparent slippery surfaces with omniphobicity by an improved process using non-solvent-induced phase separation. Colloid and Polymer Science, 296 (2), 319-326, 2018.
    47. Sójka-Ledakowicz, J.; Kudzin, MH., Effect of plasma modification on the chemical structure of a polyethylene terephthalate fabrics surface. Fibers & Textiles in Eastern Europe, 22, 6 (108), 118-122, 2014.
    48. Wang, H.; Xue, Y.; Ding, J.; Feng, L.; Wang, X.; Lin, T., Durable, self-healing superhydrophobic and superoleophobic surfaces from fluorinated-decyl polyhedral oligomeric silsesquioxane and hydrolyzed fluorinated alkyl silane. Angewandte Chemie International Edition, 50 (48), 11433-11436, 2011.
    49. Gouveia, I. C.; Antunes, L. C.; Gomes, A. P., Low‐pressure plasma treatment for hydrophilization of poly(ethylene terephthalate) fabrics. The Journal of The Textile Institute, 102 (3), 203-213, 2011.
    50. Zhou, H., Durable non-wetting fabric: their preparation and wicking function. Deakin University, PhD dissertation, 2014.

    下載圖示 校內:2021-08-07公開
    校外:2021-08-07公開
    QR CODE