| 研究生: |
方讚納 Fauzan, Aznar |
|---|---|
| 論文名稱: |
過氧化氫對預混C2H4/空氣火焰中煙塵形成的影響 Effects of Hydrogen Peroxide on Soot Formation in Premixed C2H4/ Air Flames |
| 指導教授: |
陳冠邦
Chen, Guan-Bang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 能源工程國際碩博士學位學程 International Master/Doctoral Degree Program on Energy Engineering |
| 論文出版年: | 2026 |
| 畢業學年度: | 114 |
| 語文別: | 英文 |
| 論文頁數: | 120 |
| 中文關鍵詞: | 煙塵形成 、過氧化氫(H2O2) 、預混C2H4/空氣火焰 、多環芳香烴(PAHs) 、當量比 |
| 外文關鍵詞: | Soot Formation, Hydrogen Peroxide (H2O2), Premixed C2H4/Air Flames, Polycyclic Aromatic Hydrocarbons (PAHs), Equivalence Ratio |
| 相關次數: | 點閱:7 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
碳氫燃料燃燒中的煙灰生成是重要的環境與健康議題,尤其在富燃條件下,不完全氧化更容易促進煙灰前驅物與顆粒物的生成。本研究以詳細數值模擬探討過氧化氫(H2O2)添加對預混乙烯(C2H4)/空氣火焰煙灰生成的影響,採用 ANSYS CHEMKIN-Pro 進行一維層流預混火焰計算,並使用 ABF 1 bar 化學動力學機構,涵蓋 PAHs 化學反應與基於氫抽取/乙炔加成(HACA)的表面成長機制。研究系統性變動三項參數:當量比 (ϕ)、H2O2 添加比例與 H2O2 濃度,並分析乙炔(C2H2)、PAHs(A1–A4)、火焰溫度與煙灰粒子數密度的分佈以闡明煙灰生成行為。結果顯示當量比(ϕ)為主導因子;在超富燃(ϕ ≥ 3.0)下,因氧化能力受限,PAHs 生長顯著增強,即使自由基濃度增加亦然。生成速率(ROP)分析指出,H2O2 添加可提升 OH 自由基供給,加速 C2H4 消耗並強化 C2H2 轉化,使關鍵前驅物更早生成但也更快被氧化。田口法統計分析進一步確認影響程度排序為 ϕ > H2O2 濃度 > H2O2 添加比例;在所有模擬條件中,ϕ = 2.2、H2O2 添加 50%、H2O2 濃度 100% 可得到最低粒子數密度,為最佳抑制煙灰生成的操作條件。
Soot formation in hydrocarbon combustion is a major environmental and health concern, particularly under fuel-rich conditions that favor incomplete oxidation and the growth of soot precursors. This study numerically examines the impact of hydrogen peroxide (H2O2) addition on soot formation in premixed ethylene (C2H4)/air flames using one-dimensional laminar premixed-flame simulations in ANSYS CHEMKIN-Pro with the ABF 1-bar detailed kinetic mechanism incorporating PAH chemistry and the HACA framework. The effects of equivalence ratio (ϕ), H2O2 addition level, and H2O2 concentration were systematically evaluated by analyzing profiles of C2H2, PAHs (A1–A4), temperature, and soot particle number density. Results show that ϕ is the dominant factor: ultra-rich flames (ϕ ≥ 3.0) markedly enhance PAH growth due to limited oxidation capacity, even with increased radical availability. Rate-of-production analysis indicates that H2O2 boosts OH radicals, accelerating C2H4 consumption and intensifying C2H2 turnover, which promotes earlier precursor formation but also faster oxidation of key soot-forming species. Taguchi analysis ranks parameter importance as ϕ > H2O2 concentration > H2O2 addition level, and the optimal soot-suppression condition is identified at ϕ = 2.2 with 50% H2O2 addition and 100% H2O2 concentration, yielding the lowest particle number density among all cases.
[1] J. Xi, G. Yang, J. Cai, and Z. Gu, “A Review of Recent Research Results on Soot: The Formation of a Kind of Carbon-Based Material in Flames,” Front. Mater., vol. 8, no. May, pp. 1–6, 2021, doi: 10.3389/fmats.2021.695485.
[2] M. Commodo, F. Picca, G. Vitiello, G. De Falco, P. Minutolo, and A. D’Anna, “Radicals in nascent soot from laminar premixed ethylene and ehtylene-benzene flames by electron paramagnetic resonance spectroscopy,” Proceedings of the Combustion Institute, vol. 38, no. 1, pp. 1487–1495, 2021, doi: 10.1016/j.proci.2020.08.024.
[3] T. R. Barfknecht, “Toxicology of soot,” Prog. Energy Combust. Sci., vol. 9, no. 3, pp. 199–237, 1983, doi: 10.1016/0360-1285(83)90002-3.
[4] G. B. Chen, Y. H. Li, T. S. Cheng, H. W. Hsu, and Y. C. Chao, “Effects of hydrogen peroxide on combustion enhancement of premixed methane/air flames,” Int. J. Hydrogen Energy, vol. 36, no. 23, pp. 15414–15426, Nov. 2011, doi: 10.1016/J.IJHYDENE.2011.07.074.
[5] Z. Yin, S. Liu, D. Tan, Z. Zhang, Z. Wang, and B. Wang, “A review of the development and application of soot modelling for modern diesel engines and the soot modelling for different fuels,” Process Safety and Environmental Protection, vol. 178, no. May, pp. 836–859, 2023, doi: 10.1016/j.psep.2023.08.075.
[6] F. Ferraro, C. Russo, R. Schmitz, C. Hasse, and M. Sirignano, “Experimental and numerical study on the effect of oxymethylene ether-3 (OME3) on soot particle formation,” Fuel, vol. 286, no. P1, p. 119353, 2021, doi: 10.1016/j.fuel.2020.119353.
[7] J. Xi, G. Yang, J. Cai, and Z. Gu, “A Review of Recent Research Results on Soot: The Formation of a Kind of Carbon-Based Material in Flames,” Front. Mater., vol. 8, no. May, pp. 1–6, 2021, doi: 10.3389/fmats.2021.695485.
[8] B. Shukla and M. Koshi, “A novel route for PAH growth in HACA based mechanisms,” Combust. Flame, vol. 159, no. 12, pp. 3589–3596, 2012, doi: 10.1016/j.combustflame.2012.08.007.
[9] F. Xu, P. B. Sunderland, and G. M. Faeth, “Soot formation in laminar premixed ethylene/air flames at atmospheric pressure,” Combust. Flame, vol. 108, no. 4, pp. 471–493, 1997, doi: 10.1016/S0010-2180(96)00200-3.
[10] F. Carbone, K. Gleason, and A. Gomez, “Pressure effects on incipiently sooting partially premixed counterflow flames of ethylene,” Proceedings of the Combustion Institute, vol. 36, no. 1, pp. 1395–1402, 2017, doi: 10.1016/j.proci.2016.07.041.
[11] M. Ghanta, D. Fahey, and B. Subramaniam, “Environmental impacts of ethylene production from diverse feedstocks and energy sources,” Appl. Petrochem. Res., vol. 4, no. 2, pp. 167–179, 2014, doi: 10.1007/s13203-013-0029-7.
[12] A. M. Bennett et al., “Soot formation in laminar flames of ethylene/ammonia,” Combust. Flame, vol. 220, pp. 210–218, 2020, doi: 10.1016/j.combustflame.2020.06.042.
[13] Y. Wang et al., “A systematic analysis of chemical mechanisms for ethylene oxidation and PAH formation,” Combust. Flame, vol. 253, p. 112784, Jul. 2023, doi: 10.1016/J.COMBUSTFLAME.2023.112784.
[14] J. Appel, H. Bockhorn, and M. Frenklach, “Kinetic modeling of soot formation with detailed chemistry and physics: Laminar premixed flames of C2 hydrocarbons,” Combust. Flame, vol. 121, no. 1–2, pp. 122–136, 2000, doi: 10.1016/S0010-2180(99)00135-2.
[15] A. Kazakov, H. Wang, and M. Frenklach, “Detailed modeling of soot formation in laminar premixed ethylene flames at a pressure of 10 bar,” Combust. Flame, vol. 100, no. 1–2, pp. 111–120, 1995, doi: 10.1016/0010-2180(94)00086-8.
[16] A. Fauzy, G. B. Chen, and T. H. Lin, “Numerical Analysis of Hydrogen Peroxide Addition and Oxygen-Enriched Methane Combustion,” ACS Omega, vol. 8, no. 18, pp. 16094–16105, 2023, doi: 10.1021/acsomega.3c00094.
[17] Y. Bedjanian, M. L. Nguyen, and G. Le Bras, “Kinetics of the reactions of soot surface-bound polycyclic aromatic hydrocarbons with the OH radicals,” Atmos. Environ., vol. 44, no. 14, pp. 1754–1760, 2010, doi: 10.1016/j.atmosenv.2010.02.007.
[18] C. Born and N. Peters, “Reduction of soot emission at a di diesel engine by additional injection of hydrogen peroxide during combustion,” SAE Technical Papers, no. 724, 1998, doi: 10.4271/982676.
[19] F. H. Wu and G. B. Chen, “Numerical study of hydrogen peroxide enhancement of ammonia premixed flames,” Energy, vol. 209, no. x, p. 118118, 2020, doi: 10.1016/j.energy.2020.118118.
[20] “Soot Pollution 101 - Center for American Progress.” Accessed: Jun. 25, 2025. [Online]. Available: https://www.americanprogress.org/article/soot-pollution-101/
[21] C. R. Shaddix and T. C. Williams, “Soot: Giver and taker of light,” Am. Sci., vol. 95, no. 3, pp. 232–239, 2007, doi: 10.1511/2007.65.232.
[22] T. C. Bond et al., “Bounding the role of black carbon in the climate system: A scientific assessment,” Journal of Geophysical Research Atmospheres, vol. 118, no. 11, pp. 5380–5552, 2013, doi: 10.1002/jgrd.50171.
[23] J. Lelieveld, J. S. Evans, M. Fnais, D. Giannadaki, and A. Pozzer, “The contribution of outdoor air pollution sources to premature mortality on a global scale,” Nature, vol. 525, no. 7569, pp. 367–371, 2015, doi: 10.1038/nature15371.
[24] C. A. Pope and D. W. Dockery, “Health effects of fine particulate air pollution: Lines that connect,” J. Air Waste Manage. Assoc., vol. 56, no. 6, pp. 709–742, 2006, doi: 10.1080/10473289.2006.10464485.
[25] G. Chen, W. Kong, Y. Xu, Y. Shen, and F. Wei, “Thermal efficiency and emissions improvement of the lean burn high compression ratio HPDI NG engine at different combustion modes,” Appl. Therm. Eng., vol. 247, no. January, p. 123061, 2024, doi: 10.1016/j.applthermaleng.2024.123061.
[26] S. Taamallah, K. Vogiatzaki, F. M. Alzahrani, E. M. A. Mokheimer, M. A. Habib, and A. F. Ghoniem, “Fuel flexibility, stability and emissions in premixed hydrogen-rich gas turbine combustion: Technology, fundamentals, and numerical simulations,” Appl. Energy, vol. 154, pp. 1020–1047, 2015, doi: 10.1016/j.apenergy.2015.04.044.
[27] B. S. Haynes and H. G. Wagner, “Soot formation,” Prog. Energy Combust. Sci., vol. 7, no. 4, pp. 229–273, 1981, doi: 10.1016/0360-1285(81)90001-0.
[28] I. Glassman, R. A. Yetter, and N. G. Glumac, “Combustion [M].,” p. 293, 2014, Accessed: Dec. 17, 2025. [Online]. Available: https://books.google.com/books/about/Combustion.html?id=lLJZAwAAQBAJ
[29] “Stephen: Turns. An introduction to combustion: concepts... - Google Scholar.” Accessed: Dec. 17, 2025. [Online]. Available: https://scholar.google.com/scholar_lookup?title=An%20introduction%20to%20combustion%3A%20concepts%20and%20applications&publication_year=2000&author=R.%20Stephen
[30] “F. L. Dryer, F. A. Williams, and J. A. Glassman,... - Google Scholar.” Accessed: Dec. 17, 2025. [Online]. Available: https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=F.+L.+Dryer%2C+F.+A.+Williams%2C+and+J.+A.+Glassman%2C+%E2%80%9CCombustion+chemistry+of+hydrogen+peroxide%2C%E2%80%9D+Proceedings+of+the+Combustion+Institute%2C+vol.+16%2C+no.+1%2C+pp.+497%E2%80%93508%2C+1977.&btnG=
[31] J. Zádor, C. A. Taatjes, and R. X. Fernandes, “Kinetics of elementary reactions in low-temperature autoignition chemistry,” Prog. Energy Combust. Sci., vol. 37, no. 4, pp. 371–421, 2011, doi: 10.1016/j.pecs.2010.06.006.
[32] A. Mansouri, L. Zimmer, S. B. Dworkin, and N. A. Eaves, “Impact of pressure-based HACA rates on soot formation in varying-pressure coflow laminar diffusion flames,” Combust. Flame, vol. 218, pp. 109–120, 2020, doi: 10.1016/j.combustflame.2020.03.030.
[33] K. Liang, “Numerical study of water effects on the laminar burning velocity of methanol,” Biomass Bioenergy, vol. 108, pp. 307–311, Jan. 2018, doi: 10.1016/J.BIOMBIOE.2017.11.025.
[34] M. Frenklach and H. Wang, “Detailed modeling of soot particle nucleation and growth,” Symposium (International) on Combustion, vol. 23, no. 1, pp. 1559–1566, 1991, doi: 10.1016/S0082-0784(06)80426-1.
[35] S. Overview et al., Ranjit - Design of Experiments using the Taguchi Approach - 2001.pdf.pdf. 2004.
[36] S. Pal, S. K. Malviya, S. K. Pal, and A. K. Samantaray, “Optimization of quality characteristics parameters in a pulsed metal inert gas welding process using grey-based Taguchi method,” International Journal of Advanced Manufacturing Technology, vol. 44, no. 11–12, pp. 1250–1260, 2009, doi: 10.1007/s00170-009-1931-0.
[37] Dr. K. M. J. Rashid, “Optimize the Taguchi method, the signal-to-noise ratio, and the sensitivity,” International Journal of Statistics and Applied Mathematics, vol. 8, no. 6, pp. 64–70, 2023, doi: 10.22271/maths.2023.v8.i6a.1406.
[38] G. E. P. Box and D. W. Behnken, “Some New Three Level Designs for the Study of Quantitative Variables,” Technometrics, vol. 2, no. 4, pp. 455–475, 1960, doi: 10.1080/00401706.1960.10489912;REQUESTEDJOURNAL:JOURNAL:UTCH20.
[39] D. C. Montgomery, “Design and Analysis of Experiments, John Wiley & Sons,” Mycol. Res., vol. 106, no. 11, pp. 1323–1330, 2017, Accessed: Jan. 22, 2026. [Online]. Available: https://books.google.com/books/about/Design_and_Analysis_of_Experiments.html?id=Py7bDgAAQBAJ
[40] A. K. Choudhary, H. Chelladurai, and C. Kannan, “Optimization of Combustion Performance of Bioethanol (Water Hyacinth) Diesel Blends on Diesel Engine Using Response Surface Methodology,” Arabian Journal for Science and Engineering 2015 40:12, vol. 40, no. 12, pp. 3675–3695, Aug. 2015, doi: 10.1007/S13369-015-1810-Y.
[41] N. Lin, J. S. Hunter, and J. Wiley, “Math420 : Experimental Design Spring 2010,” Statistics (Ber)., pp. 1–2, 2010, Accessed: Jan. 22, 2026. [Online]. Available: https://books.google.com/books/about/Statistics_for_Experimenters.html?id=bZ9bEQAAQBAJ
[42] R. H. Myers, D. C. Montgomery, and C. M. Anderson-Cook, “Building Empirical Models,” Response Surface Methodology: Process and Product Optimization Using Designed Experiments, pp. 13–62, 2016, Accessed: Jan. 22, 2026. [Online]. Available: https://books.google.com/books/about/Response_Surface_Methodology.html?id=T-BbCwAAQBAJ
[43] F. N. Egolfopoulos and C. K. Law, “Chain mechanisms in the overall reaction orders in laminar flame propagation,” Combust. Flame, vol. 80, no. 1, pp. 7–16, 1990, doi: 10.1016/0010-2180(90)90049-W.
[44] M. I. Hassan, K. T. Aung, and G. M. Faeth, “Measured and predicted properties of laminar premixed methane/air flames at various pressures,” Combust. Flame, vol. 115, no. 4, pp. 539–550, 1998, doi: 10.1016/S0010-2180(98)00025-X.
[45] T. Hirasawa, C. J. Sung, A. Joshi, Z. Yang, H. Wang, and C. K. Law, “Determination of laminar flame speeds using digital particle image velocimetry: Binary fuel blends of ethylene, n-butane, and toluene,” Proceedings of the Combustion Institute, vol. 29, no. 2, pp. 1427–1434, 2002, doi: 10.1016/s1540-7489(02)80175-4.
[46] G. Jomaas, X. L. Zheng, D. L. Zhu, and C. K. Law, “Experimental determination of counterflow ignition temperatures and laminar flame speeds of C2-C3 hydrocarbons at atmospheric and elevated pressures,” Proceedings of the Combustion Institute, vol. 30, no. 1, pp. 193–200, 2005, doi: 10.1016/j.proci.2004.08.228.
[47] K. Kumar, G. Mittal, C. J. Sung, and C. K. Law, “An experimental investigation of ethylene/O2/diluent mixtures: Laminar flame speeds with preheat and ignition delays at high pressures,” Combust. Flame, vol. 153, no. 3, pp. 343–354, 2008, doi: 10.1016/j.combustflame.2007.11.012.
[48] G. B. Chen, Y. H. Li, T. S. Cheng, and Y. C. Chao, “Chemical effect of hydrogen peroxide addition on characteristics of methane–air combustion,” Energy, vol. 55, pp. 564–570, Jun. 2013, doi: 10.1016/J.ENERGY.2013.03.067.
[49] H. Wang and M. Frenklach, “A detailed kinetic modeling study of aromatics formation in laminar premixed acetylene and ethylene flames,” Combust. Flame, vol. 110, no. 1–2, pp. 173–221, 1997, doi: 10.1016/S0010-2180(97)00068-0.
[50] P. Palies, Premixed combustion for combustors. 2020. doi: 10.1016/b978-0-12-819996-1.00010-x.